Sea surface salinity estimates from spaceborne L-band radiometers: An overview of the first decade of observation (2010–2019)

Operated since the end of 2009, the European Space Agency (ESA) Soil Moisture and Ocean Salinity (SMOS) satellite mission is the first orbiting radiometer that collects regular and global observations from space of two Essential Climate Variables of the Global Climate Observing System: Sea Surface S...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Remote sensing of environment 2020-06, Vol.242, p.111769, Article 111769
Hauptverfasser: Reul, N., Grodsky, S.A., Arias, M., Boutin, J., Catany, R., Chapron, B., D'Amico, F., Dinnat, E., Donlon, C., Fore, A., Fournier, S., Guimbard, S., Hasson, A., Kolodziejczyk, N., Lagerloef, G., Lee, T., Le Vine, D.M., Lindstrom, E., Maes, C., Mecklenburg, S., Meissner, T., Olmedo, E., Sabia, R., Tenerelli, J., Thouvenin-Masson, C., Turiel, A., Vergely, J.L., Vinogradova, N., Wentz, F., Yueh, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 111769
container_title Remote sensing of environment
container_volume 242
creator Reul, N.
Grodsky, S.A.
Arias, M.
Boutin, J.
Catany, R.
Chapron, B.
D'Amico, F.
Dinnat, E.
Donlon, C.
Fore, A.
Fournier, S.
Guimbard, S.
Hasson, A.
Kolodziejczyk, N.
Lagerloef, G.
Lee, T.
Le Vine, D.M.
Lindstrom, E.
Maes, C.
Mecklenburg, S.
Meissner, T.
Olmedo, E.
Sabia, R.
Tenerelli, J.
Thouvenin-Masson, C.
Turiel, A.
Vergely, J.L.
Vinogradova, N.
Wentz, F.
Yueh, S.
description Operated since the end of 2009, the European Space Agency (ESA) Soil Moisture and Ocean Salinity (SMOS) satellite mission is the first orbiting radiometer that collects regular and global observations from space of two Essential Climate Variables of the Global Climate Observing System: Sea Surface Salinity (SSS) and Soil Moisture. The National Aeronautics and Space Administration (NASA) Aquarius mission, with the primary objective to provide global SSS measurements from space operated from mid-2011 to mid-2015. NASA's Soil Moisture Active-Passive (SMAP) mission, primarily dedicated to soil moisture measurements, but also monitoring SSS, has been operating since early 2015. The primary sensors onboard these three missions are passive microwave radiometers operating at 1.4 GHz (L-band). SSS is retrieved from radiometer measurements of the sea surface brightness temperature (TB). In this paper, we first provide a historical review of SSS remote sensing with passive L-band radiometry beginning with the discussions of measurement principles, technology, sensing characteristics and complementarities of the three aforementioned missions. The assessment of satellite SSS products is then presented in terms of individual mission characteristics, common algorithms, and measurement uncertainties, including the validation versus in situ data, and, the consideration of sampling differences between satellite SSS and in situ salinity measurements. We next review the major scientific achievements of the combined first 10 years of satellite SSS data, including the insights enabled by these measurements regarding the linkages of SSS with the global water cycle, climate variability, and ocean biochemistry. We also highlight the new ability provided by satellites to monitor mesoscale and synoptic-scale SSS features and to advance our understanding of SSS' role in air-sea interactions, constraining ocean models, and improving seasonal predictions. An overview of satellite SSS observation highlights during this first decade and upcoming challenges are then presented. •Historical review of sea surface salinity estimates with passive L-band radiometry•SMOS, Aquarius, and SMAP sensor characteristics and algorithms are presented.•Quality assessment of latest satellite SSS products is provided.•The major scientific achievements of the first decade of satellite SSS are reviewed.
doi_str_mv 10.1016/j.rse.2020.111769
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02527264v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0034425720301395</els_id><sourcerecordid>2440490494</sourcerecordid><originalsourceid>FETCH-LOGICAL-c468t-93067b72a5bc10759be634811c4b137c5d62bd8319ce6f594c253a916e60902d3</originalsourceid><addsrcrecordid>eNp9kcGKFDEQhhtRcFx9AG8BL-6hx6p0OunoaVjUFQY8qOeQTqrZDDOdMcnMsid9B9_QJzFDi0ehoKjK9xep-pvmJcIaAeWb3TplWnPgtUZUUj9qVjgo3YIC8bhZAXSiFbxXT5tnOe8AsB8UrpofX8iyfEqTdcSy3Yc5lAdGuYSDLZTZlOKB5WN9HWOaiW3b0c6eJetDPFChlN-yzczimdI50D2LEyt3xKaQcmGenPV06cUxV8CWEGf2mgPC75-_atLXz5snk91nevE3XzXfPrz_enPbbj9__HSz2bZOyKG0ugOpRsVtPzoE1euRZCcGRCdG7JTrveSjHzrUjuTUa-F431mNkiRo4L67aq6XuXd2b46pbpceTLTB3G625tID3nPFpThjZV8t7DHF76d6C7OLpzTX7xkuBAhdQ1QKF8qlmHOi6d9YBHPxxOxM9cRcPDGLJ1XzbtFQXbXeK5nsAs2OfEjkivEx_Ef9B1E9kqc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2440490494</pqid></control><display><type>article</type><title>Sea surface salinity estimates from spaceborne L-band radiometers: An overview of the first decade of observation (2010–2019)</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Reul, N. ; Grodsky, S.A. ; Arias, M. ; Boutin, J. ; Catany, R. ; Chapron, B. ; D'Amico, F. ; Dinnat, E. ; Donlon, C. ; Fore, A. ; Fournier, S. ; Guimbard, S. ; Hasson, A. ; Kolodziejczyk, N. ; Lagerloef, G. ; Lee, T. ; Le Vine, D.M. ; Lindstrom, E. ; Maes, C. ; Mecklenburg, S. ; Meissner, T. ; Olmedo, E. ; Sabia, R. ; Tenerelli, J. ; Thouvenin-Masson, C. ; Turiel, A. ; Vergely, J.L. ; Vinogradova, N. ; Wentz, F. ; Yueh, S.</creator><creatorcontrib>Reul, N. ; Grodsky, S.A. ; Arias, M. ; Boutin, J. ; Catany, R. ; Chapron, B. ; D'Amico, F. ; Dinnat, E. ; Donlon, C. ; Fore, A. ; Fournier, S. ; Guimbard, S. ; Hasson, A. ; Kolodziejczyk, N. ; Lagerloef, G. ; Lee, T. ; Le Vine, D.M. ; Lindstrom, E. ; Maes, C. ; Mecklenburg, S. ; Meissner, T. ; Olmedo, E. ; Sabia, R. ; Tenerelli, J. ; Thouvenin-Masson, C. ; Turiel, A. ; Vergely, J.L. ; Vinogradova, N. ; Wentz, F. ; Yueh, S.</creatorcontrib><description>Operated since the end of 2009, the European Space Agency (ESA) Soil Moisture and Ocean Salinity (SMOS) satellite mission is the first orbiting radiometer that collects regular and global observations from space of two Essential Climate Variables of the Global Climate Observing System: Sea Surface Salinity (SSS) and Soil Moisture. The National Aeronautics and Space Administration (NASA) Aquarius mission, with the primary objective to provide global SSS measurements from space operated from mid-2011 to mid-2015. NASA's Soil Moisture Active-Passive (SMAP) mission, primarily dedicated to soil moisture measurements, but also monitoring SSS, has been operating since early 2015. The primary sensors onboard these three missions are passive microwave radiometers operating at 1.4 GHz (L-band). SSS is retrieved from radiometer measurements of the sea surface brightness temperature (TB). In this paper, we first provide a historical review of SSS remote sensing with passive L-band radiometry beginning with the discussions of measurement principles, technology, sensing characteristics and complementarities of the three aforementioned missions. The assessment of satellite SSS products is then presented in terms of individual mission characteristics, common algorithms, and measurement uncertainties, including the validation versus in situ data, and, the consideration of sampling differences between satellite SSS and in situ salinity measurements. We next review the major scientific achievements of the combined first 10 years of satellite SSS data, including the insights enabled by these measurements regarding the linkages of SSS with the global water cycle, climate variability, and ocean biochemistry. We also highlight the new ability provided by satellites to monitor mesoscale and synoptic-scale SSS features and to advance our understanding of SSS' role in air-sea interactions, constraining ocean models, and improving seasonal predictions. An overview of satellite SSS observation highlights during this first decade and upcoming challenges are then presented. •Historical review of sea surface salinity estimates with passive L-band radiometry•SMOS, Aquarius, and SMAP sensor characteristics and algorithms are presented.•Quality assessment of latest satellite SSS products is provided.•The major scientific achievements of the first decade of satellite SSS are reviewed.</description><identifier>ISSN: 0034-4257</identifier><identifier>EISSN: 1879-0704</identifier><identifier>DOI: 10.1016/j.rse.2020.111769</identifier><language>eng</language><publisher>New York: Elsevier Inc</publisher><subject>Aeronautics ; Air-sea interaction ; Algorithms ; Aquarius/SAC-D ; Biochemistry ; Brightness temperature ; Climate ; Climate variability ; Environmental monitoring ; Geophysics ; Global climate ; Historical account ; Hydrologic cycle ; L-band ; Microwave radiometers ; Missions ; Ocean microwave remote sensing ; Ocean models ; Oceans ; Physics ; Radiometer ; Radiometers ; Radiometry ; Remote sensing ; Reviews ; Salinity ; Salinity effects ; Salinity measurements ; Satellite observation ; Satellites ; Sea surface salinity ; SMAP ; SMOS ; Soil moisture ; Soil moisture measurements ; Soils ; Space missions ; Surface brightness</subject><ispartof>Remote sensing of environment, 2020-06, Vol.242, p.111769, Article 111769</ispartof><rights>2020 The Authors</rights><rights>Copyright Elsevier BV Jun 1, 2020</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c468t-93067b72a5bc10759be634811c4b137c5d62bd8319ce6f594c253a916e60902d3</citedby><cites>FETCH-LOGICAL-c468t-93067b72a5bc10759be634811c4b137c5d62bd8319ce6f594c253a916e60902d3</cites><orcidid>0000-0002-1951-1105 ; 0000-0002-8867-6392 ; 0000-0001-6103-224X ; 0000-0003-2845-4912 ; 0000-0002-5856-4381 ; 0000-0001-6088-8775 ; 0000-0003-4881-2967 ; 0000-0001-6532-7141</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0034425720301395$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02527264$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Reul, N.</creatorcontrib><creatorcontrib>Grodsky, S.A.</creatorcontrib><creatorcontrib>Arias, M.</creatorcontrib><creatorcontrib>Boutin, J.</creatorcontrib><creatorcontrib>Catany, R.</creatorcontrib><creatorcontrib>Chapron, B.</creatorcontrib><creatorcontrib>D'Amico, F.</creatorcontrib><creatorcontrib>Dinnat, E.</creatorcontrib><creatorcontrib>Donlon, C.</creatorcontrib><creatorcontrib>Fore, A.</creatorcontrib><creatorcontrib>Fournier, S.</creatorcontrib><creatorcontrib>Guimbard, S.</creatorcontrib><creatorcontrib>Hasson, A.</creatorcontrib><creatorcontrib>Kolodziejczyk, N.</creatorcontrib><creatorcontrib>Lagerloef, G.</creatorcontrib><creatorcontrib>Lee, T.</creatorcontrib><creatorcontrib>Le Vine, D.M.</creatorcontrib><creatorcontrib>Lindstrom, E.</creatorcontrib><creatorcontrib>Maes, C.</creatorcontrib><creatorcontrib>Mecklenburg, S.</creatorcontrib><creatorcontrib>Meissner, T.</creatorcontrib><creatorcontrib>Olmedo, E.</creatorcontrib><creatorcontrib>Sabia, R.</creatorcontrib><creatorcontrib>Tenerelli, J.</creatorcontrib><creatorcontrib>Thouvenin-Masson, C.</creatorcontrib><creatorcontrib>Turiel, A.</creatorcontrib><creatorcontrib>Vergely, J.L.</creatorcontrib><creatorcontrib>Vinogradova, N.</creatorcontrib><creatorcontrib>Wentz, F.</creatorcontrib><creatorcontrib>Yueh, S.</creatorcontrib><title>Sea surface salinity estimates from spaceborne L-band radiometers: An overview of the first decade of observation (2010–2019)</title><title>Remote sensing of environment</title><description>Operated since the end of 2009, the European Space Agency (ESA) Soil Moisture and Ocean Salinity (SMOS) satellite mission is the first orbiting radiometer that collects regular and global observations from space of two Essential Climate Variables of the Global Climate Observing System: Sea Surface Salinity (SSS) and Soil Moisture. The National Aeronautics and Space Administration (NASA) Aquarius mission, with the primary objective to provide global SSS measurements from space operated from mid-2011 to mid-2015. NASA's Soil Moisture Active-Passive (SMAP) mission, primarily dedicated to soil moisture measurements, but also monitoring SSS, has been operating since early 2015. The primary sensors onboard these three missions are passive microwave radiometers operating at 1.4 GHz (L-band). SSS is retrieved from radiometer measurements of the sea surface brightness temperature (TB). In this paper, we first provide a historical review of SSS remote sensing with passive L-band radiometry beginning with the discussions of measurement principles, technology, sensing characteristics and complementarities of the three aforementioned missions. The assessment of satellite SSS products is then presented in terms of individual mission characteristics, common algorithms, and measurement uncertainties, including the validation versus in situ data, and, the consideration of sampling differences between satellite SSS and in situ salinity measurements. We next review the major scientific achievements of the combined first 10 years of satellite SSS data, including the insights enabled by these measurements regarding the linkages of SSS with the global water cycle, climate variability, and ocean biochemistry. We also highlight the new ability provided by satellites to monitor mesoscale and synoptic-scale SSS features and to advance our understanding of SSS' role in air-sea interactions, constraining ocean models, and improving seasonal predictions. An overview of satellite SSS observation highlights during this first decade and upcoming challenges are then presented. •Historical review of sea surface salinity estimates with passive L-band radiometry•SMOS, Aquarius, and SMAP sensor characteristics and algorithms are presented.•Quality assessment of latest satellite SSS products is provided.•The major scientific achievements of the first decade of satellite SSS are reviewed.</description><subject>Aeronautics</subject><subject>Air-sea interaction</subject><subject>Algorithms</subject><subject>Aquarius/SAC-D</subject><subject>Biochemistry</subject><subject>Brightness temperature</subject><subject>Climate</subject><subject>Climate variability</subject><subject>Environmental monitoring</subject><subject>Geophysics</subject><subject>Global climate</subject><subject>Historical account</subject><subject>Hydrologic cycle</subject><subject>L-band</subject><subject>Microwave radiometers</subject><subject>Missions</subject><subject>Ocean microwave remote sensing</subject><subject>Ocean models</subject><subject>Oceans</subject><subject>Physics</subject><subject>Radiometer</subject><subject>Radiometers</subject><subject>Radiometry</subject><subject>Remote sensing</subject><subject>Reviews</subject><subject>Salinity</subject><subject>Salinity effects</subject><subject>Salinity measurements</subject><subject>Satellite observation</subject><subject>Satellites</subject><subject>Sea surface salinity</subject><subject>SMAP</subject><subject>SMOS</subject><subject>Soil moisture</subject><subject>Soil moisture measurements</subject><subject>Soils</subject><subject>Space missions</subject><subject>Surface brightness</subject><issn>0034-4257</issn><issn>1879-0704</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kcGKFDEQhhtRcFx9AG8BL-6hx6p0OunoaVjUFQY8qOeQTqrZDDOdMcnMsid9B9_QJzFDi0ehoKjK9xep-pvmJcIaAeWb3TplWnPgtUZUUj9qVjgo3YIC8bhZAXSiFbxXT5tnOe8AsB8UrpofX8iyfEqTdcSy3Yc5lAdGuYSDLZTZlOKB5WN9HWOaiW3b0c6eJetDPFChlN-yzczimdI50D2LEyt3xKaQcmGenPV06cUxV8CWEGf2mgPC75-_atLXz5snk91nevE3XzXfPrz_enPbbj9__HSz2bZOyKG0ugOpRsVtPzoE1euRZCcGRCdG7JTrveSjHzrUjuTUa-F431mNkiRo4L67aq6XuXd2b46pbpceTLTB3G625tID3nPFpThjZV8t7DHF76d6C7OLpzTX7xkuBAhdQ1QKF8qlmHOi6d9YBHPxxOxM9cRcPDGLJ1XzbtFQXbXeK5nsAs2OfEjkivEx_Ef9B1E9kqc</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Reul, N.</creator><creator>Grodsky, S.A.</creator><creator>Arias, M.</creator><creator>Boutin, J.</creator><creator>Catany, R.</creator><creator>Chapron, B.</creator><creator>D'Amico, F.</creator><creator>Dinnat, E.</creator><creator>Donlon, C.</creator><creator>Fore, A.</creator><creator>Fournier, S.</creator><creator>Guimbard, S.</creator><creator>Hasson, A.</creator><creator>Kolodziejczyk, N.</creator><creator>Lagerloef, G.</creator><creator>Lee, T.</creator><creator>Le Vine, D.M.</creator><creator>Lindstrom, E.</creator><creator>Maes, C.</creator><creator>Mecklenburg, S.</creator><creator>Meissner, T.</creator><creator>Olmedo, E.</creator><creator>Sabia, R.</creator><creator>Tenerelli, J.</creator><creator>Thouvenin-Masson, C.</creator><creator>Turiel, A.</creator><creator>Vergely, J.L.</creator><creator>Vinogradova, N.</creator><creator>Wentz, F.</creator><creator>Yueh, S.</creator><general>Elsevier Inc</general><general>Elsevier BV</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TG</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-1951-1105</orcidid><orcidid>https://orcid.org/0000-0002-8867-6392</orcidid><orcidid>https://orcid.org/0000-0001-6103-224X</orcidid><orcidid>https://orcid.org/0000-0003-2845-4912</orcidid><orcidid>https://orcid.org/0000-0002-5856-4381</orcidid><orcidid>https://orcid.org/0000-0001-6088-8775</orcidid><orcidid>https://orcid.org/0000-0003-4881-2967</orcidid><orcidid>https://orcid.org/0000-0001-6532-7141</orcidid></search><sort><creationdate>20200601</creationdate><title>Sea surface salinity estimates from spaceborne L-band radiometers: An overview of the first decade of observation (2010–2019)</title><author>Reul, N. ; Grodsky, S.A. ; Arias, M. ; Boutin, J. ; Catany, R. ; Chapron, B. ; D'Amico, F. ; Dinnat, E. ; Donlon, C. ; Fore, A. ; Fournier, S. ; Guimbard, S. ; Hasson, A. ; Kolodziejczyk, N. ; Lagerloef, G. ; Lee, T. ; Le Vine, D.M. ; Lindstrom, E. ; Maes, C. ; Mecklenburg, S. ; Meissner, T. ; Olmedo, E. ; Sabia, R. ; Tenerelli, J. ; Thouvenin-Masson, C. ; Turiel, A. ; Vergely, J.L. ; Vinogradova, N. ; Wentz, F. ; Yueh, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c468t-93067b72a5bc10759be634811c4b137c5d62bd8319ce6f594c253a916e60902d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aeronautics</topic><topic>Air-sea interaction</topic><topic>Algorithms</topic><topic>Aquarius/SAC-D</topic><topic>Biochemistry</topic><topic>Brightness temperature</topic><topic>Climate</topic><topic>Climate variability</topic><topic>Environmental monitoring</topic><topic>Geophysics</topic><topic>Global climate</topic><topic>Historical account</topic><topic>Hydrologic cycle</topic><topic>L-band</topic><topic>Microwave radiometers</topic><topic>Missions</topic><topic>Ocean microwave remote sensing</topic><topic>Ocean models</topic><topic>Oceans</topic><topic>Physics</topic><topic>Radiometer</topic><topic>Radiometers</topic><topic>Radiometry</topic><topic>Remote sensing</topic><topic>Reviews</topic><topic>Salinity</topic><topic>Salinity effects</topic><topic>Salinity measurements</topic><topic>Satellite observation</topic><topic>Satellites</topic><topic>Sea surface salinity</topic><topic>SMAP</topic><topic>SMOS</topic><topic>Soil moisture</topic><topic>Soil moisture measurements</topic><topic>Soils</topic><topic>Space missions</topic><topic>Surface brightness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reul, N.</creatorcontrib><creatorcontrib>Grodsky, S.A.</creatorcontrib><creatorcontrib>Arias, M.</creatorcontrib><creatorcontrib>Boutin, J.</creatorcontrib><creatorcontrib>Catany, R.</creatorcontrib><creatorcontrib>Chapron, B.</creatorcontrib><creatorcontrib>D'Amico, F.</creatorcontrib><creatorcontrib>Dinnat, E.</creatorcontrib><creatorcontrib>Donlon, C.</creatorcontrib><creatorcontrib>Fore, A.</creatorcontrib><creatorcontrib>Fournier, S.</creatorcontrib><creatorcontrib>Guimbard, S.</creatorcontrib><creatorcontrib>Hasson, A.</creatorcontrib><creatorcontrib>Kolodziejczyk, N.</creatorcontrib><creatorcontrib>Lagerloef, G.</creatorcontrib><creatorcontrib>Lee, T.</creatorcontrib><creatorcontrib>Le Vine, D.M.</creatorcontrib><creatorcontrib>Lindstrom, E.</creatorcontrib><creatorcontrib>Maes, C.</creatorcontrib><creatorcontrib>Mecklenburg, S.</creatorcontrib><creatorcontrib>Meissner, T.</creatorcontrib><creatorcontrib>Olmedo, E.</creatorcontrib><creatorcontrib>Sabia, R.</creatorcontrib><creatorcontrib>Tenerelli, J.</creatorcontrib><creatorcontrib>Thouvenin-Masson, C.</creatorcontrib><creatorcontrib>Turiel, A.</creatorcontrib><creatorcontrib>Vergely, J.L.</creatorcontrib><creatorcontrib>Vinogradova, N.</creatorcontrib><creatorcontrib>Wentz, F.</creatorcontrib><creatorcontrib>Yueh, S.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Remote sensing of environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reul, N.</au><au>Grodsky, S.A.</au><au>Arias, M.</au><au>Boutin, J.</au><au>Catany, R.</au><au>Chapron, B.</au><au>D'Amico, F.</au><au>Dinnat, E.</au><au>Donlon, C.</au><au>Fore, A.</au><au>Fournier, S.</au><au>Guimbard, S.</au><au>Hasson, A.</au><au>Kolodziejczyk, N.</au><au>Lagerloef, G.</au><au>Lee, T.</au><au>Le Vine, D.M.</au><au>Lindstrom, E.</au><au>Maes, C.</au><au>Mecklenburg, S.</au><au>Meissner, T.</au><au>Olmedo, E.</au><au>Sabia, R.</au><au>Tenerelli, J.</au><au>Thouvenin-Masson, C.</au><au>Turiel, A.</au><au>Vergely, J.L.</au><au>Vinogradova, N.</au><au>Wentz, F.</au><au>Yueh, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sea surface salinity estimates from spaceborne L-band radiometers: An overview of the first decade of observation (2010–2019)</atitle><jtitle>Remote sensing of environment</jtitle><date>2020-06-01</date><risdate>2020</risdate><volume>242</volume><spage>111769</spage><pages>111769-</pages><artnum>111769</artnum><issn>0034-4257</issn><eissn>1879-0704</eissn><abstract>Operated since the end of 2009, the European Space Agency (ESA) Soil Moisture and Ocean Salinity (SMOS) satellite mission is the first orbiting radiometer that collects regular and global observations from space of two Essential Climate Variables of the Global Climate Observing System: Sea Surface Salinity (SSS) and Soil Moisture. The National Aeronautics and Space Administration (NASA) Aquarius mission, with the primary objective to provide global SSS measurements from space operated from mid-2011 to mid-2015. NASA's Soil Moisture Active-Passive (SMAP) mission, primarily dedicated to soil moisture measurements, but also monitoring SSS, has been operating since early 2015. The primary sensors onboard these three missions are passive microwave radiometers operating at 1.4 GHz (L-band). SSS is retrieved from radiometer measurements of the sea surface brightness temperature (TB). In this paper, we first provide a historical review of SSS remote sensing with passive L-band radiometry beginning with the discussions of measurement principles, technology, sensing characteristics and complementarities of the three aforementioned missions. The assessment of satellite SSS products is then presented in terms of individual mission characteristics, common algorithms, and measurement uncertainties, including the validation versus in situ data, and, the consideration of sampling differences between satellite SSS and in situ salinity measurements. We next review the major scientific achievements of the combined first 10 years of satellite SSS data, including the insights enabled by these measurements regarding the linkages of SSS with the global water cycle, climate variability, and ocean biochemistry. We also highlight the new ability provided by satellites to monitor mesoscale and synoptic-scale SSS features and to advance our understanding of SSS' role in air-sea interactions, constraining ocean models, and improving seasonal predictions. An overview of satellite SSS observation highlights during this first decade and upcoming challenges are then presented. •Historical review of sea surface salinity estimates with passive L-band radiometry•SMOS, Aquarius, and SMAP sensor characteristics and algorithms are presented.•Quality assessment of latest satellite SSS products is provided.•The major scientific achievements of the first decade of satellite SSS are reviewed.</abstract><cop>New York</cop><pub>Elsevier Inc</pub><doi>10.1016/j.rse.2020.111769</doi><orcidid>https://orcid.org/0000-0002-1951-1105</orcidid><orcidid>https://orcid.org/0000-0002-8867-6392</orcidid><orcidid>https://orcid.org/0000-0001-6103-224X</orcidid><orcidid>https://orcid.org/0000-0003-2845-4912</orcidid><orcidid>https://orcid.org/0000-0002-5856-4381</orcidid><orcidid>https://orcid.org/0000-0001-6088-8775</orcidid><orcidid>https://orcid.org/0000-0003-4881-2967</orcidid><orcidid>https://orcid.org/0000-0001-6532-7141</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0034-4257
ispartof Remote sensing of environment, 2020-06, Vol.242, p.111769, Article 111769
issn 0034-4257
1879-0704
language eng
recordid cdi_hal_primary_oai_HAL_hal_02527264v1
source Elsevier ScienceDirect Journals Complete
subjects Aeronautics
Air-sea interaction
Algorithms
Aquarius/SAC-D
Biochemistry
Brightness temperature
Climate
Climate variability
Environmental monitoring
Geophysics
Global climate
Historical account
Hydrologic cycle
L-band
Microwave radiometers
Missions
Ocean microwave remote sensing
Ocean models
Oceans
Physics
Radiometer
Radiometers
Radiometry
Remote sensing
Reviews
Salinity
Salinity effects
Salinity measurements
Satellite observation
Satellites
Sea surface salinity
SMAP
SMOS
Soil moisture
Soil moisture measurements
Soils
Space missions
Surface brightness
title Sea surface salinity estimates from spaceborne L-band radiometers: An overview of the first decade of observation (2010–2019)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T18%3A23%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sea%20surface%20salinity%20estimates%20from%20spaceborne%20L-band%20radiometers:%20An%20overview%20of%20the%20first%20decade%20of%20observation%20(2010%E2%80%932019)&rft.jtitle=Remote%20sensing%20of%20environment&rft.au=Reul,%20N.&rft.date=2020-06-01&rft.volume=242&rft.spage=111769&rft.pages=111769-&rft.artnum=111769&rft.issn=0034-4257&rft.eissn=1879-0704&rft_id=info:doi/10.1016/j.rse.2020.111769&rft_dat=%3Cproquest_hal_p%3E2440490494%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2440490494&rft_id=info:pmid/&rft_els_id=S0034425720301395&rfr_iscdi=true