New approach for robust multi-objective optimization of turning parameters using probabilistic genetic algorithm
In this paper, a contribution to the determination of reliable cutting parameters is presented, which is minimizing the expected machining cost and maximizing the expected production rate, with taking into account the uncertainties of uncontrollable factors. The concept of failure probability of sto...
Gespeichert in:
Veröffentlicht in: | International journal of advanced manufacturing technology 2016-03, Vol.83 (5-8), p.1265-1279 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1279 |
---|---|
container_issue | 5-8 |
container_start_page | 1265 |
container_title | International journal of advanced manufacturing technology |
container_volume | 83 |
creator | Sahali, M. A. Belaidi, I. Serra, R. |
description | In this paper, a contribution to the determination of reliable cutting parameters is presented, which is minimizing the expected machining cost and maximizing the expected production rate, with taking into account the uncertainties of uncontrollable factors. The concept of failure probability of stochastic production limitations is integrated into constrained and unconstrained formulations of multi-objective optimization problems. New probabilistic version of the nondominated sorting genetic algorithm P-NSGA-II, which incorporates the Monte Carlo simulations for accurate assessment of cumulative distribution functions, was developed and applied in two numerical examples based on similar and anterior work. In the first case, it is a question of the search space that is completely ‘closed’ by high natural variability related to the multi-pass roughing operation: in this case, the failure risk of technological limitations are considered as objectives to minimize with economic objectives. The second case is related to deformed search space due to the uncertainties specific to finishing operation; therefore, the economic objectives are minimized under imposed maximum probabilities of failure. In both situations, the efficiency and robustness of optimal solutions generated by the P-NSGA-II algorithm are analysed, discussed and compared with sequence of unconstrained minimization technique (SUMT) method. |
doi_str_mv | 10.1007/s00170-015-7526-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02531571v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2262326736</sourcerecordid><originalsourceid>FETCH-LOGICAL-c468t-a5f626c0dd8f50fe0c86a88a3cba48c9cf830040ebef3634690ad05b028b2cb73</originalsourceid><addsrcrecordid>eNp1kUFvGyEQhVGVSnWc_IDckHrKgXaAXRYfLSuNK1ntpTkjFoONtbtsgE1U__ribtWcchrp6XuPGR5CdxS-UIDmawKgDRCgNWlqJsj5A1rQinPCi3SFFsCEJLwR8hO6TulUaEGFXKDxh33Fehxj0OaIXYg4hnZKGfdTlz0J7cma7F8sDmP2vT_r7MOAg8N5ioMfDnjUUfc225jwlP4KJUC3vvMpe4MPdrCXqbtDiD4f-xv00eku2dt_c4mevj382mzJ7ufj9816R0wlZCa6doIJA_u9dDU4C0YKLaXmptWVNCvjJAeowLbWccErsQK9h7oFJltm2oYv0f2ce9SdGqPvdfytgvZqu96piwas5rRu6Ast7OeZLbs_TzZldQrlvLKeYkwwzkRT3lgiOlMmhpSidf9jKahLCWouQZUfV5cS1Ll42OxJhR0ONr4lv2_6A0oejKs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2262326736</pqid></control><display><type>article</type><title>New approach for robust multi-objective optimization of turning parameters using probabilistic genetic algorithm</title><source>Springer Nature - Complete Springer Journals</source><creator>Sahali, M. A. ; Belaidi, I. ; Serra, R.</creator><creatorcontrib>Sahali, M. A. ; Belaidi, I. ; Serra, R.</creatorcontrib><description>In this paper, a contribution to the determination of reliable cutting parameters is presented, which is minimizing the expected machining cost and maximizing the expected production rate, with taking into account the uncertainties of uncontrollable factors. The concept of failure probability of stochastic production limitations is integrated into constrained and unconstrained formulations of multi-objective optimization problems. New probabilistic version of the nondominated sorting genetic algorithm P-NSGA-II, which incorporates the Monte Carlo simulations for accurate assessment of cumulative distribution functions, was developed and applied in two numerical examples based on similar and anterior work. In the first case, it is a question of the search space that is completely ‘closed’ by high natural variability related to the multi-pass roughing operation: in this case, the failure risk of technological limitations are considered as objectives to minimize with economic objectives. The second case is related to deformed search space due to the uncertainties specific to finishing operation; therefore, the economic objectives are minimized under imposed maximum probabilities of failure. In both situations, the efficiency and robustness of optimal solutions generated by the P-NSGA-II algorithm are analysed, discussed and compared with sequence of unconstrained minimization technique (SUMT) method.</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-015-7526-z</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>CAE) and Design ; Classification ; Computer simulation ; Computer-Aided Engineering (CAD ; Cutting parameters ; Deformation ; Distribution functions ; Engineering ; Engineering Sciences ; Failure ; Formulations ; Genetic algorithms ; Industrial and Production Engineering ; Mechanical Engineering ; Media Management ; Multiple objective analysis ; Objectives ; Optimization ; Original Article ; Probability theory ; Robustness (mathematics) ; Sorting algorithms ; Statistical analysis ; Turning (machining) ; Uncertainty</subject><ispartof>International journal of advanced manufacturing technology, 2016-03, Vol.83 (5-8), p.1265-1279</ispartof><rights>Springer-Verlag London 2015</rights><rights>The International Journal of Advanced Manufacturing Technology is a copyright of Springer, (2015). All Rights Reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c468t-a5f626c0dd8f50fe0c86a88a3cba48c9cf830040ebef3634690ad05b028b2cb73</citedby><cites>FETCH-LOGICAL-c468t-a5f626c0dd8f50fe0c86a88a3cba48c9cf830040ebef3634690ad05b028b2cb73</cites><orcidid>0000-0001-5805-4149</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00170-015-7526-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00170-015-7526-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02531571$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Sahali, M. A.</creatorcontrib><creatorcontrib>Belaidi, I.</creatorcontrib><creatorcontrib>Serra, R.</creatorcontrib><title>New approach for robust multi-objective optimization of turning parameters using probabilistic genetic algorithm</title><title>International journal of advanced manufacturing technology</title><addtitle>Int J Adv Manuf Technol</addtitle><description>In this paper, a contribution to the determination of reliable cutting parameters is presented, which is minimizing the expected machining cost and maximizing the expected production rate, with taking into account the uncertainties of uncontrollable factors. The concept of failure probability of stochastic production limitations is integrated into constrained and unconstrained formulations of multi-objective optimization problems. New probabilistic version of the nondominated sorting genetic algorithm P-NSGA-II, which incorporates the Monte Carlo simulations for accurate assessment of cumulative distribution functions, was developed and applied in two numerical examples based on similar and anterior work. In the first case, it is a question of the search space that is completely ‘closed’ by high natural variability related to the multi-pass roughing operation: in this case, the failure risk of technological limitations are considered as objectives to minimize with economic objectives. The second case is related to deformed search space due to the uncertainties specific to finishing operation; therefore, the economic objectives are minimized under imposed maximum probabilities of failure. In both situations, the efficiency and robustness of optimal solutions generated by the P-NSGA-II algorithm are analysed, discussed and compared with sequence of unconstrained minimization technique (SUMT) method.</description><subject>CAE) and Design</subject><subject>Classification</subject><subject>Computer simulation</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Cutting parameters</subject><subject>Deformation</subject><subject>Distribution functions</subject><subject>Engineering</subject><subject>Engineering Sciences</subject><subject>Failure</subject><subject>Formulations</subject><subject>Genetic algorithms</subject><subject>Industrial and Production Engineering</subject><subject>Mechanical Engineering</subject><subject>Media Management</subject><subject>Multiple objective analysis</subject><subject>Objectives</subject><subject>Optimization</subject><subject>Original Article</subject><subject>Probability theory</subject><subject>Robustness (mathematics)</subject><subject>Sorting algorithms</subject><subject>Statistical analysis</subject><subject>Turning (machining)</subject><subject>Uncertainty</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kUFvGyEQhVGVSnWc_IDckHrKgXaAXRYfLSuNK1ntpTkjFoONtbtsgE1U__ribtWcchrp6XuPGR5CdxS-UIDmawKgDRCgNWlqJsj5A1rQinPCi3SFFsCEJLwR8hO6TulUaEGFXKDxh33Fehxj0OaIXYg4hnZKGfdTlz0J7cma7F8sDmP2vT_r7MOAg8N5ioMfDnjUUfc225jwlP4KJUC3vvMpe4MPdrCXqbtDiD4f-xv00eku2dt_c4mevj382mzJ7ufj9816R0wlZCa6doIJA_u9dDU4C0YKLaXmptWVNCvjJAeowLbWccErsQK9h7oFJltm2oYv0f2ce9SdGqPvdfytgvZqu96piwas5rRu6Ast7OeZLbs_TzZldQrlvLKeYkwwzkRT3lgiOlMmhpSidf9jKahLCWouQZUfV5cS1Ll42OxJhR0ONr4lv2_6A0oejKs</recordid><startdate>20160301</startdate><enddate>20160301</enddate><creator>Sahali, M. A.</creator><creator>Belaidi, I.</creator><creator>Serra, R.</creator><general>Springer London</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-5805-4149</orcidid></search><sort><creationdate>20160301</creationdate><title>New approach for robust multi-objective optimization of turning parameters using probabilistic genetic algorithm</title><author>Sahali, M. A. ; Belaidi, I. ; Serra, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c468t-a5f626c0dd8f50fe0c86a88a3cba48c9cf830040ebef3634690ad05b028b2cb73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>CAE) and Design</topic><topic>Classification</topic><topic>Computer simulation</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Cutting parameters</topic><topic>Deformation</topic><topic>Distribution functions</topic><topic>Engineering</topic><topic>Engineering Sciences</topic><topic>Failure</topic><topic>Formulations</topic><topic>Genetic algorithms</topic><topic>Industrial and Production Engineering</topic><topic>Mechanical Engineering</topic><topic>Media Management</topic><topic>Multiple objective analysis</topic><topic>Objectives</topic><topic>Optimization</topic><topic>Original Article</topic><topic>Probability theory</topic><topic>Robustness (mathematics)</topic><topic>Sorting algorithms</topic><topic>Statistical analysis</topic><topic>Turning (machining)</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sahali, M. A.</creatorcontrib><creatorcontrib>Belaidi, I.</creatorcontrib><creatorcontrib>Serra, R.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sahali, M. A.</au><au>Belaidi, I.</au><au>Serra, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New approach for robust multi-objective optimization of turning parameters using probabilistic genetic algorithm</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><stitle>Int J Adv Manuf Technol</stitle><date>2016-03-01</date><risdate>2016</risdate><volume>83</volume><issue>5-8</issue><spage>1265</spage><epage>1279</epage><pages>1265-1279</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>In this paper, a contribution to the determination of reliable cutting parameters is presented, which is minimizing the expected machining cost and maximizing the expected production rate, with taking into account the uncertainties of uncontrollable factors. The concept of failure probability of stochastic production limitations is integrated into constrained and unconstrained formulations of multi-objective optimization problems. New probabilistic version of the nondominated sorting genetic algorithm P-NSGA-II, which incorporates the Monte Carlo simulations for accurate assessment of cumulative distribution functions, was developed and applied in two numerical examples based on similar and anterior work. In the first case, it is a question of the search space that is completely ‘closed’ by high natural variability related to the multi-pass roughing operation: in this case, the failure risk of technological limitations are considered as objectives to minimize with economic objectives. The second case is related to deformed search space due to the uncertainties specific to finishing operation; therefore, the economic objectives are minimized under imposed maximum probabilities of failure. In both situations, the efficiency and robustness of optimal solutions generated by the P-NSGA-II algorithm are analysed, discussed and compared with sequence of unconstrained minimization technique (SUMT) method.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00170-015-7526-z</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-5805-4149</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0268-3768 |
ispartof | International journal of advanced manufacturing technology, 2016-03, Vol.83 (5-8), p.1265-1279 |
issn | 0268-3768 1433-3015 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02531571v1 |
source | Springer Nature - Complete Springer Journals |
subjects | CAE) and Design Classification Computer simulation Computer-Aided Engineering (CAD Cutting parameters Deformation Distribution functions Engineering Engineering Sciences Failure Formulations Genetic algorithms Industrial and Production Engineering Mechanical Engineering Media Management Multiple objective analysis Objectives Optimization Original Article Probability theory Robustness (mathematics) Sorting algorithms Statistical analysis Turning (machining) Uncertainty |
title | New approach for robust multi-objective optimization of turning parameters using probabilistic genetic algorithm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T12%3A54%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20approach%20for%20robust%20multi-objective%20optimization%20of%20turning%20parameters%20using%20probabilistic%20genetic%20algorithm&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=Sahali,%20M.%20A.&rft.date=2016-03-01&rft.volume=83&rft.issue=5-8&rft.spage=1265&rft.epage=1279&rft.pages=1265-1279&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-015-7526-z&rft_dat=%3Cproquest_hal_p%3E2262326736%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2262326736&rft_id=info:pmid/&rfr_iscdi=true |