New approach for robust multi-objective optimization of turning parameters using probabilistic genetic algorithm

In this paper, a contribution to the determination of reliable cutting parameters is presented, which is minimizing the expected machining cost and maximizing the expected production rate, with taking into account the uncertainties of uncontrollable factors. The concept of failure probability of sto...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of advanced manufacturing technology 2016-03, Vol.83 (5-8), p.1265-1279
Hauptverfasser: Sahali, M. A., Belaidi, I., Serra, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1279
container_issue 5-8
container_start_page 1265
container_title International journal of advanced manufacturing technology
container_volume 83
creator Sahali, M. A.
Belaidi, I.
Serra, R.
description In this paper, a contribution to the determination of reliable cutting parameters is presented, which is minimizing the expected machining cost and maximizing the expected production rate, with taking into account the uncertainties of uncontrollable factors. The concept of failure probability of stochastic production limitations is integrated into constrained and unconstrained formulations of multi-objective optimization problems. New probabilistic version of the nondominated sorting genetic algorithm P-NSGA-II, which incorporates the Monte Carlo simulations for accurate assessment of cumulative distribution functions, was developed and applied in two numerical examples based on similar and anterior work. In the first case, it is a question of the search space that is completely ‘closed’ by high natural variability related to the multi-pass roughing operation: in this case, the failure risk of technological limitations are considered as objectives to minimize with economic objectives. The second case is related to deformed search space due to the uncertainties specific to finishing operation; therefore, the economic objectives are minimized under imposed maximum probabilities of failure. In both situations, the efficiency and robustness of optimal solutions generated by the P-NSGA-II algorithm are analysed, discussed and compared with sequence of unconstrained minimization technique (SUMT) method.
doi_str_mv 10.1007/s00170-015-7526-z
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02531571v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2262326736</sourcerecordid><originalsourceid>FETCH-LOGICAL-c468t-a5f626c0dd8f50fe0c86a88a3cba48c9cf830040ebef3634690ad05b028b2cb73</originalsourceid><addsrcrecordid>eNp1kUFvGyEQhVGVSnWc_IDckHrKgXaAXRYfLSuNK1ntpTkjFoONtbtsgE1U__ribtWcchrp6XuPGR5CdxS-UIDmawKgDRCgNWlqJsj5A1rQinPCi3SFFsCEJLwR8hO6TulUaEGFXKDxh33Fehxj0OaIXYg4hnZKGfdTlz0J7cma7F8sDmP2vT_r7MOAg8N5ioMfDnjUUfc225jwlP4KJUC3vvMpe4MPdrCXqbtDiD4f-xv00eku2dt_c4mevj382mzJ7ufj9816R0wlZCa6doIJA_u9dDU4C0YKLaXmptWVNCvjJAeowLbWccErsQK9h7oFJltm2oYv0f2ce9SdGqPvdfytgvZqu96piwas5rRu6Ast7OeZLbs_TzZldQrlvLKeYkwwzkRT3lgiOlMmhpSidf9jKahLCWouQZUfV5cS1Ll42OxJhR0ONr4lv2_6A0oejKs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2262326736</pqid></control><display><type>article</type><title>New approach for robust multi-objective optimization of turning parameters using probabilistic genetic algorithm</title><source>Springer Nature - Complete Springer Journals</source><creator>Sahali, M. A. ; Belaidi, I. ; Serra, R.</creator><creatorcontrib>Sahali, M. A. ; Belaidi, I. ; Serra, R.</creatorcontrib><description>In this paper, a contribution to the determination of reliable cutting parameters is presented, which is minimizing the expected machining cost and maximizing the expected production rate, with taking into account the uncertainties of uncontrollable factors. The concept of failure probability of stochastic production limitations is integrated into constrained and unconstrained formulations of multi-objective optimization problems. New probabilistic version of the nondominated sorting genetic algorithm P-NSGA-II, which incorporates the Monte Carlo simulations for accurate assessment of cumulative distribution functions, was developed and applied in two numerical examples based on similar and anterior work. In the first case, it is a question of the search space that is completely ‘closed’ by high natural variability related to the multi-pass roughing operation: in this case, the failure risk of technological limitations are considered as objectives to minimize with economic objectives. The second case is related to deformed search space due to the uncertainties specific to finishing operation; therefore, the economic objectives are minimized under imposed maximum probabilities of failure. In both situations, the efficiency and robustness of optimal solutions generated by the P-NSGA-II algorithm are analysed, discussed and compared with sequence of unconstrained minimization technique (SUMT) method.</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-015-7526-z</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>CAE) and Design ; Classification ; Computer simulation ; Computer-Aided Engineering (CAD ; Cutting parameters ; Deformation ; Distribution functions ; Engineering ; Engineering Sciences ; Failure ; Formulations ; Genetic algorithms ; Industrial and Production Engineering ; Mechanical Engineering ; Media Management ; Multiple objective analysis ; Objectives ; Optimization ; Original Article ; Probability theory ; Robustness (mathematics) ; Sorting algorithms ; Statistical analysis ; Turning (machining) ; Uncertainty</subject><ispartof>International journal of advanced manufacturing technology, 2016-03, Vol.83 (5-8), p.1265-1279</ispartof><rights>Springer-Verlag London 2015</rights><rights>The International Journal of Advanced Manufacturing Technology is a copyright of Springer, (2015). All Rights Reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c468t-a5f626c0dd8f50fe0c86a88a3cba48c9cf830040ebef3634690ad05b028b2cb73</citedby><cites>FETCH-LOGICAL-c468t-a5f626c0dd8f50fe0c86a88a3cba48c9cf830040ebef3634690ad05b028b2cb73</cites><orcidid>0000-0001-5805-4149</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00170-015-7526-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00170-015-7526-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02531571$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Sahali, M. A.</creatorcontrib><creatorcontrib>Belaidi, I.</creatorcontrib><creatorcontrib>Serra, R.</creatorcontrib><title>New approach for robust multi-objective optimization of turning parameters using probabilistic genetic algorithm</title><title>International journal of advanced manufacturing technology</title><addtitle>Int J Adv Manuf Technol</addtitle><description>In this paper, a contribution to the determination of reliable cutting parameters is presented, which is minimizing the expected machining cost and maximizing the expected production rate, with taking into account the uncertainties of uncontrollable factors. The concept of failure probability of stochastic production limitations is integrated into constrained and unconstrained formulations of multi-objective optimization problems. New probabilistic version of the nondominated sorting genetic algorithm P-NSGA-II, which incorporates the Monte Carlo simulations for accurate assessment of cumulative distribution functions, was developed and applied in two numerical examples based on similar and anterior work. In the first case, it is a question of the search space that is completely ‘closed’ by high natural variability related to the multi-pass roughing operation: in this case, the failure risk of technological limitations are considered as objectives to minimize with economic objectives. The second case is related to deformed search space due to the uncertainties specific to finishing operation; therefore, the economic objectives are minimized under imposed maximum probabilities of failure. In both situations, the efficiency and robustness of optimal solutions generated by the P-NSGA-II algorithm are analysed, discussed and compared with sequence of unconstrained minimization technique (SUMT) method.</description><subject>CAE) and Design</subject><subject>Classification</subject><subject>Computer simulation</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Cutting parameters</subject><subject>Deformation</subject><subject>Distribution functions</subject><subject>Engineering</subject><subject>Engineering Sciences</subject><subject>Failure</subject><subject>Formulations</subject><subject>Genetic algorithms</subject><subject>Industrial and Production Engineering</subject><subject>Mechanical Engineering</subject><subject>Media Management</subject><subject>Multiple objective analysis</subject><subject>Objectives</subject><subject>Optimization</subject><subject>Original Article</subject><subject>Probability theory</subject><subject>Robustness (mathematics)</subject><subject>Sorting algorithms</subject><subject>Statistical analysis</subject><subject>Turning (machining)</subject><subject>Uncertainty</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kUFvGyEQhVGVSnWc_IDckHrKgXaAXRYfLSuNK1ntpTkjFoONtbtsgE1U__ribtWcchrp6XuPGR5CdxS-UIDmawKgDRCgNWlqJsj5A1rQinPCi3SFFsCEJLwR8hO6TulUaEGFXKDxh33Fehxj0OaIXYg4hnZKGfdTlz0J7cma7F8sDmP2vT_r7MOAg8N5ioMfDnjUUfc225jwlP4KJUC3vvMpe4MPdrCXqbtDiD4f-xv00eku2dt_c4mevj382mzJ7ufj9816R0wlZCa6doIJA_u9dDU4C0YKLaXmptWVNCvjJAeowLbWccErsQK9h7oFJltm2oYv0f2ce9SdGqPvdfytgvZqu96piwas5rRu6Ast7OeZLbs_TzZldQrlvLKeYkwwzkRT3lgiOlMmhpSidf9jKahLCWouQZUfV5cS1Ll42OxJhR0ONr4lv2_6A0oejKs</recordid><startdate>20160301</startdate><enddate>20160301</enddate><creator>Sahali, M. A.</creator><creator>Belaidi, I.</creator><creator>Serra, R.</creator><general>Springer London</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-5805-4149</orcidid></search><sort><creationdate>20160301</creationdate><title>New approach for robust multi-objective optimization of turning parameters using probabilistic genetic algorithm</title><author>Sahali, M. A. ; Belaidi, I. ; Serra, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c468t-a5f626c0dd8f50fe0c86a88a3cba48c9cf830040ebef3634690ad05b028b2cb73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>CAE) and Design</topic><topic>Classification</topic><topic>Computer simulation</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Cutting parameters</topic><topic>Deformation</topic><topic>Distribution functions</topic><topic>Engineering</topic><topic>Engineering Sciences</topic><topic>Failure</topic><topic>Formulations</topic><topic>Genetic algorithms</topic><topic>Industrial and Production Engineering</topic><topic>Mechanical Engineering</topic><topic>Media Management</topic><topic>Multiple objective analysis</topic><topic>Objectives</topic><topic>Optimization</topic><topic>Original Article</topic><topic>Probability theory</topic><topic>Robustness (mathematics)</topic><topic>Sorting algorithms</topic><topic>Statistical analysis</topic><topic>Turning (machining)</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sahali, M. A.</creatorcontrib><creatorcontrib>Belaidi, I.</creatorcontrib><creatorcontrib>Serra, R.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sahali, M. A.</au><au>Belaidi, I.</au><au>Serra, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New approach for robust multi-objective optimization of turning parameters using probabilistic genetic algorithm</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><stitle>Int J Adv Manuf Technol</stitle><date>2016-03-01</date><risdate>2016</risdate><volume>83</volume><issue>5-8</issue><spage>1265</spage><epage>1279</epage><pages>1265-1279</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>In this paper, a contribution to the determination of reliable cutting parameters is presented, which is minimizing the expected machining cost and maximizing the expected production rate, with taking into account the uncertainties of uncontrollable factors. The concept of failure probability of stochastic production limitations is integrated into constrained and unconstrained formulations of multi-objective optimization problems. New probabilistic version of the nondominated sorting genetic algorithm P-NSGA-II, which incorporates the Monte Carlo simulations for accurate assessment of cumulative distribution functions, was developed and applied in two numerical examples based on similar and anterior work. In the first case, it is a question of the search space that is completely ‘closed’ by high natural variability related to the multi-pass roughing operation: in this case, the failure risk of technological limitations are considered as objectives to minimize with economic objectives. The second case is related to deformed search space due to the uncertainties specific to finishing operation; therefore, the economic objectives are minimized under imposed maximum probabilities of failure. In both situations, the efficiency and robustness of optimal solutions generated by the P-NSGA-II algorithm are analysed, discussed and compared with sequence of unconstrained minimization technique (SUMT) method.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00170-015-7526-z</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-5805-4149</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0268-3768
ispartof International journal of advanced manufacturing technology, 2016-03, Vol.83 (5-8), p.1265-1279
issn 0268-3768
1433-3015
language eng
recordid cdi_hal_primary_oai_HAL_hal_02531571v1
source Springer Nature - Complete Springer Journals
subjects CAE) and Design
Classification
Computer simulation
Computer-Aided Engineering (CAD
Cutting parameters
Deformation
Distribution functions
Engineering
Engineering Sciences
Failure
Formulations
Genetic algorithms
Industrial and Production Engineering
Mechanical Engineering
Media Management
Multiple objective analysis
Objectives
Optimization
Original Article
Probability theory
Robustness (mathematics)
Sorting algorithms
Statistical analysis
Turning (machining)
Uncertainty
title New approach for robust multi-objective optimization of turning parameters using probabilistic genetic algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T12%3A54%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20approach%20for%20robust%20multi-objective%20optimization%20of%20turning%20parameters%20using%20probabilistic%20genetic%20algorithm&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=Sahali,%20M.%20A.&rft.date=2016-03-01&rft.volume=83&rft.issue=5-8&rft.spage=1265&rft.epage=1279&rft.pages=1265-1279&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-015-7526-z&rft_dat=%3Cproquest_hal_p%3E2262326736%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2262326736&rft_id=info:pmid/&rfr_iscdi=true