Diffusivity of hydrogen and properties of point defects in beryllium investigated by DFT

Beryllium will be one of the plasma-facing materials for ITER. It will have to sustain high fluxes of hydrogen isotopes and as a consequence significant amounts of tritium can be retained in the wall. For safety and operational reasons, the deuterium and tritium inventory in the vacuum vessel must b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of nuclear materials 2019-10, Vol.524, p.323-329
Hauptverfasser: Ferry, L., Virot, F., Ferro, Y., Matveev, D., Linsmeier, Ch, Barrachin, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 329
container_issue
container_start_page 323
container_title Journal of nuclear materials
container_volume 524
creator Ferry, L.
Virot, F.
Ferro, Y.
Matveev, D.
Linsmeier, Ch
Barrachin, M.
description Beryllium will be one of the plasma-facing materials for ITER. It will have to sustain high fluxes of hydrogen isotopes and as a consequence significant amounts of tritium can be retained in the wall. For safety and operational reasons, the deuterium and tritium inventory in the vacuum vessel must be limited. As a consequence, hydrogen diffusion, trapping and solubility are of vital importance in assessing and modeling the plasma fuel retention into the wall. In order to understand these issues, point defects and the behavior of hydrogen in beryllium are investigated based on Density Functional Theory calculations. Although some data have already been acquired in the past, some of them disagree, which motivates further investigations. To do so, the formation energy and diffusion properties of point defects are investigated in the first part of this paper. In a second part, the solubility and diffusivity of hydrogen in beryllium are calculated. A diffusion coefficient is established in order to be used in Rate-Equation and Kinetic Monte-Carlo Kinetic models and to allow for comparison with experimental measurements.
doi_str_mv 10.1016/j.jnucmat.2019.07.016
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02527493v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022311519301278</els_id><sourcerecordid>2281147891</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-7b226b4698502cdb0e49c64ca6fe988df66421b03ce727b7df7991c12e776e7f3</originalsourceid><addsrcrecordid>eNqFUE1LxDAUDKLg-vEThIAnD60v6Ueak4jfsOBFwVtok5fdlN12TdqF_ntTVrx6erx584aZIeSKQcqAlbdt2naj3tZDyoHJFEQa0SOyYJXIkrzicEwWAJwnGWPFKTkLoQWAQkKxIF-PztoxuL0bJtpbup6M71fY0bozdOf7HfrBYZhPu951AzVoUQ-Buo426KfNxo3buOwxDG5VD2hoM9HH548LcmLrTcDL33lOPp-fPh5ek-X7y9vD_TLROauGRDScl01eyqoArk0DmEtd5rouLcqqMrYsc84ayDQKLhphrJCSacZRiBKFzc7JzUF3XW_Uzrtt7SfV10693i_VjAEvuMhltmeRe33gxmDfY3Ss2n70XbSnOK8Yy0UlZ1ZxYGnfh-DR_skyUHPhqlW_hau5cAVCRTT-3R3-MMbdO_QqaIedRuN8rEyZ3v2j8AMWx4uy</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2281147891</pqid></control><display><type>article</type><title>Diffusivity of hydrogen and properties of point defects in beryllium investigated by DFT</title><source>Access via ScienceDirect (Elsevier)</source><creator>Ferry, L. ; Virot, F. ; Ferro, Y. ; Matveev, D. ; Linsmeier, Ch ; Barrachin, M.</creator><creatorcontrib>Ferry, L. ; Virot, F. ; Ferro, Y. ; Matveev, D. ; Linsmeier, Ch ; Barrachin, M.</creatorcontrib><description>Beryllium will be one of the plasma-facing materials for ITER. It will have to sustain high fluxes of hydrogen isotopes and as a consequence significant amounts of tritium can be retained in the wall. For safety and operational reasons, the deuterium and tritium inventory in the vacuum vessel must be limited. As a consequence, hydrogen diffusion, trapping and solubility are of vital importance in assessing and modeling the plasma fuel retention into the wall. In order to understand these issues, point defects and the behavior of hydrogen in beryllium are investigated based on Density Functional Theory calculations. Although some data have already been acquired in the past, some of them disagree, which motivates further investigations. To do so, the formation energy and diffusion properties of point defects are investigated in the first part of this paper. In a second part, the solubility and diffusivity of hydrogen in beryllium are calculated. A diffusion coefficient is established in order to be used in Rate-Equation and Kinetic Monte-Carlo Kinetic models and to allow for comparison with experimental measurements.</description><identifier>ISSN: 0022-3115</identifier><identifier>EISSN: 1873-4820</identifier><identifier>DOI: 10.1016/j.jnucmat.2019.07.016</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Beryllium ; Computer simulation ; Data acquisition ; Density functional theory ; Deuterium ; Diffusion coefficient ; Diffusion rate ; Diffusivity ; Fluxes ; Free energy ; Heat of formation ; Hydrogen ; Hydrogen isotopes ; Hydrogen storage ; Investigations ; Isotopes ; ITER ; Monte Carlo simulation ; Physics ; Point defects ; Solubility ; Tritium ; Vacancy ; Vacuum</subject><ispartof>Journal of nuclear materials, 2019-10, Vol.524, p.323-329</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier BV Oct 2019</rights><rights>Attribution - NonCommercial</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-7b226b4698502cdb0e49c64ca6fe988df66421b03ce727b7df7991c12e776e7f3</citedby><cites>FETCH-LOGICAL-c418t-7b226b4698502cdb0e49c64ca6fe988df66421b03ce727b7df7991c12e776e7f3</cites><orcidid>0000-0002-3178-937X ; 0000-0001-9778-7353</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jnucmat.2019.07.016$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02527493$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ferry, L.</creatorcontrib><creatorcontrib>Virot, F.</creatorcontrib><creatorcontrib>Ferro, Y.</creatorcontrib><creatorcontrib>Matveev, D.</creatorcontrib><creatorcontrib>Linsmeier, Ch</creatorcontrib><creatorcontrib>Barrachin, M.</creatorcontrib><title>Diffusivity of hydrogen and properties of point defects in beryllium investigated by DFT</title><title>Journal of nuclear materials</title><description>Beryllium will be one of the plasma-facing materials for ITER. It will have to sustain high fluxes of hydrogen isotopes and as a consequence significant amounts of tritium can be retained in the wall. For safety and operational reasons, the deuterium and tritium inventory in the vacuum vessel must be limited. As a consequence, hydrogen diffusion, trapping and solubility are of vital importance in assessing and modeling the plasma fuel retention into the wall. In order to understand these issues, point defects and the behavior of hydrogen in beryllium are investigated based on Density Functional Theory calculations. Although some data have already been acquired in the past, some of them disagree, which motivates further investigations. To do so, the formation energy and diffusion properties of point defects are investigated in the first part of this paper. In a second part, the solubility and diffusivity of hydrogen in beryllium are calculated. A diffusion coefficient is established in order to be used in Rate-Equation and Kinetic Monte-Carlo Kinetic models and to allow for comparison with experimental measurements.</description><subject>Beryllium</subject><subject>Computer simulation</subject><subject>Data acquisition</subject><subject>Density functional theory</subject><subject>Deuterium</subject><subject>Diffusion coefficient</subject><subject>Diffusion rate</subject><subject>Diffusivity</subject><subject>Fluxes</subject><subject>Free energy</subject><subject>Heat of formation</subject><subject>Hydrogen</subject><subject>Hydrogen isotopes</subject><subject>Hydrogen storage</subject><subject>Investigations</subject><subject>Isotopes</subject><subject>ITER</subject><subject>Monte Carlo simulation</subject><subject>Physics</subject><subject>Point defects</subject><subject>Solubility</subject><subject>Tritium</subject><subject>Vacancy</subject><subject>Vacuum</subject><issn>0022-3115</issn><issn>1873-4820</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFUE1LxDAUDKLg-vEThIAnD60v6Ueak4jfsOBFwVtok5fdlN12TdqF_ntTVrx6erx584aZIeSKQcqAlbdt2naj3tZDyoHJFEQa0SOyYJXIkrzicEwWAJwnGWPFKTkLoQWAQkKxIF-PztoxuL0bJtpbup6M71fY0bozdOf7HfrBYZhPu951AzVoUQ-Buo426KfNxo3buOwxDG5VD2hoM9HH548LcmLrTcDL33lOPp-fPh5ek-X7y9vD_TLROauGRDScl01eyqoArk0DmEtd5rouLcqqMrYsc84ayDQKLhphrJCSacZRiBKFzc7JzUF3XW_Uzrtt7SfV10693i_VjAEvuMhltmeRe33gxmDfY3Ss2n70XbSnOK8Yy0UlZ1ZxYGnfh-DR_skyUHPhqlW_hau5cAVCRTT-3R3-MMbdO_QqaIedRuN8rEyZ3v2j8AMWx4uy</recordid><startdate>201910</startdate><enddate>201910</enddate><creator>Ferry, L.</creator><creator>Virot, F.</creator><creator>Ferro, Y.</creator><creator>Matveev, D.</creator><creator>Linsmeier, Ch</creator><creator>Barrachin, M.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>7ST</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-3178-937X</orcidid><orcidid>https://orcid.org/0000-0001-9778-7353</orcidid></search><sort><creationdate>201910</creationdate><title>Diffusivity of hydrogen and properties of point defects in beryllium investigated by DFT</title><author>Ferry, L. ; Virot, F. ; Ferro, Y. ; Matveev, D. ; Linsmeier, Ch ; Barrachin, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-7b226b4698502cdb0e49c64ca6fe988df66421b03ce727b7df7991c12e776e7f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Beryllium</topic><topic>Computer simulation</topic><topic>Data acquisition</topic><topic>Density functional theory</topic><topic>Deuterium</topic><topic>Diffusion coefficient</topic><topic>Diffusion rate</topic><topic>Diffusivity</topic><topic>Fluxes</topic><topic>Free energy</topic><topic>Heat of formation</topic><topic>Hydrogen</topic><topic>Hydrogen isotopes</topic><topic>Hydrogen storage</topic><topic>Investigations</topic><topic>Isotopes</topic><topic>ITER</topic><topic>Monte Carlo simulation</topic><topic>Physics</topic><topic>Point defects</topic><topic>Solubility</topic><topic>Tritium</topic><topic>Vacancy</topic><topic>Vacuum</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ferry, L.</creatorcontrib><creatorcontrib>Virot, F.</creatorcontrib><creatorcontrib>Ferro, Y.</creatorcontrib><creatorcontrib>Matveev, D.</creatorcontrib><creatorcontrib>Linsmeier, Ch</creatorcontrib><creatorcontrib>Barrachin, M.</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of nuclear materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ferry, L.</au><au>Virot, F.</au><au>Ferro, Y.</au><au>Matveev, D.</au><au>Linsmeier, Ch</au><au>Barrachin, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diffusivity of hydrogen and properties of point defects in beryllium investigated by DFT</atitle><jtitle>Journal of nuclear materials</jtitle><date>2019-10</date><risdate>2019</risdate><volume>524</volume><spage>323</spage><epage>329</epage><pages>323-329</pages><issn>0022-3115</issn><eissn>1873-4820</eissn><abstract>Beryllium will be one of the plasma-facing materials for ITER. It will have to sustain high fluxes of hydrogen isotopes and as a consequence significant amounts of tritium can be retained in the wall. For safety and operational reasons, the deuterium and tritium inventory in the vacuum vessel must be limited. As a consequence, hydrogen diffusion, trapping and solubility are of vital importance in assessing and modeling the plasma fuel retention into the wall. In order to understand these issues, point defects and the behavior of hydrogen in beryllium are investigated based on Density Functional Theory calculations. Although some data have already been acquired in the past, some of them disagree, which motivates further investigations. To do so, the formation energy and diffusion properties of point defects are investigated in the first part of this paper. In a second part, the solubility and diffusivity of hydrogen in beryllium are calculated. A diffusion coefficient is established in order to be used in Rate-Equation and Kinetic Monte-Carlo Kinetic models and to allow for comparison with experimental measurements.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jnucmat.2019.07.016</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-3178-937X</orcidid><orcidid>https://orcid.org/0000-0001-9778-7353</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-3115
ispartof Journal of nuclear materials, 2019-10, Vol.524, p.323-329
issn 0022-3115
1873-4820
language eng
recordid cdi_hal_primary_oai_HAL_hal_02527493v1
source Access via ScienceDirect (Elsevier)
subjects Beryllium
Computer simulation
Data acquisition
Density functional theory
Deuterium
Diffusion coefficient
Diffusion rate
Diffusivity
Fluxes
Free energy
Heat of formation
Hydrogen
Hydrogen isotopes
Hydrogen storage
Investigations
Isotopes
ITER
Monte Carlo simulation
Physics
Point defects
Solubility
Tritium
Vacancy
Vacuum
title Diffusivity of hydrogen and properties of point defects in beryllium investigated by DFT
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T13%3A33%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diffusivity%20of%20hydrogen%20and%20properties%20of%20point%20defects%20in%20beryllium%20investigated%20by%20DFT&rft.jtitle=Journal%20of%20nuclear%20materials&rft.au=Ferry,%20L.&rft.date=2019-10&rft.volume=524&rft.spage=323&rft.epage=329&rft.pages=323-329&rft.issn=0022-3115&rft.eissn=1873-4820&rft_id=info:doi/10.1016/j.jnucmat.2019.07.016&rft_dat=%3Cproquest_hal_p%3E2281147891%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2281147891&rft_id=info:pmid/&rft_els_id=S0022311519301278&rfr_iscdi=true