Modelled mid‐trophic pelagic prey fields improve understanding of marine predator foraging behaviour

Biophysical interactions are influential in determining the scale of key ecological processes within marine ecosystems. For oceanic predators, this means foraging behaviour is influenced by processes shaping the distribution of prey. However, oceanic prey is difficult to observe and its abundance an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ecography (Copenhagen) 2020-07, Vol.43 (7), p.1014-1026
Hauptverfasser: Green, D. B., Bestley, S., Trebilco, R., Corney, S. P., Lehodey, P., McMahon, C. R., Guinet, C., Hindell, Mark A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1026
container_issue 7
container_start_page 1014
container_title Ecography (Copenhagen)
container_volume 43
creator Green, D. B.
Bestley, S.
Trebilco, R.
Corney, S. P.
Lehodey, P.
McMahon, C. R.
Guinet, C.
Hindell, Mark A.
description Biophysical interactions are influential in determining the scale of key ecological processes within marine ecosystems. For oceanic predators, this means foraging behaviour is influenced by processes shaping the distribution of prey. However, oceanic prey is difficult to observe and its abundance and distribution is regionally generalised. We use a spatiotemporally resolved simulation model to describe mid‐trophic prey distribution within the Southern Ocean and demonstrate insights that this modelled prey field provides into the foraging behaviour of a widely distributed marine predator, the southern elephant seal. From a five‐year simulation of prey biomass, we computed climatologies of mean prey biomass (average prey conditions) and prey biomass variability (meso‐scale variability). We also compiled spatially gridded metrics of seal density and diving behaviour from 13 yr of tracking data. We statistically modelled these metrics as non‐linear functions of prey biomass (both mean and variability) and used these to predict seal distribution and behaviour. Our predictions were consistent with observations (R2adj = 0.23), indicating that seals aggregate in regions of high mesoscale activity where eddies concentrate prey. Here, seals dived deeper (R2marg = 0.12, R2cond = 0.51) and spent less time hunting (R2marg = 0.05, R2cond = 0.56), likely targeting deep but profitable prey patches. Seals generally avoided areas of low eddy activity where prey was likely dispersed. Most seals foraged south of the Subantarctic Front, despite north of the front exhibiting consistently high simulated prey biomasses. This likely reflects seal prey or habitat preferences, but also emphasises the importance of mesoscale prey biomass variability relative to regionally high mean biomass. This work demonstrates the value of coupling mechanistic representations of prey biomass with predator observations to provide insight into how biophysical processes combine to shape species distributions. This will be increasingly important for the robust prediction of species’ responses to rapid system change.
doi_str_mv 10.1111/ecog.04939
format Article
fullrecord <record><control><sourceid>gale_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02543064v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A710756056</galeid><sourcerecordid>A710756056</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4102-b6c523989d0f7822bd95aab16a2705bbce87d9ebb2fbf072809527f3dee7358c3</originalsourceid><addsrcrecordid>eNp9kc2u0zAQhS0EEuXChieIxAqklLET2_Gyqu4PUtHdwNryz7j1VRoXJy3qjkfgGXkSHIJYMrMYafyd0bEOIW8prGmpj-jSfg2tatQzsqICoAbeyedkBQpELbmCl-TVOD4BUKZEtyLhc_LY9-irY_S_fvyccjodoqtO2Jv9PDNeqxCx92MVj6ecLlidB495nMzg47CvUqiOJscBZ9abKeUqpFzE5c3iwVxiOufX5EUw_Yhv_s4b8vXu9sv2od493n_abna1aymw2grHWaM65SHIjjHrFTfGUmGYBG6tw056hdayYANI1oHiTIbGI8qGd665Ie-XuwfT61OOxdlVJxP1w2an5x0w3jYg2gst7LuFLb_6dsZx0k_F6VDsadZSRUVDZVuo9ULtTY86DiFN2bjSHo_RpQFDLPuNpCC5AC6K4MMicDmNY8bwzwcFPYek55D0n5AKTBf4e7ly_Q-pb7eP95TxjjW_Aa2flZo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2419163174</pqid></control><display><type>article</type><title>Modelled mid‐trophic pelagic prey fields improve understanding of marine predator foraging behaviour</title><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Online Library Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Green, D. B. ; Bestley, S. ; Trebilco, R. ; Corney, S. P. ; Lehodey, P. ; McMahon, C. R. ; Guinet, C. ; Hindell, Mark A.</creator><creatorcontrib>Green, D. B. ; Bestley, S. ; Trebilco, R. ; Corney, S. P. ; Lehodey, P. ; McMahon, C. R. ; Guinet, C. ; Hindell, Mark A.</creatorcontrib><description>Biophysical interactions are influential in determining the scale of key ecological processes within marine ecosystems. For oceanic predators, this means foraging behaviour is influenced by processes shaping the distribution of prey. However, oceanic prey is difficult to observe and its abundance and distribution is regionally generalised. We use a spatiotemporally resolved simulation model to describe mid‐trophic prey distribution within the Southern Ocean and demonstrate insights that this modelled prey field provides into the foraging behaviour of a widely distributed marine predator, the southern elephant seal. From a five‐year simulation of prey biomass, we computed climatologies of mean prey biomass (average prey conditions) and prey biomass variability (meso‐scale variability). We also compiled spatially gridded metrics of seal density and diving behaviour from 13 yr of tracking data. We statistically modelled these metrics as non‐linear functions of prey biomass (both mean and variability) and used these to predict seal distribution and behaviour. Our predictions were consistent with observations (R2adj = 0.23), indicating that seals aggregate in regions of high mesoscale activity where eddies concentrate prey. Here, seals dived deeper (R2marg = 0.12, R2cond = 0.51) and spent less time hunting (R2marg = 0.05, R2cond = 0.56), likely targeting deep but profitable prey patches. Seals generally avoided areas of low eddy activity where prey was likely dispersed. Most seals foraged south of the Subantarctic Front, despite north of the front exhibiting consistently high simulated prey biomasses. This likely reflects seal prey or habitat preferences, but also emphasises the importance of mesoscale prey biomass variability relative to regionally high mean biomass. This work demonstrates the value of coupling mechanistic representations of prey biomass with predator observations to provide insight into how biophysical processes combine to shape species distributions. This will be increasingly important for the robust prediction of species’ responses to rapid system change.</description><identifier>ISSN: 0906-7590</identifier><identifier>EISSN: 1600-0587</identifier><identifier>DOI: 10.1111/ecog.04939</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Biomass ; Computer simulation ; Diving behavior ; Ecological effects ; ecosystem modelling ; Eddies ; Environmental changes ; Environmental Sciences ; Foraging behavior ; Foraging habitats ; Habitat preferences ; Hunting ; kerguelen plateau ; Linear functions ; Marine ecology ; Marine ecosystems ; micronekton ; Mirounga leonina ; Predator-prey simulation ; Predators ; predators prey interaction ; Prey ; Seals ; Seals (animals) ; Small mammals ; southern elephant seal ; Southern Indian Ocean ; Variability</subject><ispartof>Ecography (Copenhagen), 2020-07, Vol.43 (7), p.1014-1026</ispartof><rights>2020 The Authors. Ecography published by John Wiley &amp; Sons Ltd on behalf of Nordic Society Oikos</rights><rights>COPYRIGHT 2020 John Wiley &amp; Sons, Inc.</rights><rights>Copyright Wiley Subscription Services, Inc. Jul 2020</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4102-b6c523989d0f7822bd95aab16a2705bbce87d9ebb2fbf072809527f3dee7358c3</citedby><cites>FETCH-LOGICAL-c4102-b6c523989d0f7822bd95aab16a2705bbce87d9ebb2fbf072809527f3dee7358c3</cites><orcidid>0000-0001-5241-8917 ; 0000-0001-9712-8016 ; 0000-0002-8293-0863 ; 0000-0002-2753-4796 ; 0000-0003-2481-6947 ; 0000-0002-0346-3129 ; 0000-0002-7823-7185 ; 0000-0001-9342-669X ; 0000-0003-0768-2203</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fecog.04939$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fecog.04939$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,777,781,861,882,1412,11543,27905,27906,45555,45556,46033,46457</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02543064$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Green, D. B.</creatorcontrib><creatorcontrib>Bestley, S.</creatorcontrib><creatorcontrib>Trebilco, R.</creatorcontrib><creatorcontrib>Corney, S. P.</creatorcontrib><creatorcontrib>Lehodey, P.</creatorcontrib><creatorcontrib>McMahon, C. R.</creatorcontrib><creatorcontrib>Guinet, C.</creatorcontrib><creatorcontrib>Hindell, Mark A.</creatorcontrib><title>Modelled mid‐trophic pelagic prey fields improve understanding of marine predator foraging behaviour</title><title>Ecography (Copenhagen)</title><description>Biophysical interactions are influential in determining the scale of key ecological processes within marine ecosystems. For oceanic predators, this means foraging behaviour is influenced by processes shaping the distribution of prey. However, oceanic prey is difficult to observe and its abundance and distribution is regionally generalised. We use a spatiotemporally resolved simulation model to describe mid‐trophic prey distribution within the Southern Ocean and demonstrate insights that this modelled prey field provides into the foraging behaviour of a widely distributed marine predator, the southern elephant seal. From a five‐year simulation of prey biomass, we computed climatologies of mean prey biomass (average prey conditions) and prey biomass variability (meso‐scale variability). We also compiled spatially gridded metrics of seal density and diving behaviour from 13 yr of tracking data. We statistically modelled these metrics as non‐linear functions of prey biomass (both mean and variability) and used these to predict seal distribution and behaviour. Our predictions were consistent with observations (R2adj = 0.23), indicating that seals aggregate in regions of high mesoscale activity where eddies concentrate prey. Here, seals dived deeper (R2marg = 0.12, R2cond = 0.51) and spent less time hunting (R2marg = 0.05, R2cond = 0.56), likely targeting deep but profitable prey patches. Seals generally avoided areas of low eddy activity where prey was likely dispersed. Most seals foraged south of the Subantarctic Front, despite north of the front exhibiting consistently high simulated prey biomasses. This likely reflects seal prey or habitat preferences, but also emphasises the importance of mesoscale prey biomass variability relative to regionally high mean biomass. This work demonstrates the value of coupling mechanistic representations of prey biomass with predator observations to provide insight into how biophysical processes combine to shape species distributions. This will be increasingly important for the robust prediction of species’ responses to rapid system change.</description><subject>Biomass</subject><subject>Computer simulation</subject><subject>Diving behavior</subject><subject>Ecological effects</subject><subject>ecosystem modelling</subject><subject>Eddies</subject><subject>Environmental changes</subject><subject>Environmental Sciences</subject><subject>Foraging behavior</subject><subject>Foraging habitats</subject><subject>Habitat preferences</subject><subject>Hunting</subject><subject>kerguelen plateau</subject><subject>Linear functions</subject><subject>Marine ecology</subject><subject>Marine ecosystems</subject><subject>micronekton</subject><subject>Mirounga leonina</subject><subject>Predator-prey simulation</subject><subject>Predators</subject><subject>predators prey interaction</subject><subject>Prey</subject><subject>Seals</subject><subject>Seals (animals)</subject><subject>Small mammals</subject><subject>southern elephant seal</subject><subject>Southern Indian Ocean</subject><subject>Variability</subject><issn>0906-7590</issn><issn>1600-0587</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp9kc2u0zAQhS0EEuXChieIxAqklLET2_Gyqu4PUtHdwNryz7j1VRoXJy3qjkfgGXkSHIJYMrMYafyd0bEOIW8prGmpj-jSfg2tatQzsqICoAbeyedkBQpELbmCl-TVOD4BUKZEtyLhc_LY9-irY_S_fvyccjodoqtO2Jv9PDNeqxCx92MVj6ecLlidB495nMzg47CvUqiOJscBZ9abKeUqpFzE5c3iwVxiOufX5EUw_Yhv_s4b8vXu9sv2od493n_abna1aymw2grHWaM65SHIjjHrFTfGUmGYBG6tw056hdayYANI1oHiTIbGI8qGd665Ie-XuwfT61OOxdlVJxP1w2an5x0w3jYg2gst7LuFLb_6dsZx0k_F6VDsadZSRUVDZVuo9ULtTY86DiFN2bjSHo_RpQFDLPuNpCC5AC6K4MMicDmNY8bwzwcFPYek55D0n5AKTBf4e7ly_Q-pb7eP95TxjjW_Aa2flZo</recordid><startdate>202007</startdate><enddate>202007</enddate><creator>Green, D. B.</creator><creator>Bestley, S.</creator><creator>Trebilco, R.</creator><creator>Corney, S. P.</creator><creator>Lehodey, P.</creator><creator>McMahon, C. R.</creator><creator>Guinet, C.</creator><creator>Hindell, Mark A.</creator><general>Blackwell Publishing Ltd</general><general>John Wiley &amp; Sons, Inc</general><general>Wiley</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7SS</scope><scope>C1K</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-5241-8917</orcidid><orcidid>https://orcid.org/0000-0001-9712-8016</orcidid><orcidid>https://orcid.org/0000-0002-8293-0863</orcidid><orcidid>https://orcid.org/0000-0002-2753-4796</orcidid><orcidid>https://orcid.org/0000-0003-2481-6947</orcidid><orcidid>https://orcid.org/0000-0002-0346-3129</orcidid><orcidid>https://orcid.org/0000-0002-7823-7185</orcidid><orcidid>https://orcid.org/0000-0001-9342-669X</orcidid><orcidid>https://orcid.org/0000-0003-0768-2203</orcidid></search><sort><creationdate>202007</creationdate><title>Modelled mid‐trophic pelagic prey fields improve understanding of marine predator foraging behaviour</title><author>Green, D. B. ; Bestley, S. ; Trebilco, R. ; Corney, S. P. ; Lehodey, P. ; McMahon, C. R. ; Guinet, C. ; Hindell, Mark A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4102-b6c523989d0f7822bd95aab16a2705bbce87d9ebb2fbf072809527f3dee7358c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biomass</topic><topic>Computer simulation</topic><topic>Diving behavior</topic><topic>Ecological effects</topic><topic>ecosystem modelling</topic><topic>Eddies</topic><topic>Environmental changes</topic><topic>Environmental Sciences</topic><topic>Foraging behavior</topic><topic>Foraging habitats</topic><topic>Habitat preferences</topic><topic>Hunting</topic><topic>kerguelen plateau</topic><topic>Linear functions</topic><topic>Marine ecology</topic><topic>Marine ecosystems</topic><topic>micronekton</topic><topic>Mirounga leonina</topic><topic>Predator-prey simulation</topic><topic>Predators</topic><topic>predators prey interaction</topic><topic>Prey</topic><topic>Seals</topic><topic>Seals (animals)</topic><topic>Small mammals</topic><topic>southern elephant seal</topic><topic>Southern Indian Ocean</topic><topic>Variability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Green, D. B.</creatorcontrib><creatorcontrib>Bestley, S.</creatorcontrib><creatorcontrib>Trebilco, R.</creatorcontrib><creatorcontrib>Corney, S. P.</creatorcontrib><creatorcontrib>Lehodey, P.</creatorcontrib><creatorcontrib>McMahon, C. R.</creatorcontrib><creatorcontrib>Guinet, C.</creatorcontrib><creatorcontrib>Hindell, Mark A.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Ecography (Copenhagen)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Green, D. B.</au><au>Bestley, S.</au><au>Trebilco, R.</au><au>Corney, S. P.</au><au>Lehodey, P.</au><au>McMahon, C. R.</au><au>Guinet, C.</au><au>Hindell, Mark A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modelled mid‐trophic pelagic prey fields improve understanding of marine predator foraging behaviour</atitle><jtitle>Ecography (Copenhagen)</jtitle><date>2020-07</date><risdate>2020</risdate><volume>43</volume><issue>7</issue><spage>1014</spage><epage>1026</epage><pages>1014-1026</pages><issn>0906-7590</issn><eissn>1600-0587</eissn><abstract>Biophysical interactions are influential in determining the scale of key ecological processes within marine ecosystems. For oceanic predators, this means foraging behaviour is influenced by processes shaping the distribution of prey. However, oceanic prey is difficult to observe and its abundance and distribution is regionally generalised. We use a spatiotemporally resolved simulation model to describe mid‐trophic prey distribution within the Southern Ocean and demonstrate insights that this modelled prey field provides into the foraging behaviour of a widely distributed marine predator, the southern elephant seal. From a five‐year simulation of prey biomass, we computed climatologies of mean prey biomass (average prey conditions) and prey biomass variability (meso‐scale variability). We also compiled spatially gridded metrics of seal density and diving behaviour from 13 yr of tracking data. We statistically modelled these metrics as non‐linear functions of prey biomass (both mean and variability) and used these to predict seal distribution and behaviour. Our predictions were consistent with observations (R2adj = 0.23), indicating that seals aggregate in regions of high mesoscale activity where eddies concentrate prey. Here, seals dived deeper (R2marg = 0.12, R2cond = 0.51) and spent less time hunting (R2marg = 0.05, R2cond = 0.56), likely targeting deep but profitable prey patches. Seals generally avoided areas of low eddy activity where prey was likely dispersed. Most seals foraged south of the Subantarctic Front, despite north of the front exhibiting consistently high simulated prey biomasses. This likely reflects seal prey or habitat preferences, but also emphasises the importance of mesoscale prey biomass variability relative to regionally high mean biomass. This work demonstrates the value of coupling mechanistic representations of prey biomass with predator observations to provide insight into how biophysical processes combine to shape species distributions. This will be increasingly important for the robust prediction of species’ responses to rapid system change.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/ecog.04939</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-5241-8917</orcidid><orcidid>https://orcid.org/0000-0001-9712-8016</orcidid><orcidid>https://orcid.org/0000-0002-8293-0863</orcidid><orcidid>https://orcid.org/0000-0002-2753-4796</orcidid><orcidid>https://orcid.org/0000-0003-2481-6947</orcidid><orcidid>https://orcid.org/0000-0002-0346-3129</orcidid><orcidid>https://orcid.org/0000-0002-7823-7185</orcidid><orcidid>https://orcid.org/0000-0001-9342-669X</orcidid><orcidid>https://orcid.org/0000-0003-0768-2203</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0906-7590
ispartof Ecography (Copenhagen), 2020-07, Vol.43 (7), p.1014-1026
issn 0906-7590
1600-0587
language eng
recordid cdi_hal_primary_oai_HAL_hal_02543064v1
source DOAJ Directory of Open Access Journals; Wiley Online Library Journals Frontfile Complete; Wiley Online Library Open Access; EZB-FREE-00999 freely available EZB journals
subjects Biomass
Computer simulation
Diving behavior
Ecological effects
ecosystem modelling
Eddies
Environmental changes
Environmental Sciences
Foraging behavior
Foraging habitats
Habitat preferences
Hunting
kerguelen plateau
Linear functions
Marine ecology
Marine ecosystems
micronekton
Mirounga leonina
Predator-prey simulation
Predators
predators prey interaction
Prey
Seals
Seals (animals)
Small mammals
southern elephant seal
Southern Indian Ocean
Variability
title Modelled mid‐trophic pelagic prey fields improve understanding of marine predator foraging behaviour
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T06%3A45%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modelled%20mid%E2%80%90trophic%20pelagic%20prey%20fields%20improve%20understanding%20of%20marine%20predator%20foraging%20behaviour&rft.jtitle=Ecography%20(Copenhagen)&rft.au=Green,%20D.%20B.&rft.date=2020-07&rft.volume=43&rft.issue=7&rft.spage=1014&rft.epage=1026&rft.pages=1014-1026&rft.issn=0906-7590&rft.eissn=1600-0587&rft_id=info:doi/10.1111/ecog.04939&rft_dat=%3Cgale_hal_p%3EA710756056%3C/gale_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2419163174&rft_id=info:pmid/&rft_galeid=A710756056&rfr_iscdi=true