Diffusivity of hydrogen and properties of point defects in beryllium investigated by DFT
Beryllium will be one of the plasma-facing materials for ITER. It will have to sustain high fluxes of hydrogen isotopes and as a consequence significant amounts of tritium can be retained in the wall. For safety and operational reasons, the deuterium and tritium inventory in the vacuum vessel must b...
Gespeichert in:
Veröffentlicht in: | Journal of nuclear materials 2019-10, Vol.524, p.323-329 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 329 |
---|---|
container_issue | |
container_start_page | 323 |
container_title | Journal of nuclear materials |
container_volume | 524 |
creator | Ferry, L. Virot, F. Ferro, Y. Matveev, D. Linsmeier, Ch Barrachin, M. |
description | Beryllium will be one of the plasma-facing materials for ITER. It will have to sustain high fluxes of hydrogen isotopes and as a consequence significant amounts of tritium can be retained in the wall. For safety and operational reasons, the deuterium and tritium inventory in the vacuum vessel must be limited. As a consequence, hydrogen diffusion, trapping and solubility are of vital importance in assessing and modeling the plasma fuel retention into the wall. In order to understand these issues, point defects and the behavior of hydrogen in beryllium are investigated based on Density Functional Theory calculations. Although some data have already been acquired in the past, some of them disagree, which motivates further investigations. To do so, the formation energy and diffusion properties of point defects are investigated in the first part of this paper. In a second part, the solubility and diffusivity of hydrogen in beryllium are calculated. A diffusion coefficient is established in order to be used in Rate-Equation and Kinetic Monte-Carlo Kinetic models and to allow for comparison with experimental measurements. |
doi_str_mv | 10.1016/j.jnucmat.2019.07.016 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02527493v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022311519301278</els_id><sourcerecordid>2281147891</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-7b226b4698502cdb0e49c64ca6fe988df66421b03ce727b7df7991c12e776e7f3</originalsourceid><addsrcrecordid>eNqFUE1LxDAUDKLg-vEThIAnD60v6Ueak4jfsOBFwVtok5fdlN12TdqF_ntTVrx6erx584aZIeSKQcqAlbdt2naj3tZDyoHJFEQa0SOyYJXIkrzicEwWAJwnGWPFKTkLoQWAQkKxIF-PztoxuL0bJtpbup6M71fY0bozdOf7HfrBYZhPu951AzVoUQ-Buo426KfNxo3buOwxDG5VD2hoM9HH548LcmLrTcDL33lOPp-fPh5ek-X7y9vD_TLROauGRDScl01eyqoArk0DmEtd5rouLcqqMrYsc84ayDQKLhphrJCSacZRiBKFzc7JzUF3XW_Uzrtt7SfV10693i_VjAEvuMhltmeRe33gxmDfY3Ss2n70XbSnOK8Yy0UlZ1ZxYGnfh-DR_skyUHPhqlW_hau5cAVCRTT-3R3-MMbdO_QqaIedRuN8rEyZ3v2j8AMWx4uy</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2281147891</pqid></control><display><type>article</type><title>Diffusivity of hydrogen and properties of point defects in beryllium investigated by DFT</title><source>Access via ScienceDirect (Elsevier)</source><creator>Ferry, L. ; Virot, F. ; Ferro, Y. ; Matveev, D. ; Linsmeier, Ch ; Barrachin, M.</creator><creatorcontrib>Ferry, L. ; Virot, F. ; Ferro, Y. ; Matveev, D. ; Linsmeier, Ch ; Barrachin, M.</creatorcontrib><description>Beryllium will be one of the plasma-facing materials for ITER. It will have to sustain high fluxes of hydrogen isotopes and as a consequence significant amounts of tritium can be retained in the wall. For safety and operational reasons, the deuterium and tritium inventory in the vacuum vessel must be limited. As a consequence, hydrogen diffusion, trapping and solubility are of vital importance in assessing and modeling the plasma fuel retention into the wall. In order to understand these issues, point defects and the behavior of hydrogen in beryllium are investigated based on Density Functional Theory calculations. Although some data have already been acquired in the past, some of them disagree, which motivates further investigations. To do so, the formation energy and diffusion properties of point defects are investigated in the first part of this paper. In a second part, the solubility and diffusivity of hydrogen in beryllium are calculated. A diffusion coefficient is established in order to be used in Rate-Equation and Kinetic Monte-Carlo Kinetic models and to allow for comparison with experimental measurements.</description><identifier>ISSN: 0022-3115</identifier><identifier>EISSN: 1873-4820</identifier><identifier>DOI: 10.1016/j.jnucmat.2019.07.016</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Beryllium ; Computer simulation ; Data acquisition ; Density functional theory ; Deuterium ; Diffusion coefficient ; Diffusion rate ; Diffusivity ; Fluxes ; Free energy ; Heat of formation ; Hydrogen ; Hydrogen isotopes ; Hydrogen storage ; Investigations ; Isotopes ; ITER ; Monte Carlo simulation ; Physics ; Point defects ; Solubility ; Tritium ; Vacancy ; Vacuum</subject><ispartof>Journal of nuclear materials, 2019-10, Vol.524, p.323-329</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier BV Oct 2019</rights><rights>Attribution - NonCommercial</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-7b226b4698502cdb0e49c64ca6fe988df66421b03ce727b7df7991c12e776e7f3</citedby><cites>FETCH-LOGICAL-c418t-7b226b4698502cdb0e49c64ca6fe988df66421b03ce727b7df7991c12e776e7f3</cites><orcidid>0000-0002-3178-937X ; 0000-0001-9778-7353</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jnucmat.2019.07.016$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02527493$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ferry, L.</creatorcontrib><creatorcontrib>Virot, F.</creatorcontrib><creatorcontrib>Ferro, Y.</creatorcontrib><creatorcontrib>Matveev, D.</creatorcontrib><creatorcontrib>Linsmeier, Ch</creatorcontrib><creatorcontrib>Barrachin, M.</creatorcontrib><title>Diffusivity of hydrogen and properties of point defects in beryllium investigated by DFT</title><title>Journal of nuclear materials</title><description>Beryllium will be one of the plasma-facing materials for ITER. It will have to sustain high fluxes of hydrogen isotopes and as a consequence significant amounts of tritium can be retained in the wall. For safety and operational reasons, the deuterium and tritium inventory in the vacuum vessel must be limited. As a consequence, hydrogen diffusion, trapping and solubility are of vital importance in assessing and modeling the plasma fuel retention into the wall. In order to understand these issues, point defects and the behavior of hydrogen in beryllium are investigated based on Density Functional Theory calculations. Although some data have already been acquired in the past, some of them disagree, which motivates further investigations. To do so, the formation energy and diffusion properties of point defects are investigated in the first part of this paper. In a second part, the solubility and diffusivity of hydrogen in beryllium are calculated. A diffusion coefficient is established in order to be used in Rate-Equation and Kinetic Monte-Carlo Kinetic models and to allow for comparison with experimental measurements.</description><subject>Beryllium</subject><subject>Computer simulation</subject><subject>Data acquisition</subject><subject>Density functional theory</subject><subject>Deuterium</subject><subject>Diffusion coefficient</subject><subject>Diffusion rate</subject><subject>Diffusivity</subject><subject>Fluxes</subject><subject>Free energy</subject><subject>Heat of formation</subject><subject>Hydrogen</subject><subject>Hydrogen isotopes</subject><subject>Hydrogen storage</subject><subject>Investigations</subject><subject>Isotopes</subject><subject>ITER</subject><subject>Monte Carlo simulation</subject><subject>Physics</subject><subject>Point defects</subject><subject>Solubility</subject><subject>Tritium</subject><subject>Vacancy</subject><subject>Vacuum</subject><issn>0022-3115</issn><issn>1873-4820</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFUE1LxDAUDKLg-vEThIAnD60v6Ueak4jfsOBFwVtok5fdlN12TdqF_ntTVrx6erx584aZIeSKQcqAlbdt2naj3tZDyoHJFEQa0SOyYJXIkrzicEwWAJwnGWPFKTkLoQWAQkKxIF-PztoxuL0bJtpbup6M71fY0bozdOf7HfrBYZhPu951AzVoUQ-Buo426KfNxo3buOwxDG5VD2hoM9HH548LcmLrTcDL33lOPp-fPh5ek-X7y9vD_TLROauGRDScl01eyqoArk0DmEtd5rouLcqqMrYsc84ayDQKLhphrJCSacZRiBKFzc7JzUF3XW_Uzrtt7SfV10693i_VjAEvuMhltmeRe33gxmDfY3Ss2n70XbSnOK8Yy0UlZ1ZxYGnfh-DR_skyUHPhqlW_hau5cAVCRTT-3R3-MMbdO_QqaIedRuN8rEyZ3v2j8AMWx4uy</recordid><startdate>201910</startdate><enddate>201910</enddate><creator>Ferry, L.</creator><creator>Virot, F.</creator><creator>Ferro, Y.</creator><creator>Matveev, D.</creator><creator>Linsmeier, Ch</creator><creator>Barrachin, M.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>7ST</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-3178-937X</orcidid><orcidid>https://orcid.org/0000-0001-9778-7353</orcidid></search><sort><creationdate>201910</creationdate><title>Diffusivity of hydrogen and properties of point defects in beryllium investigated by DFT</title><author>Ferry, L. ; Virot, F. ; Ferro, Y. ; Matveev, D. ; Linsmeier, Ch ; Barrachin, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-7b226b4698502cdb0e49c64ca6fe988df66421b03ce727b7df7991c12e776e7f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Beryllium</topic><topic>Computer simulation</topic><topic>Data acquisition</topic><topic>Density functional theory</topic><topic>Deuterium</topic><topic>Diffusion coefficient</topic><topic>Diffusion rate</topic><topic>Diffusivity</topic><topic>Fluxes</topic><topic>Free energy</topic><topic>Heat of formation</topic><topic>Hydrogen</topic><topic>Hydrogen isotopes</topic><topic>Hydrogen storage</topic><topic>Investigations</topic><topic>Isotopes</topic><topic>ITER</topic><topic>Monte Carlo simulation</topic><topic>Physics</topic><topic>Point defects</topic><topic>Solubility</topic><topic>Tritium</topic><topic>Vacancy</topic><topic>Vacuum</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ferry, L.</creatorcontrib><creatorcontrib>Virot, F.</creatorcontrib><creatorcontrib>Ferro, Y.</creatorcontrib><creatorcontrib>Matveev, D.</creatorcontrib><creatorcontrib>Linsmeier, Ch</creatorcontrib><creatorcontrib>Barrachin, M.</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of nuclear materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ferry, L.</au><au>Virot, F.</au><au>Ferro, Y.</au><au>Matveev, D.</au><au>Linsmeier, Ch</au><au>Barrachin, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diffusivity of hydrogen and properties of point defects in beryllium investigated by DFT</atitle><jtitle>Journal of nuclear materials</jtitle><date>2019-10</date><risdate>2019</risdate><volume>524</volume><spage>323</spage><epage>329</epage><pages>323-329</pages><issn>0022-3115</issn><eissn>1873-4820</eissn><abstract>Beryllium will be one of the plasma-facing materials for ITER. It will have to sustain high fluxes of hydrogen isotopes and as a consequence significant amounts of tritium can be retained in the wall. For safety and operational reasons, the deuterium and tritium inventory in the vacuum vessel must be limited. As a consequence, hydrogen diffusion, trapping and solubility are of vital importance in assessing and modeling the plasma fuel retention into the wall. In order to understand these issues, point defects and the behavior of hydrogen in beryllium are investigated based on Density Functional Theory calculations. Although some data have already been acquired in the past, some of them disagree, which motivates further investigations. To do so, the formation energy and diffusion properties of point defects are investigated in the first part of this paper. In a second part, the solubility and diffusivity of hydrogen in beryllium are calculated. A diffusion coefficient is established in order to be used in Rate-Equation and Kinetic Monte-Carlo Kinetic models and to allow for comparison with experimental measurements.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jnucmat.2019.07.016</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-3178-937X</orcidid><orcidid>https://orcid.org/0000-0001-9778-7353</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3115 |
ispartof | Journal of nuclear materials, 2019-10, Vol.524, p.323-329 |
issn | 0022-3115 1873-4820 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02527493v1 |
source | Access via ScienceDirect (Elsevier) |
subjects | Beryllium Computer simulation Data acquisition Density functional theory Deuterium Diffusion coefficient Diffusion rate Diffusivity Fluxes Free energy Heat of formation Hydrogen Hydrogen isotopes Hydrogen storage Investigations Isotopes ITER Monte Carlo simulation Physics Point defects Solubility Tritium Vacancy Vacuum |
title | Diffusivity of hydrogen and properties of point defects in beryllium investigated by DFT |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T13%3A33%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diffusivity%20of%20hydrogen%20and%20properties%20of%20point%20defects%20in%20beryllium%20investigated%20by%20DFT&rft.jtitle=Journal%20of%20nuclear%20materials&rft.au=Ferry,%20L.&rft.date=2019-10&rft.volume=524&rft.spage=323&rft.epage=329&rft.pages=323-329&rft.issn=0022-3115&rft.eissn=1873-4820&rft_id=info:doi/10.1016/j.jnucmat.2019.07.016&rft_dat=%3Cproquest_hal_p%3E2281147891%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2281147891&rft_id=info:pmid/&rft_els_id=S0022311519301278&rfr_iscdi=true |