Exponential suppression of bit-flips in a qubit encoded in an oscillator

A quantum system interacts with its environment—if ever so slightly—no matter how much care is put into isolating it 1 . Therefore, quantum bits undergo errors, putting dauntingly difficult constraints on the hardware suitable for quantum computation 2 . New strategies are emerging to circumvent thi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature physics 2020-05, Vol.16 (5), p.509-513
Hauptverfasser: Lescanne, Raphaël, Villiers, Marius, Peronnin, Théau, Sarlette, Alain, Delbecq, Matthieu, Huard, Benjamin, Kontos, Takis, Mirrahimi, Mazyar, Leghtas, Zaki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 513
container_issue 5
container_start_page 509
container_title Nature physics
container_volume 16
creator Lescanne, Raphaël
Villiers, Marius
Peronnin, Théau
Sarlette, Alain
Delbecq, Matthieu
Huard, Benjamin
Kontos, Takis
Mirrahimi, Mazyar
Leghtas, Zaki
description A quantum system interacts with its environment—if ever so slightly—no matter how much care is put into isolating it 1 . Therefore, quantum bits undergo errors, putting dauntingly difficult constraints on the hardware suitable for quantum computation 2 . New strategies are emerging to circumvent this problem by encoding a quantum bit non-locally across the phase space of a physical system. Because most sources of decoherence result from local fluctuations, the foundational promise is to exponentially suppress errors by increasing a measure of this non-locality 3 , 4 . Prominent examples are topological quantum bits, which delocalize information over real space and where spatial extent measures non-locality. Here, we encode a quantum bit in the field quadrature space of a superconducting resonator endowed with a special mechanism that dissipates photons in pairs 5 , 6 . This process pins down two computational states to separate locations in phase space. By increasing this separation, we measure an exponential decrease of the bit-flip rate while only linearly increasing the phase-flip rate 7 . Because bit-flips are autonomously corrected, only phase-flips remain to be corrected via a one-dimensional quantum error correction code. This exponential scaling demonstrates that resonators with nonlinear dissipation are promising building blocks for quantum computation with drastically reduced hardware overhead 8 . The choice of the physical system that represents a qubit can help reduce errors. Encoding them in the quadrature space of a superconducting resonator leads to exponentially reduced bit-flip rates, while phase-flip errors increase only linearly.
doi_str_mv 10.1038/s41567-020-0824-x
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02526631v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2399803014</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-d04a8b92be4d58d23528e9290fdcfeca57ff7061d274ba98c45c93ec61f5fa263</originalsourceid><addsrcrecordid>eNp1kM1KAzEYRYMoWKsP4G7AlYvol7_5WZZSrVBwo-uQySSaMk6myYzUtzd1pK5c5eNy7iFchK4J3BFg5X3kROQFBgoYSsrx_gTNSMEFprwkp8e7YOfoIsYtAKc5YTO0Xu1735lucKrN4tj3wcTofJd5m9VuwLZ1fcxcl6lsN6YgM532jWl-okRF7dpWDT5cojOr2miuft85en1YvSzXePP8-LRcbLBmAgbcAFdlXdHa8EaUDWWClqaiFdhGW6OVKKwtICcNLXitqlJzoStmdE6ssIrmbI5uJ--7amUf3IcKX9IrJ9eLjTxkQAXNc0Y-SWJvJrYPfjeaOMitH0OXvicpq6oSGBCeKDJROvgYg7FHLQF5GFdO4yYzyMO4cp86dOrExHZvJvyZ_y99AwoAfFU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2399803014</pqid></control><display><type>article</type><title>Exponential suppression of bit-flips in a qubit encoded in an oscillator</title><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Lescanne, Raphaël ; Villiers, Marius ; Peronnin, Théau ; Sarlette, Alain ; Delbecq, Matthieu ; Huard, Benjamin ; Kontos, Takis ; Mirrahimi, Mazyar ; Leghtas, Zaki</creator><creatorcontrib>Lescanne, Raphaël ; Villiers, Marius ; Peronnin, Théau ; Sarlette, Alain ; Delbecq, Matthieu ; Huard, Benjamin ; Kontos, Takis ; Mirrahimi, Mazyar ; Leghtas, Zaki</creatorcontrib><description>A quantum system interacts with its environment—if ever so slightly—no matter how much care is put into isolating it 1 . Therefore, quantum bits undergo errors, putting dauntingly difficult constraints on the hardware suitable for quantum computation 2 . New strategies are emerging to circumvent this problem by encoding a quantum bit non-locally across the phase space of a physical system. Because most sources of decoherence result from local fluctuations, the foundational promise is to exponentially suppress errors by increasing a measure of this non-locality 3 , 4 . Prominent examples are topological quantum bits, which delocalize information over real space and where spatial extent measures non-locality. Here, we encode a quantum bit in the field quadrature space of a superconducting resonator endowed with a special mechanism that dissipates photons in pairs 5 , 6 . This process pins down two computational states to separate locations in phase space. By increasing this separation, we measure an exponential decrease of the bit-flip rate while only linearly increasing the phase-flip rate 7 . Because bit-flips are autonomously corrected, only phase-flips remain to be corrected via a one-dimensional quantum error correction code. This exponential scaling demonstrates that resonators with nonlinear dissipation are promising building blocks for quantum computation with drastically reduced hardware overhead 8 . The choice of the physical system that represents a qubit can help reduce errors. Encoding them in the quadrature space of a superconducting resonator leads to exponentially reduced bit-flip rates, while phase-flip errors increase only linearly.</description><identifier>ISSN: 1745-2473</identifier><identifier>EISSN: 1745-2481</identifier><identifier>EISSN: 1476-4636</identifier><identifier>DOI: 10.1038/s41567-020-0824-x</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/483/2802 ; 639/766/483/481 ; Atomic ; Classical and Continuum Physics ; Complex Systems ; Condensed Matter Physics ; Energy ; Error correction ; Error correction &amp; detection ; Fault tolerance ; Hardware ; Letter ; Mathematical and Computational Physics ; Molecular ; Optical and Plasma Physics ; Physics ; Physics and Astronomy ; Quadratures ; Quantum computing ; Quantum Physics ; Quantum theory ; Qubits (quantum computing) ; Resonators ; Superconductivity ; Theoretical</subject><ispartof>Nature physics, 2020-05, Vol.16 (5), p.509-513</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-d04a8b92be4d58d23528e9290fdcfeca57ff7061d274ba98c45c93ec61f5fa263</citedby><cites>FETCH-LOGICAL-c350t-d04a8b92be4d58d23528e9290fdcfeca57ff7061d274ba98c45c93ec61f5fa263</cites><orcidid>0000-0002-9848-3658 ; 0000-0002-9172-1537 ; 0000-0003-3785-9663 ; 0000-0001-5909-437X ; 0000-0001-7516-4905</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02526631$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Lescanne, Raphaël</creatorcontrib><creatorcontrib>Villiers, Marius</creatorcontrib><creatorcontrib>Peronnin, Théau</creatorcontrib><creatorcontrib>Sarlette, Alain</creatorcontrib><creatorcontrib>Delbecq, Matthieu</creatorcontrib><creatorcontrib>Huard, Benjamin</creatorcontrib><creatorcontrib>Kontos, Takis</creatorcontrib><creatorcontrib>Mirrahimi, Mazyar</creatorcontrib><creatorcontrib>Leghtas, Zaki</creatorcontrib><title>Exponential suppression of bit-flips in a qubit encoded in an oscillator</title><title>Nature physics</title><addtitle>Nat. Phys</addtitle><description>A quantum system interacts with its environment—if ever so slightly—no matter how much care is put into isolating it 1 . Therefore, quantum bits undergo errors, putting dauntingly difficult constraints on the hardware suitable for quantum computation 2 . New strategies are emerging to circumvent this problem by encoding a quantum bit non-locally across the phase space of a physical system. Because most sources of decoherence result from local fluctuations, the foundational promise is to exponentially suppress errors by increasing a measure of this non-locality 3 , 4 . Prominent examples are topological quantum bits, which delocalize information over real space and where spatial extent measures non-locality. Here, we encode a quantum bit in the field quadrature space of a superconducting resonator endowed with a special mechanism that dissipates photons in pairs 5 , 6 . This process pins down two computational states to separate locations in phase space. By increasing this separation, we measure an exponential decrease of the bit-flip rate while only linearly increasing the phase-flip rate 7 . Because bit-flips are autonomously corrected, only phase-flips remain to be corrected via a one-dimensional quantum error correction code. This exponential scaling demonstrates that resonators with nonlinear dissipation are promising building blocks for quantum computation with drastically reduced hardware overhead 8 . The choice of the physical system that represents a qubit can help reduce errors. Encoding them in the quadrature space of a superconducting resonator leads to exponentially reduced bit-flip rates, while phase-flip errors increase only linearly.</description><subject>639/766/483/2802</subject><subject>639/766/483/481</subject><subject>Atomic</subject><subject>Classical and Continuum Physics</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Energy</subject><subject>Error correction</subject><subject>Error correction &amp; detection</subject><subject>Fault tolerance</subject><subject>Hardware</subject><subject>Letter</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quadratures</subject><subject>Quantum computing</subject><subject>Quantum Physics</subject><subject>Quantum theory</subject><subject>Qubits (quantum computing)</subject><subject>Resonators</subject><subject>Superconductivity</subject><subject>Theoretical</subject><issn>1745-2473</issn><issn>1745-2481</issn><issn>1476-4636</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kM1KAzEYRYMoWKsP4G7AlYvol7_5WZZSrVBwo-uQySSaMk6myYzUtzd1pK5c5eNy7iFchK4J3BFg5X3kROQFBgoYSsrx_gTNSMEFprwkp8e7YOfoIsYtAKc5YTO0Xu1735lucKrN4tj3wcTofJd5m9VuwLZ1fcxcl6lsN6YgM532jWl-okRF7dpWDT5cojOr2miuft85en1YvSzXePP8-LRcbLBmAgbcAFdlXdHa8EaUDWWClqaiFdhGW6OVKKwtICcNLXitqlJzoStmdE6ssIrmbI5uJ--7amUf3IcKX9IrJ9eLjTxkQAXNc0Y-SWJvJrYPfjeaOMitH0OXvicpq6oSGBCeKDJROvgYg7FHLQF5GFdO4yYzyMO4cp86dOrExHZvJvyZ_y99AwoAfFU</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Lescanne, Raphaël</creator><creator>Villiers, Marius</creator><creator>Peronnin, Théau</creator><creator>Sarlette, Alain</creator><creator>Delbecq, Matthieu</creator><creator>Huard, Benjamin</creator><creator>Kontos, Takis</creator><creator>Mirrahimi, Mazyar</creator><creator>Leghtas, Zaki</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Publishing Group [2005-....]</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-9848-3658</orcidid><orcidid>https://orcid.org/0000-0002-9172-1537</orcidid><orcidid>https://orcid.org/0000-0003-3785-9663</orcidid><orcidid>https://orcid.org/0000-0001-5909-437X</orcidid><orcidid>https://orcid.org/0000-0001-7516-4905</orcidid></search><sort><creationdate>20200501</creationdate><title>Exponential suppression of bit-flips in a qubit encoded in an oscillator</title><author>Lescanne, Raphaël ; Villiers, Marius ; Peronnin, Théau ; Sarlette, Alain ; Delbecq, Matthieu ; Huard, Benjamin ; Kontos, Takis ; Mirrahimi, Mazyar ; Leghtas, Zaki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-d04a8b92be4d58d23528e9290fdcfeca57ff7061d274ba98c45c93ec61f5fa263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>639/766/483/2802</topic><topic>639/766/483/481</topic><topic>Atomic</topic><topic>Classical and Continuum Physics</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Energy</topic><topic>Error correction</topic><topic>Error correction &amp; detection</topic><topic>Fault tolerance</topic><topic>Hardware</topic><topic>Letter</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quadratures</topic><topic>Quantum computing</topic><topic>Quantum Physics</topic><topic>Quantum theory</topic><topic>Qubits (quantum computing)</topic><topic>Resonators</topic><topic>Superconductivity</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lescanne, Raphaël</creatorcontrib><creatorcontrib>Villiers, Marius</creatorcontrib><creatorcontrib>Peronnin, Théau</creatorcontrib><creatorcontrib>Sarlette, Alain</creatorcontrib><creatorcontrib>Delbecq, Matthieu</creatorcontrib><creatorcontrib>Huard, Benjamin</creatorcontrib><creatorcontrib>Kontos, Takis</creatorcontrib><creatorcontrib>Mirrahimi, Mazyar</creatorcontrib><creatorcontrib>Leghtas, Zaki</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Nature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lescanne, Raphaël</au><au>Villiers, Marius</au><au>Peronnin, Théau</au><au>Sarlette, Alain</au><au>Delbecq, Matthieu</au><au>Huard, Benjamin</au><au>Kontos, Takis</au><au>Mirrahimi, Mazyar</au><au>Leghtas, Zaki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exponential suppression of bit-flips in a qubit encoded in an oscillator</atitle><jtitle>Nature physics</jtitle><stitle>Nat. Phys</stitle><date>2020-05-01</date><risdate>2020</risdate><volume>16</volume><issue>5</issue><spage>509</spage><epage>513</epage><pages>509-513</pages><issn>1745-2473</issn><eissn>1745-2481</eissn><eissn>1476-4636</eissn><abstract>A quantum system interacts with its environment—if ever so slightly—no matter how much care is put into isolating it 1 . Therefore, quantum bits undergo errors, putting dauntingly difficult constraints on the hardware suitable for quantum computation 2 . New strategies are emerging to circumvent this problem by encoding a quantum bit non-locally across the phase space of a physical system. Because most sources of decoherence result from local fluctuations, the foundational promise is to exponentially suppress errors by increasing a measure of this non-locality 3 , 4 . Prominent examples are topological quantum bits, which delocalize information over real space and where spatial extent measures non-locality. Here, we encode a quantum bit in the field quadrature space of a superconducting resonator endowed with a special mechanism that dissipates photons in pairs 5 , 6 . This process pins down two computational states to separate locations in phase space. By increasing this separation, we measure an exponential decrease of the bit-flip rate while only linearly increasing the phase-flip rate 7 . Because bit-flips are autonomously corrected, only phase-flips remain to be corrected via a one-dimensional quantum error correction code. This exponential scaling demonstrates that resonators with nonlinear dissipation are promising building blocks for quantum computation with drastically reduced hardware overhead 8 . The choice of the physical system that represents a qubit can help reduce errors. Encoding them in the quadrature space of a superconducting resonator leads to exponentially reduced bit-flip rates, while phase-flip errors increase only linearly.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41567-020-0824-x</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-9848-3658</orcidid><orcidid>https://orcid.org/0000-0002-9172-1537</orcidid><orcidid>https://orcid.org/0000-0003-3785-9663</orcidid><orcidid>https://orcid.org/0000-0001-5909-437X</orcidid><orcidid>https://orcid.org/0000-0001-7516-4905</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1745-2473
ispartof Nature physics, 2020-05, Vol.16 (5), p.509-513
issn 1745-2473
1745-2481
1476-4636
language eng
recordid cdi_hal_primary_oai_HAL_hal_02526631v1
source Nature; Alma/SFX Local Collection
subjects 639/766/483/2802
639/766/483/481
Atomic
Classical and Continuum Physics
Complex Systems
Condensed Matter Physics
Energy
Error correction
Error correction & detection
Fault tolerance
Hardware
Letter
Mathematical and Computational Physics
Molecular
Optical and Plasma Physics
Physics
Physics and Astronomy
Quadratures
Quantum computing
Quantum Physics
Quantum theory
Qubits (quantum computing)
Resonators
Superconductivity
Theoretical
title Exponential suppression of bit-flips in a qubit encoded in an oscillator
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T13%3A42%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exponential%20suppression%20of%20bit-flips%20in%20a%20qubit%20encoded%20in%20an%20oscillator&rft.jtitle=Nature%20physics&rft.au=Lescanne,%20Rapha%C3%ABl&rft.date=2020-05-01&rft.volume=16&rft.issue=5&rft.spage=509&rft.epage=513&rft.pages=509-513&rft.issn=1745-2473&rft.eissn=1745-2481&rft_id=info:doi/10.1038/s41567-020-0824-x&rft_dat=%3Cproquest_hal_p%3E2399803014%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2399803014&rft_id=info:pmid/&rfr_iscdi=true