Comparison of effects of midostaurin, crenolanib, quizartinib, gilteritinib, sorafenib and BLU‐285 on oncogenic mutants of KIT, CBL and FLT3 in haematological malignancies

Summary Mutations in two type‐3 receptor tyrosine kinases (RTKs), KIT and FLT3, are common in both acute myeloid leukaemia (AML) and systemic mastocytosis (SM) and lead to hyperactivation of key signalling pathways. A large number of tyrosine kinase inhibitors (TKIs) have been developed that target...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:British journal of haematology 2019-11, Vol.187 (4), p.488-501
Hauptverfasser: Weisberg, Ellen, Meng, Chengcheng, Case, Abigail E., Sattler, Martin, Tiv, Hong L., Gokhale, Prafulla C., Buhrlage, Sara J., Liu, Xiaoxi, Yang, Jing, Wang, Jinhua, Gray, Nathanael, Stone, Richard M., Adamia, Sophia, Dubreuil, Patrice, Letard, Sebastien, Griffin, James D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 501
container_issue 4
container_start_page 488
container_title British journal of haematology
container_volume 187
creator Weisberg, Ellen
Meng, Chengcheng
Case, Abigail E.
Sattler, Martin
Tiv, Hong L.
Gokhale, Prafulla C.
Buhrlage, Sara J.
Liu, Xiaoxi
Yang, Jing
Wang, Jinhua
Gray, Nathanael
Stone, Richard M.
Adamia, Sophia
Dubreuil, Patrice
Letard, Sebastien
Griffin, James D.
description Summary Mutations in two type‐3 receptor tyrosine kinases (RTKs), KIT and FLT3, are common in both acute myeloid leukaemia (AML) and systemic mastocytosis (SM) and lead to hyperactivation of key signalling pathways. A large number of tyrosine kinase inhibitors (TKIs) have been developed that target either FLT3 or KIT and significant clinical benefit has been demonstrated in multiple clinical trials. Given the structural similarity of FLT3 and KIT, it is not surprising that some of these TKIs inhibit both of these receptors. This is typified by midostaurin, which has been approved by the US Food and Drug Administration for mutant FLT3‐positive AML and for KIT D816V‐positive SM. Here, we compare the in vitro activities of the clinically available FLT3 and KIT inhibitors with those of midostaurin against a panel of cells expressing a variety of oncogenic FLT3 or KIT receptors, including wild‐type (wt) FLT3, FLT3‐internal tandem duplication (ITD), FLT3 D835Y, the resistance mutant FLT3‐ITD+ F691L, KIT D816V, and KIT N822K. We also examined the effects of these inhibitors in vitro and in vivo on cells expressing mutations in c‐CBL found in AML that result in hypersensitization of RTKs, such as FLT3 and KIT. The results show a wide spectrum of activity of these various mutations to these clinically available TKIs.
doi_str_mv 10.1111/bjh.16092
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02533406v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2313214801</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4222-172932d0df4ee71112ea9c01be40024cba358f9791ab4d319283db08a310f3d33</originalsourceid><addsrcrecordid>eNp1kd9u0zAUxi0EYmVwwQsgS9yA1Gz-lya5XCtGxyJx011bJ47Tukrszk6Gtqs9Ai_CS_EkuE3ZJCR84-_YP33HPh9C7yk5o3GdV9vNGZ2Rgr1AE8pnacKooC_RhBCSJZSI_AS9CWFLCOUkpa_RCY-iSAWfoF8L1-3Am-Asdg3WTaNVH_ayM7ULPQze2ClWXlvXgjXVFN8O5gF8bw7F2rS99uZYBeeh0VFisDWelze_H3-yPMV7c6vcOl4p3A092LHH9dVqihfz8oBfliuOjcUb0B30rnVro6DFHbRmbcEqo8Nb9KqBNuh3x_0U3Vx-WS2WSfn969XiokyUYIwlNGMFZzWpG6F1FifENBSK0EoLQphQFfA0b4qsoFCJmtOC5byuSA6ckobXnJ-iz6PvBlq586YDfy8dGLm8KOX-jLCUc0FmdzSyn0Z2593toEMvOxOUbuO0tBuCZCzNMy6KIo3ox3_QrRu8jT-RLEYSU8sJfW6uvAvB6-bpBZTIfd4y5i0PeUf2w9FxqDpdP5F_A47A-Qj8MK2-_7-TnH9bjpZ_AN6Js5c</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2313214801</pqid></control><display><type>article</type><title>Comparison of effects of midostaurin, crenolanib, quizartinib, gilteritinib, sorafenib and BLU‐285 on oncogenic mutants of KIT, CBL and FLT3 in haematological malignancies</title><source>Wiley Free Content</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Weisberg, Ellen ; Meng, Chengcheng ; Case, Abigail E. ; Sattler, Martin ; Tiv, Hong L. ; Gokhale, Prafulla C. ; Buhrlage, Sara J. ; Liu, Xiaoxi ; Yang, Jing ; Wang, Jinhua ; Gray, Nathanael ; Stone, Richard M. ; Adamia, Sophia ; Dubreuil, Patrice ; Letard, Sebastien ; Griffin, James D.</creator><creatorcontrib>Weisberg, Ellen ; Meng, Chengcheng ; Case, Abigail E. ; Sattler, Martin ; Tiv, Hong L. ; Gokhale, Prafulla C. ; Buhrlage, Sara J. ; Liu, Xiaoxi ; Yang, Jing ; Wang, Jinhua ; Gray, Nathanael ; Stone, Richard M. ; Adamia, Sophia ; Dubreuil, Patrice ; Letard, Sebastien ; Griffin, James D.</creatorcontrib><description>Summary Mutations in two type‐3 receptor tyrosine kinases (RTKs), KIT and FLT3, are common in both acute myeloid leukaemia (AML) and systemic mastocytosis (SM) and lead to hyperactivation of key signalling pathways. A large number of tyrosine kinase inhibitors (TKIs) have been developed that target either FLT3 or KIT and significant clinical benefit has been demonstrated in multiple clinical trials. Given the structural similarity of FLT3 and KIT, it is not surprising that some of these TKIs inhibit both of these receptors. This is typified by midostaurin, which has been approved by the US Food and Drug Administration for mutant FLT3‐positive AML and for KIT D816V‐positive SM. Here, we compare the in vitro activities of the clinically available FLT3 and KIT inhibitors with those of midostaurin against a panel of cells expressing a variety of oncogenic FLT3 or KIT receptors, including wild‐type (wt) FLT3, FLT3‐internal tandem duplication (ITD), FLT3 D835Y, the resistance mutant FLT3‐ITD+ F691L, KIT D816V, and KIT N822K. We also examined the effects of these inhibitors in vitro and in vivo on cells expressing mutations in c‐CBL found in AML that result in hypersensitization of RTKs, such as FLT3 and KIT. The results show a wide spectrum of activity of these various mutations to these clinically available TKIs.</description><identifier>ISSN: 0007-1048</identifier><identifier>EISSN: 1365-2141</identifier><identifier>DOI: 10.1111/bjh.16092</identifier><identifier>PMID: 31309543</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>acute myeloid leukaemia ; Acute myeloid leukemia ; Aniline Compounds - pharmacology ; Aniline Compounds - therapeutic use ; Antineoplastic Agents - pharmacology ; Antineoplastic Agents - therapeutic use ; Benzimidazoles - pharmacology ; Benzimidazoles - therapeutic use ; Benzothiazoles - pharmacology ; Benzothiazoles - therapeutic use ; BLU‐285 ; Cell Line, Tumor ; Cellular Biology ; Clinical trials ; Drug Screening Assays, Antitumor ; FLT3 ; fms-Like Tyrosine Kinase 3 - drug effects ; fms-Like Tyrosine Kinase 3 - genetics ; Hematologic Neoplasms - drug therapy ; Hematologic Neoplasms - genetics ; Hematology ; Humans ; Inhibitors ; Leukemia ; Life Sciences ; Mastocytosis ; Mutant Proteins - drug effects ; Mutants ; Mutation ; Phenylurea Compounds - pharmacology ; Phenylurea Compounds - therapeutic use ; Piperidines - pharmacology ; Piperidines - therapeutic use ; Protein Kinase Inhibitors - pharmacology ; Protein Kinase Inhibitors - therapeutic use ; Protein-tyrosine kinase ; Proto-Oncogene Proteins c-cbl - drug effects ; Proto-Oncogene Proteins c-cbl - genetics ; Proto-Oncogene Proteins c-kit - drug effects ; Proto-Oncogene Proteins c-kit - genetics ; Pyrazines - pharmacology ; Pyrazines - therapeutic use ; Pyrazoles - pharmacology ; Pyrazoles - therapeutic use ; Pyrroles - pharmacology ; Pyrroles - therapeutic use ; Signal transduction ; Sorafenib - pharmacology ; Sorafenib - therapeutic use ; Staurosporine - analogs &amp; derivatives ; Staurosporine - pharmacology ; Staurosporine - therapeutic use ; Triazines - pharmacology ; Triazines - therapeutic use ; tyrosine kinase inhibitors</subject><ispartof>British journal of haematology, 2019-11, Vol.187 (4), p.488-501</ispartof><rights>2019 British Society for Haematology and John Wiley &amp; Sons Ltd</rights><rights>2019 British Society for Haematology and John Wiley &amp; Sons Ltd.</rights><rights>Copyright © 2019 John Wiley &amp; Sons Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4222-172932d0df4ee71112ea9c01be40024cba358f9791ab4d319283db08a310f3d33</citedby><cites>FETCH-LOGICAL-c4222-172932d0df4ee71112ea9c01be40024cba358f9791ab4d319283db08a310f3d33</cites><orcidid>0000-0002-5679-9531 ; 0000-0001-5917-5495 ; 0000-0001-5354-7403</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fbjh.16092$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fbjh.16092$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31309543$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02533406$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Weisberg, Ellen</creatorcontrib><creatorcontrib>Meng, Chengcheng</creatorcontrib><creatorcontrib>Case, Abigail E.</creatorcontrib><creatorcontrib>Sattler, Martin</creatorcontrib><creatorcontrib>Tiv, Hong L.</creatorcontrib><creatorcontrib>Gokhale, Prafulla C.</creatorcontrib><creatorcontrib>Buhrlage, Sara J.</creatorcontrib><creatorcontrib>Liu, Xiaoxi</creatorcontrib><creatorcontrib>Yang, Jing</creatorcontrib><creatorcontrib>Wang, Jinhua</creatorcontrib><creatorcontrib>Gray, Nathanael</creatorcontrib><creatorcontrib>Stone, Richard M.</creatorcontrib><creatorcontrib>Adamia, Sophia</creatorcontrib><creatorcontrib>Dubreuil, Patrice</creatorcontrib><creatorcontrib>Letard, Sebastien</creatorcontrib><creatorcontrib>Griffin, James D.</creatorcontrib><title>Comparison of effects of midostaurin, crenolanib, quizartinib, gilteritinib, sorafenib and BLU‐285 on oncogenic mutants of KIT, CBL and FLT3 in haematological malignancies</title><title>British journal of haematology</title><addtitle>Br J Haematol</addtitle><description>Summary Mutations in two type‐3 receptor tyrosine kinases (RTKs), KIT and FLT3, are common in both acute myeloid leukaemia (AML) and systemic mastocytosis (SM) and lead to hyperactivation of key signalling pathways. A large number of tyrosine kinase inhibitors (TKIs) have been developed that target either FLT3 or KIT and significant clinical benefit has been demonstrated in multiple clinical trials. Given the structural similarity of FLT3 and KIT, it is not surprising that some of these TKIs inhibit both of these receptors. This is typified by midostaurin, which has been approved by the US Food and Drug Administration for mutant FLT3‐positive AML and for KIT D816V‐positive SM. Here, we compare the in vitro activities of the clinically available FLT3 and KIT inhibitors with those of midostaurin against a panel of cells expressing a variety of oncogenic FLT3 or KIT receptors, including wild‐type (wt) FLT3, FLT3‐internal tandem duplication (ITD), FLT3 D835Y, the resistance mutant FLT3‐ITD+ F691L, KIT D816V, and KIT N822K. We also examined the effects of these inhibitors in vitro and in vivo on cells expressing mutations in c‐CBL found in AML that result in hypersensitization of RTKs, such as FLT3 and KIT. The results show a wide spectrum of activity of these various mutations to these clinically available TKIs.</description><subject>acute myeloid leukaemia</subject><subject>Acute myeloid leukemia</subject><subject>Aniline Compounds - pharmacology</subject><subject>Aniline Compounds - therapeutic use</subject><subject>Antineoplastic Agents - pharmacology</subject><subject>Antineoplastic Agents - therapeutic use</subject><subject>Benzimidazoles - pharmacology</subject><subject>Benzimidazoles - therapeutic use</subject><subject>Benzothiazoles - pharmacology</subject><subject>Benzothiazoles - therapeutic use</subject><subject>BLU‐285</subject><subject>Cell Line, Tumor</subject><subject>Cellular Biology</subject><subject>Clinical trials</subject><subject>Drug Screening Assays, Antitumor</subject><subject>FLT3</subject><subject>fms-Like Tyrosine Kinase 3 - drug effects</subject><subject>fms-Like Tyrosine Kinase 3 - genetics</subject><subject>Hematologic Neoplasms - drug therapy</subject><subject>Hematologic Neoplasms - genetics</subject><subject>Hematology</subject><subject>Humans</subject><subject>Inhibitors</subject><subject>Leukemia</subject><subject>Life Sciences</subject><subject>Mastocytosis</subject><subject>Mutant Proteins - drug effects</subject><subject>Mutants</subject><subject>Mutation</subject><subject>Phenylurea Compounds - pharmacology</subject><subject>Phenylurea Compounds - therapeutic use</subject><subject>Piperidines - pharmacology</subject><subject>Piperidines - therapeutic use</subject><subject>Protein Kinase Inhibitors - pharmacology</subject><subject>Protein Kinase Inhibitors - therapeutic use</subject><subject>Protein-tyrosine kinase</subject><subject>Proto-Oncogene Proteins c-cbl - drug effects</subject><subject>Proto-Oncogene Proteins c-cbl - genetics</subject><subject>Proto-Oncogene Proteins c-kit - drug effects</subject><subject>Proto-Oncogene Proteins c-kit - genetics</subject><subject>Pyrazines - pharmacology</subject><subject>Pyrazines - therapeutic use</subject><subject>Pyrazoles - pharmacology</subject><subject>Pyrazoles - therapeutic use</subject><subject>Pyrroles - pharmacology</subject><subject>Pyrroles - therapeutic use</subject><subject>Signal transduction</subject><subject>Sorafenib - pharmacology</subject><subject>Sorafenib - therapeutic use</subject><subject>Staurosporine - analogs &amp; derivatives</subject><subject>Staurosporine - pharmacology</subject><subject>Staurosporine - therapeutic use</subject><subject>Triazines - pharmacology</subject><subject>Triazines - therapeutic use</subject><subject>tyrosine kinase inhibitors</subject><issn>0007-1048</issn><issn>1365-2141</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kd9u0zAUxi0EYmVwwQsgS9yA1Gz-lya5XCtGxyJx011bJ47Tukrszk6Gtqs9Ai_CS_EkuE3ZJCR84-_YP33HPh9C7yk5o3GdV9vNGZ2Rgr1AE8pnacKooC_RhBCSJZSI_AS9CWFLCOUkpa_RCY-iSAWfoF8L1-3Am-Asdg3WTaNVH_ayM7ULPQze2ClWXlvXgjXVFN8O5gF8bw7F2rS99uZYBeeh0VFisDWelze_H3-yPMV7c6vcOl4p3A092LHH9dVqihfz8oBfliuOjcUb0B30rnVro6DFHbRmbcEqo8Nb9KqBNuh3x_0U3Vx-WS2WSfn969XiokyUYIwlNGMFZzWpG6F1FifENBSK0EoLQphQFfA0b4qsoFCJmtOC5byuSA6ckobXnJ-iz6PvBlq586YDfy8dGLm8KOX-jLCUc0FmdzSyn0Z2593toEMvOxOUbuO0tBuCZCzNMy6KIo3ox3_QrRu8jT-RLEYSU8sJfW6uvAvB6-bpBZTIfd4y5i0PeUf2w9FxqDpdP5F_A47A-Qj8MK2-_7-TnH9bjpZ_AN6Js5c</recordid><startdate>201911</startdate><enddate>201911</enddate><creator>Weisberg, Ellen</creator><creator>Meng, Chengcheng</creator><creator>Case, Abigail E.</creator><creator>Sattler, Martin</creator><creator>Tiv, Hong L.</creator><creator>Gokhale, Prafulla C.</creator><creator>Buhrlage, Sara J.</creator><creator>Liu, Xiaoxi</creator><creator>Yang, Jing</creator><creator>Wang, Jinhua</creator><creator>Gray, Nathanael</creator><creator>Stone, Richard M.</creator><creator>Adamia, Sophia</creator><creator>Dubreuil, Patrice</creator><creator>Letard, Sebastien</creator><creator>Griffin, James D.</creator><general>Blackwell Publishing Ltd</general><general>Wiley</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T5</scope><scope>H94</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-5679-9531</orcidid><orcidid>https://orcid.org/0000-0001-5917-5495</orcidid><orcidid>https://orcid.org/0000-0001-5354-7403</orcidid></search><sort><creationdate>201911</creationdate><title>Comparison of effects of midostaurin, crenolanib, quizartinib, gilteritinib, sorafenib and BLU‐285 on oncogenic mutants of KIT, CBL and FLT3 in haematological malignancies</title><author>Weisberg, Ellen ; Meng, Chengcheng ; Case, Abigail E. ; Sattler, Martin ; Tiv, Hong L. ; Gokhale, Prafulla C. ; Buhrlage, Sara J. ; Liu, Xiaoxi ; Yang, Jing ; Wang, Jinhua ; Gray, Nathanael ; Stone, Richard M. ; Adamia, Sophia ; Dubreuil, Patrice ; Letard, Sebastien ; Griffin, James D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4222-172932d0df4ee71112ea9c01be40024cba358f9791ab4d319283db08a310f3d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>acute myeloid leukaemia</topic><topic>Acute myeloid leukemia</topic><topic>Aniline Compounds - pharmacology</topic><topic>Aniline Compounds - therapeutic use</topic><topic>Antineoplastic Agents - pharmacology</topic><topic>Antineoplastic Agents - therapeutic use</topic><topic>Benzimidazoles - pharmacology</topic><topic>Benzimidazoles - therapeutic use</topic><topic>Benzothiazoles - pharmacology</topic><topic>Benzothiazoles - therapeutic use</topic><topic>BLU‐285</topic><topic>Cell Line, Tumor</topic><topic>Cellular Biology</topic><topic>Clinical trials</topic><topic>Drug Screening Assays, Antitumor</topic><topic>FLT3</topic><topic>fms-Like Tyrosine Kinase 3 - drug effects</topic><topic>fms-Like Tyrosine Kinase 3 - genetics</topic><topic>Hematologic Neoplasms - drug therapy</topic><topic>Hematologic Neoplasms - genetics</topic><topic>Hematology</topic><topic>Humans</topic><topic>Inhibitors</topic><topic>Leukemia</topic><topic>Life Sciences</topic><topic>Mastocytosis</topic><topic>Mutant Proteins - drug effects</topic><topic>Mutants</topic><topic>Mutation</topic><topic>Phenylurea Compounds - pharmacology</topic><topic>Phenylurea Compounds - therapeutic use</topic><topic>Piperidines - pharmacology</topic><topic>Piperidines - therapeutic use</topic><topic>Protein Kinase Inhibitors - pharmacology</topic><topic>Protein Kinase Inhibitors - therapeutic use</topic><topic>Protein-tyrosine kinase</topic><topic>Proto-Oncogene Proteins c-cbl - drug effects</topic><topic>Proto-Oncogene Proteins c-cbl - genetics</topic><topic>Proto-Oncogene Proteins c-kit - drug effects</topic><topic>Proto-Oncogene Proteins c-kit - genetics</topic><topic>Pyrazines - pharmacology</topic><topic>Pyrazines - therapeutic use</topic><topic>Pyrazoles - pharmacology</topic><topic>Pyrazoles - therapeutic use</topic><topic>Pyrroles - pharmacology</topic><topic>Pyrroles - therapeutic use</topic><topic>Signal transduction</topic><topic>Sorafenib - pharmacology</topic><topic>Sorafenib - therapeutic use</topic><topic>Staurosporine - analogs &amp; derivatives</topic><topic>Staurosporine - pharmacology</topic><topic>Staurosporine - therapeutic use</topic><topic>Triazines - pharmacology</topic><topic>Triazines - therapeutic use</topic><topic>tyrosine kinase inhibitors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weisberg, Ellen</creatorcontrib><creatorcontrib>Meng, Chengcheng</creatorcontrib><creatorcontrib>Case, Abigail E.</creatorcontrib><creatorcontrib>Sattler, Martin</creatorcontrib><creatorcontrib>Tiv, Hong L.</creatorcontrib><creatorcontrib>Gokhale, Prafulla C.</creatorcontrib><creatorcontrib>Buhrlage, Sara J.</creatorcontrib><creatorcontrib>Liu, Xiaoxi</creatorcontrib><creatorcontrib>Yang, Jing</creatorcontrib><creatorcontrib>Wang, Jinhua</creatorcontrib><creatorcontrib>Gray, Nathanael</creatorcontrib><creatorcontrib>Stone, Richard M.</creatorcontrib><creatorcontrib>Adamia, Sophia</creatorcontrib><creatorcontrib>Dubreuil, Patrice</creatorcontrib><creatorcontrib>Letard, Sebastien</creatorcontrib><creatorcontrib>Griffin, James D.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Immunology Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>British journal of haematology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weisberg, Ellen</au><au>Meng, Chengcheng</au><au>Case, Abigail E.</au><au>Sattler, Martin</au><au>Tiv, Hong L.</au><au>Gokhale, Prafulla C.</au><au>Buhrlage, Sara J.</au><au>Liu, Xiaoxi</au><au>Yang, Jing</au><au>Wang, Jinhua</au><au>Gray, Nathanael</au><au>Stone, Richard M.</au><au>Adamia, Sophia</au><au>Dubreuil, Patrice</au><au>Letard, Sebastien</au><au>Griffin, James D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of effects of midostaurin, crenolanib, quizartinib, gilteritinib, sorafenib and BLU‐285 on oncogenic mutants of KIT, CBL and FLT3 in haematological malignancies</atitle><jtitle>British journal of haematology</jtitle><addtitle>Br J Haematol</addtitle><date>2019-11</date><risdate>2019</risdate><volume>187</volume><issue>4</issue><spage>488</spage><epage>501</epage><pages>488-501</pages><issn>0007-1048</issn><eissn>1365-2141</eissn><abstract>Summary Mutations in two type‐3 receptor tyrosine kinases (RTKs), KIT and FLT3, are common in both acute myeloid leukaemia (AML) and systemic mastocytosis (SM) and lead to hyperactivation of key signalling pathways. A large number of tyrosine kinase inhibitors (TKIs) have been developed that target either FLT3 or KIT and significant clinical benefit has been demonstrated in multiple clinical trials. Given the structural similarity of FLT3 and KIT, it is not surprising that some of these TKIs inhibit both of these receptors. This is typified by midostaurin, which has been approved by the US Food and Drug Administration for mutant FLT3‐positive AML and for KIT D816V‐positive SM. Here, we compare the in vitro activities of the clinically available FLT3 and KIT inhibitors with those of midostaurin against a panel of cells expressing a variety of oncogenic FLT3 or KIT receptors, including wild‐type (wt) FLT3, FLT3‐internal tandem duplication (ITD), FLT3 D835Y, the resistance mutant FLT3‐ITD+ F691L, KIT D816V, and KIT N822K. We also examined the effects of these inhibitors in vitro and in vivo on cells expressing mutations in c‐CBL found in AML that result in hypersensitization of RTKs, such as FLT3 and KIT. The results show a wide spectrum of activity of these various mutations to these clinically available TKIs.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>31309543</pmid><doi>10.1111/bjh.16092</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-5679-9531</orcidid><orcidid>https://orcid.org/0000-0001-5917-5495</orcidid><orcidid>https://orcid.org/0000-0001-5354-7403</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0007-1048
ispartof British journal of haematology, 2019-11, Vol.187 (4), p.488-501
issn 0007-1048
1365-2141
language eng
recordid cdi_hal_primary_oai_HAL_hal_02533406v1
source Wiley Free Content; MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects acute myeloid leukaemia
Acute myeloid leukemia
Aniline Compounds - pharmacology
Aniline Compounds - therapeutic use
Antineoplastic Agents - pharmacology
Antineoplastic Agents - therapeutic use
Benzimidazoles - pharmacology
Benzimidazoles - therapeutic use
Benzothiazoles - pharmacology
Benzothiazoles - therapeutic use
BLU‐285
Cell Line, Tumor
Cellular Biology
Clinical trials
Drug Screening Assays, Antitumor
FLT3
fms-Like Tyrosine Kinase 3 - drug effects
fms-Like Tyrosine Kinase 3 - genetics
Hematologic Neoplasms - drug therapy
Hematologic Neoplasms - genetics
Hematology
Humans
Inhibitors
Leukemia
Life Sciences
Mastocytosis
Mutant Proteins - drug effects
Mutants
Mutation
Phenylurea Compounds - pharmacology
Phenylurea Compounds - therapeutic use
Piperidines - pharmacology
Piperidines - therapeutic use
Protein Kinase Inhibitors - pharmacology
Protein Kinase Inhibitors - therapeutic use
Protein-tyrosine kinase
Proto-Oncogene Proteins c-cbl - drug effects
Proto-Oncogene Proteins c-cbl - genetics
Proto-Oncogene Proteins c-kit - drug effects
Proto-Oncogene Proteins c-kit - genetics
Pyrazines - pharmacology
Pyrazines - therapeutic use
Pyrazoles - pharmacology
Pyrazoles - therapeutic use
Pyrroles - pharmacology
Pyrroles - therapeutic use
Signal transduction
Sorafenib - pharmacology
Sorafenib - therapeutic use
Staurosporine - analogs & derivatives
Staurosporine - pharmacology
Staurosporine - therapeutic use
Triazines - pharmacology
Triazines - therapeutic use
tyrosine kinase inhibitors
title Comparison of effects of midostaurin, crenolanib, quizartinib, gilteritinib, sorafenib and BLU‐285 on oncogenic mutants of KIT, CBL and FLT3 in haematological malignancies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T05%3A06%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20effects%20of%20midostaurin,%20crenolanib,%20quizartinib,%20gilteritinib,%20sorafenib%20and%20BLU%E2%80%90285%20on%20oncogenic%20mutants%20of%20KIT,%20CBL%20and%20FLT3%20in%20haematological%20malignancies&rft.jtitle=British%20journal%20of%20haematology&rft.au=Weisberg,%20Ellen&rft.date=2019-11&rft.volume=187&rft.issue=4&rft.spage=488&rft.epage=501&rft.pages=488-501&rft.issn=0007-1048&rft.eissn=1365-2141&rft_id=info:doi/10.1111/bjh.16092&rft_dat=%3Cproquest_hal_p%3E2313214801%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2313214801&rft_id=info:pmid/31309543&rfr_iscdi=true