Comparison of effects of midostaurin, crenolanib, quizartinib, gilteritinib, sorafenib and BLU‐285 on oncogenic mutants of KIT, CBL and FLT3 in haematological malignancies
Summary Mutations in two type‐3 receptor tyrosine kinases (RTKs), KIT and FLT3, are common in both acute myeloid leukaemia (AML) and systemic mastocytosis (SM) and lead to hyperactivation of key signalling pathways. A large number of tyrosine kinase inhibitors (TKIs) have been developed that target...
Gespeichert in:
Veröffentlicht in: | British journal of haematology 2019-11, Vol.187 (4), p.488-501 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 501 |
---|---|
container_issue | 4 |
container_start_page | 488 |
container_title | British journal of haematology |
container_volume | 187 |
creator | Weisberg, Ellen Meng, Chengcheng Case, Abigail E. Sattler, Martin Tiv, Hong L. Gokhale, Prafulla C. Buhrlage, Sara J. Liu, Xiaoxi Yang, Jing Wang, Jinhua Gray, Nathanael Stone, Richard M. Adamia, Sophia Dubreuil, Patrice Letard, Sebastien Griffin, James D. |
description | Summary
Mutations in two type‐3 receptor tyrosine kinases (RTKs), KIT and FLT3, are common in both acute myeloid leukaemia (AML) and systemic mastocytosis (SM) and lead to hyperactivation of key signalling pathways. A large number of tyrosine kinase inhibitors (TKIs) have been developed that target either FLT3 or KIT and significant clinical benefit has been demonstrated in multiple clinical trials. Given the structural similarity of FLT3 and KIT, it is not surprising that some of these TKIs inhibit both of these receptors. This is typified by midostaurin, which has been approved by the US Food and Drug Administration for mutant FLT3‐positive AML and for KIT D816V‐positive SM. Here, we compare the in vitro activities of the clinically available FLT3 and KIT inhibitors with those of midostaurin against a panel of cells expressing a variety of oncogenic FLT3 or KIT receptors, including wild‐type (wt) FLT3, FLT3‐internal tandem duplication (ITD), FLT3 D835Y, the resistance mutant FLT3‐ITD+ F691L, KIT D816V, and KIT N822K. We also examined the effects of these inhibitors in vitro and in vivo on cells expressing mutations in c‐CBL found in AML that result in hypersensitization of RTKs, such as FLT3 and KIT. The results show a wide spectrum of activity of these various mutations to these clinically available TKIs. |
doi_str_mv | 10.1111/bjh.16092 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02533406v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2313214801</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4222-172932d0df4ee71112ea9c01be40024cba358f9791ab4d319283db08a310f3d33</originalsourceid><addsrcrecordid>eNp1kd9u0zAUxi0EYmVwwQsgS9yA1Gz-lya5XCtGxyJx011bJ47Tukrszk6Gtqs9Ai_CS_EkuE3ZJCR84-_YP33HPh9C7yk5o3GdV9vNGZ2Rgr1AE8pnacKooC_RhBCSJZSI_AS9CWFLCOUkpa_RCY-iSAWfoF8L1-3Am-Asdg3WTaNVH_ayM7ULPQze2ClWXlvXgjXVFN8O5gF8bw7F2rS99uZYBeeh0VFisDWelze_H3-yPMV7c6vcOl4p3A092LHH9dVqihfz8oBfliuOjcUb0B30rnVro6DFHbRmbcEqo8Nb9KqBNuh3x_0U3Vx-WS2WSfn969XiokyUYIwlNGMFZzWpG6F1FifENBSK0EoLQphQFfA0b4qsoFCJmtOC5byuSA6ckobXnJ-iz6PvBlq586YDfy8dGLm8KOX-jLCUc0FmdzSyn0Z2593toEMvOxOUbuO0tBuCZCzNMy6KIo3ox3_QrRu8jT-RLEYSU8sJfW6uvAvB6-bpBZTIfd4y5i0PeUf2w9FxqDpdP5F_A47A-Qj8MK2-_7-TnH9bjpZ_AN6Js5c</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2313214801</pqid></control><display><type>article</type><title>Comparison of effects of midostaurin, crenolanib, quizartinib, gilteritinib, sorafenib and BLU‐285 on oncogenic mutants of KIT, CBL and FLT3 in haematological malignancies</title><source>Wiley Free Content</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Weisberg, Ellen ; Meng, Chengcheng ; Case, Abigail E. ; Sattler, Martin ; Tiv, Hong L. ; Gokhale, Prafulla C. ; Buhrlage, Sara J. ; Liu, Xiaoxi ; Yang, Jing ; Wang, Jinhua ; Gray, Nathanael ; Stone, Richard M. ; Adamia, Sophia ; Dubreuil, Patrice ; Letard, Sebastien ; Griffin, James D.</creator><creatorcontrib>Weisberg, Ellen ; Meng, Chengcheng ; Case, Abigail E. ; Sattler, Martin ; Tiv, Hong L. ; Gokhale, Prafulla C. ; Buhrlage, Sara J. ; Liu, Xiaoxi ; Yang, Jing ; Wang, Jinhua ; Gray, Nathanael ; Stone, Richard M. ; Adamia, Sophia ; Dubreuil, Patrice ; Letard, Sebastien ; Griffin, James D.</creatorcontrib><description>Summary
Mutations in two type‐3 receptor tyrosine kinases (RTKs), KIT and FLT3, are common in both acute myeloid leukaemia (AML) and systemic mastocytosis (SM) and lead to hyperactivation of key signalling pathways. A large number of tyrosine kinase inhibitors (TKIs) have been developed that target either FLT3 or KIT and significant clinical benefit has been demonstrated in multiple clinical trials. Given the structural similarity of FLT3 and KIT, it is not surprising that some of these TKIs inhibit both of these receptors. This is typified by midostaurin, which has been approved by the US Food and Drug Administration for mutant FLT3‐positive AML and for KIT D816V‐positive SM. Here, we compare the in vitro activities of the clinically available FLT3 and KIT inhibitors with those of midostaurin against a panel of cells expressing a variety of oncogenic FLT3 or KIT receptors, including wild‐type (wt) FLT3, FLT3‐internal tandem duplication (ITD), FLT3 D835Y, the resistance mutant FLT3‐ITD+ F691L, KIT D816V, and KIT N822K. We also examined the effects of these inhibitors in vitro and in vivo on cells expressing mutations in c‐CBL found in AML that result in hypersensitization of RTKs, such as FLT3 and KIT. The results show a wide spectrum of activity of these various mutations to these clinically available TKIs.</description><identifier>ISSN: 0007-1048</identifier><identifier>EISSN: 1365-2141</identifier><identifier>DOI: 10.1111/bjh.16092</identifier><identifier>PMID: 31309543</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>acute myeloid leukaemia ; Acute myeloid leukemia ; Aniline Compounds - pharmacology ; Aniline Compounds - therapeutic use ; Antineoplastic Agents - pharmacology ; Antineoplastic Agents - therapeutic use ; Benzimidazoles - pharmacology ; Benzimidazoles - therapeutic use ; Benzothiazoles - pharmacology ; Benzothiazoles - therapeutic use ; BLU‐285 ; Cell Line, Tumor ; Cellular Biology ; Clinical trials ; Drug Screening Assays, Antitumor ; FLT3 ; fms-Like Tyrosine Kinase 3 - drug effects ; fms-Like Tyrosine Kinase 3 - genetics ; Hematologic Neoplasms - drug therapy ; Hematologic Neoplasms - genetics ; Hematology ; Humans ; Inhibitors ; Leukemia ; Life Sciences ; Mastocytosis ; Mutant Proteins - drug effects ; Mutants ; Mutation ; Phenylurea Compounds - pharmacology ; Phenylurea Compounds - therapeutic use ; Piperidines - pharmacology ; Piperidines - therapeutic use ; Protein Kinase Inhibitors - pharmacology ; Protein Kinase Inhibitors - therapeutic use ; Protein-tyrosine kinase ; Proto-Oncogene Proteins c-cbl - drug effects ; Proto-Oncogene Proteins c-cbl - genetics ; Proto-Oncogene Proteins c-kit - drug effects ; Proto-Oncogene Proteins c-kit - genetics ; Pyrazines - pharmacology ; Pyrazines - therapeutic use ; Pyrazoles - pharmacology ; Pyrazoles - therapeutic use ; Pyrroles - pharmacology ; Pyrroles - therapeutic use ; Signal transduction ; Sorafenib - pharmacology ; Sorafenib - therapeutic use ; Staurosporine - analogs & derivatives ; Staurosporine - pharmacology ; Staurosporine - therapeutic use ; Triazines - pharmacology ; Triazines - therapeutic use ; tyrosine kinase inhibitors</subject><ispartof>British journal of haematology, 2019-11, Vol.187 (4), p.488-501</ispartof><rights>2019 British Society for Haematology and John Wiley & Sons Ltd</rights><rights>2019 British Society for Haematology and John Wiley & Sons Ltd.</rights><rights>Copyright © 2019 John Wiley & Sons Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4222-172932d0df4ee71112ea9c01be40024cba358f9791ab4d319283db08a310f3d33</citedby><cites>FETCH-LOGICAL-c4222-172932d0df4ee71112ea9c01be40024cba358f9791ab4d319283db08a310f3d33</cites><orcidid>0000-0002-5679-9531 ; 0000-0001-5917-5495 ; 0000-0001-5354-7403</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fbjh.16092$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fbjh.16092$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31309543$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02533406$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Weisberg, Ellen</creatorcontrib><creatorcontrib>Meng, Chengcheng</creatorcontrib><creatorcontrib>Case, Abigail E.</creatorcontrib><creatorcontrib>Sattler, Martin</creatorcontrib><creatorcontrib>Tiv, Hong L.</creatorcontrib><creatorcontrib>Gokhale, Prafulla C.</creatorcontrib><creatorcontrib>Buhrlage, Sara J.</creatorcontrib><creatorcontrib>Liu, Xiaoxi</creatorcontrib><creatorcontrib>Yang, Jing</creatorcontrib><creatorcontrib>Wang, Jinhua</creatorcontrib><creatorcontrib>Gray, Nathanael</creatorcontrib><creatorcontrib>Stone, Richard M.</creatorcontrib><creatorcontrib>Adamia, Sophia</creatorcontrib><creatorcontrib>Dubreuil, Patrice</creatorcontrib><creatorcontrib>Letard, Sebastien</creatorcontrib><creatorcontrib>Griffin, James D.</creatorcontrib><title>Comparison of effects of midostaurin, crenolanib, quizartinib, gilteritinib, sorafenib and BLU‐285 on oncogenic mutants of KIT, CBL and FLT3 in haematological malignancies</title><title>British journal of haematology</title><addtitle>Br J Haematol</addtitle><description>Summary
Mutations in two type‐3 receptor tyrosine kinases (RTKs), KIT and FLT3, are common in both acute myeloid leukaemia (AML) and systemic mastocytosis (SM) and lead to hyperactivation of key signalling pathways. A large number of tyrosine kinase inhibitors (TKIs) have been developed that target either FLT3 or KIT and significant clinical benefit has been demonstrated in multiple clinical trials. Given the structural similarity of FLT3 and KIT, it is not surprising that some of these TKIs inhibit both of these receptors. This is typified by midostaurin, which has been approved by the US Food and Drug Administration for mutant FLT3‐positive AML and for KIT D816V‐positive SM. Here, we compare the in vitro activities of the clinically available FLT3 and KIT inhibitors with those of midostaurin against a panel of cells expressing a variety of oncogenic FLT3 or KIT receptors, including wild‐type (wt) FLT3, FLT3‐internal tandem duplication (ITD), FLT3 D835Y, the resistance mutant FLT3‐ITD+ F691L, KIT D816V, and KIT N822K. We also examined the effects of these inhibitors in vitro and in vivo on cells expressing mutations in c‐CBL found in AML that result in hypersensitization of RTKs, such as FLT3 and KIT. The results show a wide spectrum of activity of these various mutations to these clinically available TKIs.</description><subject>acute myeloid leukaemia</subject><subject>Acute myeloid leukemia</subject><subject>Aniline Compounds - pharmacology</subject><subject>Aniline Compounds - therapeutic use</subject><subject>Antineoplastic Agents - pharmacology</subject><subject>Antineoplastic Agents - therapeutic use</subject><subject>Benzimidazoles - pharmacology</subject><subject>Benzimidazoles - therapeutic use</subject><subject>Benzothiazoles - pharmacology</subject><subject>Benzothiazoles - therapeutic use</subject><subject>BLU‐285</subject><subject>Cell Line, Tumor</subject><subject>Cellular Biology</subject><subject>Clinical trials</subject><subject>Drug Screening Assays, Antitumor</subject><subject>FLT3</subject><subject>fms-Like Tyrosine Kinase 3 - drug effects</subject><subject>fms-Like Tyrosine Kinase 3 - genetics</subject><subject>Hematologic Neoplasms - drug therapy</subject><subject>Hematologic Neoplasms - genetics</subject><subject>Hematology</subject><subject>Humans</subject><subject>Inhibitors</subject><subject>Leukemia</subject><subject>Life Sciences</subject><subject>Mastocytosis</subject><subject>Mutant Proteins - drug effects</subject><subject>Mutants</subject><subject>Mutation</subject><subject>Phenylurea Compounds - pharmacology</subject><subject>Phenylurea Compounds - therapeutic use</subject><subject>Piperidines - pharmacology</subject><subject>Piperidines - therapeutic use</subject><subject>Protein Kinase Inhibitors - pharmacology</subject><subject>Protein Kinase Inhibitors - therapeutic use</subject><subject>Protein-tyrosine kinase</subject><subject>Proto-Oncogene Proteins c-cbl - drug effects</subject><subject>Proto-Oncogene Proteins c-cbl - genetics</subject><subject>Proto-Oncogene Proteins c-kit - drug effects</subject><subject>Proto-Oncogene Proteins c-kit - genetics</subject><subject>Pyrazines - pharmacology</subject><subject>Pyrazines - therapeutic use</subject><subject>Pyrazoles - pharmacology</subject><subject>Pyrazoles - therapeutic use</subject><subject>Pyrroles - pharmacology</subject><subject>Pyrroles - therapeutic use</subject><subject>Signal transduction</subject><subject>Sorafenib - pharmacology</subject><subject>Sorafenib - therapeutic use</subject><subject>Staurosporine - analogs & derivatives</subject><subject>Staurosporine - pharmacology</subject><subject>Staurosporine - therapeutic use</subject><subject>Triazines - pharmacology</subject><subject>Triazines - therapeutic use</subject><subject>tyrosine kinase inhibitors</subject><issn>0007-1048</issn><issn>1365-2141</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kd9u0zAUxi0EYmVwwQsgS9yA1Gz-lya5XCtGxyJx011bJ47Tukrszk6Gtqs9Ai_CS_EkuE3ZJCR84-_YP33HPh9C7yk5o3GdV9vNGZ2Rgr1AE8pnacKooC_RhBCSJZSI_AS9CWFLCOUkpa_RCY-iSAWfoF8L1-3Am-Asdg3WTaNVH_ayM7ULPQze2ClWXlvXgjXVFN8O5gF8bw7F2rS99uZYBeeh0VFisDWelze_H3-yPMV7c6vcOl4p3A092LHH9dVqihfz8oBfliuOjcUb0B30rnVro6DFHbRmbcEqo8Nb9KqBNuh3x_0U3Vx-WS2WSfn969XiokyUYIwlNGMFZzWpG6F1FifENBSK0EoLQphQFfA0b4qsoFCJmtOC5byuSA6ckobXnJ-iz6PvBlq586YDfy8dGLm8KOX-jLCUc0FmdzSyn0Z2593toEMvOxOUbuO0tBuCZCzNMy6KIo3ox3_QrRu8jT-RLEYSU8sJfW6uvAvB6-bpBZTIfd4y5i0PeUf2w9FxqDpdP5F_A47A-Qj8MK2-_7-TnH9bjpZ_AN6Js5c</recordid><startdate>201911</startdate><enddate>201911</enddate><creator>Weisberg, Ellen</creator><creator>Meng, Chengcheng</creator><creator>Case, Abigail E.</creator><creator>Sattler, Martin</creator><creator>Tiv, Hong L.</creator><creator>Gokhale, Prafulla C.</creator><creator>Buhrlage, Sara J.</creator><creator>Liu, Xiaoxi</creator><creator>Yang, Jing</creator><creator>Wang, Jinhua</creator><creator>Gray, Nathanael</creator><creator>Stone, Richard M.</creator><creator>Adamia, Sophia</creator><creator>Dubreuil, Patrice</creator><creator>Letard, Sebastien</creator><creator>Griffin, James D.</creator><general>Blackwell Publishing Ltd</general><general>Wiley</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T5</scope><scope>H94</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-5679-9531</orcidid><orcidid>https://orcid.org/0000-0001-5917-5495</orcidid><orcidid>https://orcid.org/0000-0001-5354-7403</orcidid></search><sort><creationdate>201911</creationdate><title>Comparison of effects of midostaurin, crenolanib, quizartinib, gilteritinib, sorafenib and BLU‐285 on oncogenic mutants of KIT, CBL and FLT3 in haematological malignancies</title><author>Weisberg, Ellen ; Meng, Chengcheng ; Case, Abigail E. ; Sattler, Martin ; Tiv, Hong L. ; Gokhale, Prafulla C. ; Buhrlage, Sara J. ; Liu, Xiaoxi ; Yang, Jing ; Wang, Jinhua ; Gray, Nathanael ; Stone, Richard M. ; Adamia, Sophia ; Dubreuil, Patrice ; Letard, Sebastien ; Griffin, James D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4222-172932d0df4ee71112ea9c01be40024cba358f9791ab4d319283db08a310f3d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>acute myeloid leukaemia</topic><topic>Acute myeloid leukemia</topic><topic>Aniline Compounds - pharmacology</topic><topic>Aniline Compounds - therapeutic use</topic><topic>Antineoplastic Agents - pharmacology</topic><topic>Antineoplastic Agents - therapeutic use</topic><topic>Benzimidazoles - pharmacology</topic><topic>Benzimidazoles - therapeutic use</topic><topic>Benzothiazoles - pharmacology</topic><topic>Benzothiazoles - therapeutic use</topic><topic>BLU‐285</topic><topic>Cell Line, Tumor</topic><topic>Cellular Biology</topic><topic>Clinical trials</topic><topic>Drug Screening Assays, Antitumor</topic><topic>FLT3</topic><topic>fms-Like Tyrosine Kinase 3 - drug effects</topic><topic>fms-Like Tyrosine Kinase 3 - genetics</topic><topic>Hematologic Neoplasms - drug therapy</topic><topic>Hematologic Neoplasms - genetics</topic><topic>Hematology</topic><topic>Humans</topic><topic>Inhibitors</topic><topic>Leukemia</topic><topic>Life Sciences</topic><topic>Mastocytosis</topic><topic>Mutant Proteins - drug effects</topic><topic>Mutants</topic><topic>Mutation</topic><topic>Phenylurea Compounds - pharmacology</topic><topic>Phenylurea Compounds - therapeutic use</topic><topic>Piperidines - pharmacology</topic><topic>Piperidines - therapeutic use</topic><topic>Protein Kinase Inhibitors - pharmacology</topic><topic>Protein Kinase Inhibitors - therapeutic use</topic><topic>Protein-tyrosine kinase</topic><topic>Proto-Oncogene Proteins c-cbl - drug effects</topic><topic>Proto-Oncogene Proteins c-cbl - genetics</topic><topic>Proto-Oncogene Proteins c-kit - drug effects</topic><topic>Proto-Oncogene Proteins c-kit - genetics</topic><topic>Pyrazines - pharmacology</topic><topic>Pyrazines - therapeutic use</topic><topic>Pyrazoles - pharmacology</topic><topic>Pyrazoles - therapeutic use</topic><topic>Pyrroles - pharmacology</topic><topic>Pyrroles - therapeutic use</topic><topic>Signal transduction</topic><topic>Sorafenib - pharmacology</topic><topic>Sorafenib - therapeutic use</topic><topic>Staurosporine - analogs & derivatives</topic><topic>Staurosporine - pharmacology</topic><topic>Staurosporine - therapeutic use</topic><topic>Triazines - pharmacology</topic><topic>Triazines - therapeutic use</topic><topic>tyrosine kinase inhibitors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weisberg, Ellen</creatorcontrib><creatorcontrib>Meng, Chengcheng</creatorcontrib><creatorcontrib>Case, Abigail E.</creatorcontrib><creatorcontrib>Sattler, Martin</creatorcontrib><creatorcontrib>Tiv, Hong L.</creatorcontrib><creatorcontrib>Gokhale, Prafulla C.</creatorcontrib><creatorcontrib>Buhrlage, Sara J.</creatorcontrib><creatorcontrib>Liu, Xiaoxi</creatorcontrib><creatorcontrib>Yang, Jing</creatorcontrib><creatorcontrib>Wang, Jinhua</creatorcontrib><creatorcontrib>Gray, Nathanael</creatorcontrib><creatorcontrib>Stone, Richard M.</creatorcontrib><creatorcontrib>Adamia, Sophia</creatorcontrib><creatorcontrib>Dubreuil, Patrice</creatorcontrib><creatorcontrib>Letard, Sebastien</creatorcontrib><creatorcontrib>Griffin, James D.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Immunology Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>British journal of haematology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weisberg, Ellen</au><au>Meng, Chengcheng</au><au>Case, Abigail E.</au><au>Sattler, Martin</au><au>Tiv, Hong L.</au><au>Gokhale, Prafulla C.</au><au>Buhrlage, Sara J.</au><au>Liu, Xiaoxi</au><au>Yang, Jing</au><au>Wang, Jinhua</au><au>Gray, Nathanael</au><au>Stone, Richard M.</au><au>Adamia, Sophia</au><au>Dubreuil, Patrice</au><au>Letard, Sebastien</au><au>Griffin, James D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of effects of midostaurin, crenolanib, quizartinib, gilteritinib, sorafenib and BLU‐285 on oncogenic mutants of KIT, CBL and FLT3 in haematological malignancies</atitle><jtitle>British journal of haematology</jtitle><addtitle>Br J Haematol</addtitle><date>2019-11</date><risdate>2019</risdate><volume>187</volume><issue>4</issue><spage>488</spage><epage>501</epage><pages>488-501</pages><issn>0007-1048</issn><eissn>1365-2141</eissn><abstract>Summary
Mutations in two type‐3 receptor tyrosine kinases (RTKs), KIT and FLT3, are common in both acute myeloid leukaemia (AML) and systemic mastocytosis (SM) and lead to hyperactivation of key signalling pathways. A large number of tyrosine kinase inhibitors (TKIs) have been developed that target either FLT3 or KIT and significant clinical benefit has been demonstrated in multiple clinical trials. Given the structural similarity of FLT3 and KIT, it is not surprising that some of these TKIs inhibit both of these receptors. This is typified by midostaurin, which has been approved by the US Food and Drug Administration for mutant FLT3‐positive AML and for KIT D816V‐positive SM. Here, we compare the in vitro activities of the clinically available FLT3 and KIT inhibitors with those of midostaurin against a panel of cells expressing a variety of oncogenic FLT3 or KIT receptors, including wild‐type (wt) FLT3, FLT3‐internal tandem duplication (ITD), FLT3 D835Y, the resistance mutant FLT3‐ITD+ F691L, KIT D816V, and KIT N822K. We also examined the effects of these inhibitors in vitro and in vivo on cells expressing mutations in c‐CBL found in AML that result in hypersensitization of RTKs, such as FLT3 and KIT. The results show a wide spectrum of activity of these various mutations to these clinically available TKIs.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>31309543</pmid><doi>10.1111/bjh.16092</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-5679-9531</orcidid><orcidid>https://orcid.org/0000-0001-5917-5495</orcidid><orcidid>https://orcid.org/0000-0001-5354-7403</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0007-1048 |
ispartof | British journal of haematology, 2019-11, Vol.187 (4), p.488-501 |
issn | 0007-1048 1365-2141 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02533406v1 |
source | Wiley Free Content; MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | acute myeloid leukaemia Acute myeloid leukemia Aniline Compounds - pharmacology Aniline Compounds - therapeutic use Antineoplastic Agents - pharmacology Antineoplastic Agents - therapeutic use Benzimidazoles - pharmacology Benzimidazoles - therapeutic use Benzothiazoles - pharmacology Benzothiazoles - therapeutic use BLU‐285 Cell Line, Tumor Cellular Biology Clinical trials Drug Screening Assays, Antitumor FLT3 fms-Like Tyrosine Kinase 3 - drug effects fms-Like Tyrosine Kinase 3 - genetics Hematologic Neoplasms - drug therapy Hematologic Neoplasms - genetics Hematology Humans Inhibitors Leukemia Life Sciences Mastocytosis Mutant Proteins - drug effects Mutants Mutation Phenylurea Compounds - pharmacology Phenylurea Compounds - therapeutic use Piperidines - pharmacology Piperidines - therapeutic use Protein Kinase Inhibitors - pharmacology Protein Kinase Inhibitors - therapeutic use Protein-tyrosine kinase Proto-Oncogene Proteins c-cbl - drug effects Proto-Oncogene Proteins c-cbl - genetics Proto-Oncogene Proteins c-kit - drug effects Proto-Oncogene Proteins c-kit - genetics Pyrazines - pharmacology Pyrazines - therapeutic use Pyrazoles - pharmacology Pyrazoles - therapeutic use Pyrroles - pharmacology Pyrroles - therapeutic use Signal transduction Sorafenib - pharmacology Sorafenib - therapeutic use Staurosporine - analogs & derivatives Staurosporine - pharmacology Staurosporine - therapeutic use Triazines - pharmacology Triazines - therapeutic use tyrosine kinase inhibitors |
title | Comparison of effects of midostaurin, crenolanib, quizartinib, gilteritinib, sorafenib and BLU‐285 on oncogenic mutants of KIT, CBL and FLT3 in haematological malignancies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T05%3A06%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20effects%20of%20midostaurin,%20crenolanib,%20quizartinib,%20gilteritinib,%20sorafenib%20and%20BLU%E2%80%90285%20on%20oncogenic%20mutants%20of%20KIT,%20CBL%20and%20FLT3%20in%20haematological%20malignancies&rft.jtitle=British%20journal%20of%20haematology&rft.au=Weisberg,%20Ellen&rft.date=2019-11&rft.volume=187&rft.issue=4&rft.spage=488&rft.epage=501&rft.pages=488-501&rft.issn=0007-1048&rft.eissn=1365-2141&rft_id=info:doi/10.1111/bjh.16092&rft_dat=%3Cproquest_hal_p%3E2313214801%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2313214801&rft_id=info:pmid/31309543&rfr_iscdi=true |