Exponential suppression of bit-flips in a qubit encoded in an oscillator
A quantum system interacts with its environment—if ever so slightly—no matter how much care is put into isolating it 1 . Therefore, quantum bits undergo errors, putting dauntingly difficult constraints on the hardware suitable for quantum computation 2 . New strategies are emerging to circumvent thi...
Gespeichert in:
Veröffentlicht in: | Nature physics 2020-05, Vol.16 (5), p.509-513 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 513 |
---|---|
container_issue | 5 |
container_start_page | 509 |
container_title | Nature physics |
container_volume | 16 |
creator | Lescanne, Raphaël Villiers, Marius Peronnin, Théau Sarlette, Alain Delbecq, Matthieu Huard, Benjamin Kontos, Takis Mirrahimi, Mazyar Leghtas, Zaki |
description | A quantum system interacts with its environment—if ever so slightly—no matter how much care is put into isolating it
1
. Therefore, quantum bits undergo errors, putting dauntingly difficult constraints on the hardware suitable for quantum computation
2
. New strategies are emerging to circumvent this problem by encoding a quantum bit non-locally across the phase space of a physical system. Because most sources of decoherence result from local fluctuations, the foundational promise is to exponentially suppress errors by increasing a measure of this non-locality
3
,
4
. Prominent examples are topological quantum bits, which delocalize information over real space and where spatial extent measures non-locality. Here, we encode a quantum bit in the field quadrature space of a superconducting resonator endowed with a special mechanism that dissipates photons in pairs
5
,
6
. This process pins down two computational states to separate locations in phase space. By increasing this separation, we measure an exponential decrease of the bit-flip rate while only linearly increasing the phase-flip rate
7
. Because bit-flips are autonomously corrected, only phase-flips remain to be corrected via a one-dimensional quantum error correction code. This exponential scaling demonstrates that resonators with nonlinear dissipation are promising building blocks for quantum computation with drastically reduced hardware overhead
8
.
The choice of the physical system that represents a qubit can help reduce errors. Encoding them in the quadrature space of a superconducting resonator leads to exponentially reduced bit-flip rates, while phase-flip errors increase only linearly. |
doi_str_mv | 10.1038/s41567-020-0824-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02526631v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2399803014</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-d04a8b92be4d58d23528e9290fdcfeca57ff7061d274ba98c45c93ec61f5fa263</originalsourceid><addsrcrecordid>eNp1kM1KAzEYRYMoWKsP4G7AlYvol7_5WZZSrVBwo-uQySSaMk6myYzUtzd1pK5c5eNy7iFchK4J3BFg5X3kROQFBgoYSsrx_gTNSMEFprwkp8e7YOfoIsYtAKc5YTO0Xu1735lucKrN4tj3wcTofJd5m9VuwLZ1fcxcl6lsN6YgM532jWl-okRF7dpWDT5cojOr2miuft85en1YvSzXePP8-LRcbLBmAgbcAFdlXdHa8EaUDWWClqaiFdhGW6OVKKwtICcNLXitqlJzoStmdE6ssIrmbI5uJ--7amUf3IcKX9IrJ9eLjTxkQAXNc0Y-SWJvJrYPfjeaOMitH0OXvicpq6oSGBCeKDJROvgYg7FHLQF5GFdO4yYzyMO4cp86dOrExHZvJvyZ_y99AwoAfFU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2399803014</pqid></control><display><type>article</type><title>Exponential suppression of bit-flips in a qubit encoded in an oscillator</title><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Lescanne, Raphaël ; Villiers, Marius ; Peronnin, Théau ; Sarlette, Alain ; Delbecq, Matthieu ; Huard, Benjamin ; Kontos, Takis ; Mirrahimi, Mazyar ; Leghtas, Zaki</creator><creatorcontrib>Lescanne, Raphaël ; Villiers, Marius ; Peronnin, Théau ; Sarlette, Alain ; Delbecq, Matthieu ; Huard, Benjamin ; Kontos, Takis ; Mirrahimi, Mazyar ; Leghtas, Zaki</creatorcontrib><description>A quantum system interacts with its environment—if ever so slightly—no matter how much care is put into isolating it
1
. Therefore, quantum bits undergo errors, putting dauntingly difficult constraints on the hardware suitable for quantum computation
2
. New strategies are emerging to circumvent this problem by encoding a quantum bit non-locally across the phase space of a physical system. Because most sources of decoherence result from local fluctuations, the foundational promise is to exponentially suppress errors by increasing a measure of this non-locality
3
,
4
. Prominent examples are topological quantum bits, which delocalize information over real space and where spatial extent measures non-locality. Here, we encode a quantum bit in the field quadrature space of a superconducting resonator endowed with a special mechanism that dissipates photons in pairs
5
,
6
. This process pins down two computational states to separate locations in phase space. By increasing this separation, we measure an exponential decrease of the bit-flip rate while only linearly increasing the phase-flip rate
7
. Because bit-flips are autonomously corrected, only phase-flips remain to be corrected via a one-dimensional quantum error correction code. This exponential scaling demonstrates that resonators with nonlinear dissipation are promising building blocks for quantum computation with drastically reduced hardware overhead
8
.
The choice of the physical system that represents a qubit can help reduce errors. Encoding them in the quadrature space of a superconducting resonator leads to exponentially reduced bit-flip rates, while phase-flip errors increase only linearly.</description><identifier>ISSN: 1745-2473</identifier><identifier>EISSN: 1745-2481</identifier><identifier>EISSN: 1476-4636</identifier><identifier>DOI: 10.1038/s41567-020-0824-x</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/483/2802 ; 639/766/483/481 ; Atomic ; Classical and Continuum Physics ; Complex Systems ; Condensed Matter Physics ; Energy ; Error correction ; Error correction & detection ; Fault tolerance ; Hardware ; Letter ; Mathematical and Computational Physics ; Molecular ; Optical and Plasma Physics ; Physics ; Physics and Astronomy ; Quadratures ; Quantum computing ; Quantum Physics ; Quantum theory ; Qubits (quantum computing) ; Resonators ; Superconductivity ; Theoretical</subject><ispartof>Nature physics, 2020-05, Vol.16 (5), p.509-513</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-d04a8b92be4d58d23528e9290fdcfeca57ff7061d274ba98c45c93ec61f5fa263</citedby><cites>FETCH-LOGICAL-c350t-d04a8b92be4d58d23528e9290fdcfeca57ff7061d274ba98c45c93ec61f5fa263</cites><orcidid>0000-0002-9848-3658 ; 0000-0002-9172-1537 ; 0000-0003-3785-9663 ; 0000-0001-5909-437X ; 0000-0001-7516-4905</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02526631$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Lescanne, Raphaël</creatorcontrib><creatorcontrib>Villiers, Marius</creatorcontrib><creatorcontrib>Peronnin, Théau</creatorcontrib><creatorcontrib>Sarlette, Alain</creatorcontrib><creatorcontrib>Delbecq, Matthieu</creatorcontrib><creatorcontrib>Huard, Benjamin</creatorcontrib><creatorcontrib>Kontos, Takis</creatorcontrib><creatorcontrib>Mirrahimi, Mazyar</creatorcontrib><creatorcontrib>Leghtas, Zaki</creatorcontrib><title>Exponential suppression of bit-flips in a qubit encoded in an oscillator</title><title>Nature physics</title><addtitle>Nat. Phys</addtitle><description>A quantum system interacts with its environment—if ever so slightly—no matter how much care is put into isolating it
1
. Therefore, quantum bits undergo errors, putting dauntingly difficult constraints on the hardware suitable for quantum computation
2
. New strategies are emerging to circumvent this problem by encoding a quantum bit non-locally across the phase space of a physical system. Because most sources of decoherence result from local fluctuations, the foundational promise is to exponentially suppress errors by increasing a measure of this non-locality
3
,
4
. Prominent examples are topological quantum bits, which delocalize information over real space and where spatial extent measures non-locality. Here, we encode a quantum bit in the field quadrature space of a superconducting resonator endowed with a special mechanism that dissipates photons in pairs
5
,
6
. This process pins down two computational states to separate locations in phase space. By increasing this separation, we measure an exponential decrease of the bit-flip rate while only linearly increasing the phase-flip rate
7
. Because bit-flips are autonomously corrected, only phase-flips remain to be corrected via a one-dimensional quantum error correction code. This exponential scaling demonstrates that resonators with nonlinear dissipation are promising building blocks for quantum computation with drastically reduced hardware overhead
8
.
The choice of the physical system that represents a qubit can help reduce errors. Encoding them in the quadrature space of a superconducting resonator leads to exponentially reduced bit-flip rates, while phase-flip errors increase only linearly.</description><subject>639/766/483/2802</subject><subject>639/766/483/481</subject><subject>Atomic</subject><subject>Classical and Continuum Physics</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Energy</subject><subject>Error correction</subject><subject>Error correction & detection</subject><subject>Fault tolerance</subject><subject>Hardware</subject><subject>Letter</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quadratures</subject><subject>Quantum computing</subject><subject>Quantum Physics</subject><subject>Quantum theory</subject><subject>Qubits (quantum computing)</subject><subject>Resonators</subject><subject>Superconductivity</subject><subject>Theoretical</subject><issn>1745-2473</issn><issn>1745-2481</issn><issn>1476-4636</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kM1KAzEYRYMoWKsP4G7AlYvol7_5WZZSrVBwo-uQySSaMk6myYzUtzd1pK5c5eNy7iFchK4J3BFg5X3kROQFBgoYSsrx_gTNSMEFprwkp8e7YOfoIsYtAKc5YTO0Xu1735lucKrN4tj3wcTofJd5m9VuwLZ1fcxcl6lsN6YgM532jWl-okRF7dpWDT5cojOr2miuft85en1YvSzXePP8-LRcbLBmAgbcAFdlXdHa8EaUDWWClqaiFdhGW6OVKKwtICcNLXitqlJzoStmdE6ssIrmbI5uJ--7amUf3IcKX9IrJ9eLjTxkQAXNc0Y-SWJvJrYPfjeaOMitH0OXvicpq6oSGBCeKDJROvgYg7FHLQF5GFdO4yYzyMO4cp86dOrExHZvJvyZ_y99AwoAfFU</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Lescanne, Raphaël</creator><creator>Villiers, Marius</creator><creator>Peronnin, Théau</creator><creator>Sarlette, Alain</creator><creator>Delbecq, Matthieu</creator><creator>Huard, Benjamin</creator><creator>Kontos, Takis</creator><creator>Mirrahimi, Mazyar</creator><creator>Leghtas, Zaki</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Publishing Group [2005-....]</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-9848-3658</orcidid><orcidid>https://orcid.org/0000-0002-9172-1537</orcidid><orcidid>https://orcid.org/0000-0003-3785-9663</orcidid><orcidid>https://orcid.org/0000-0001-5909-437X</orcidid><orcidid>https://orcid.org/0000-0001-7516-4905</orcidid></search><sort><creationdate>20200501</creationdate><title>Exponential suppression of bit-flips in a qubit encoded in an oscillator</title><author>Lescanne, Raphaël ; Villiers, Marius ; Peronnin, Théau ; Sarlette, Alain ; Delbecq, Matthieu ; Huard, Benjamin ; Kontos, Takis ; Mirrahimi, Mazyar ; Leghtas, Zaki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-d04a8b92be4d58d23528e9290fdcfeca57ff7061d274ba98c45c93ec61f5fa263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>639/766/483/2802</topic><topic>639/766/483/481</topic><topic>Atomic</topic><topic>Classical and Continuum Physics</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Energy</topic><topic>Error correction</topic><topic>Error correction & detection</topic><topic>Fault tolerance</topic><topic>Hardware</topic><topic>Letter</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quadratures</topic><topic>Quantum computing</topic><topic>Quantum Physics</topic><topic>Quantum theory</topic><topic>Qubits (quantum computing)</topic><topic>Resonators</topic><topic>Superconductivity</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lescanne, Raphaël</creatorcontrib><creatorcontrib>Villiers, Marius</creatorcontrib><creatorcontrib>Peronnin, Théau</creatorcontrib><creatorcontrib>Sarlette, Alain</creatorcontrib><creatorcontrib>Delbecq, Matthieu</creatorcontrib><creatorcontrib>Huard, Benjamin</creatorcontrib><creatorcontrib>Kontos, Takis</creatorcontrib><creatorcontrib>Mirrahimi, Mazyar</creatorcontrib><creatorcontrib>Leghtas, Zaki</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Nature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lescanne, Raphaël</au><au>Villiers, Marius</au><au>Peronnin, Théau</au><au>Sarlette, Alain</au><au>Delbecq, Matthieu</au><au>Huard, Benjamin</au><au>Kontos, Takis</au><au>Mirrahimi, Mazyar</au><au>Leghtas, Zaki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exponential suppression of bit-flips in a qubit encoded in an oscillator</atitle><jtitle>Nature physics</jtitle><stitle>Nat. Phys</stitle><date>2020-05-01</date><risdate>2020</risdate><volume>16</volume><issue>5</issue><spage>509</spage><epage>513</epage><pages>509-513</pages><issn>1745-2473</issn><eissn>1745-2481</eissn><eissn>1476-4636</eissn><abstract>A quantum system interacts with its environment—if ever so slightly—no matter how much care is put into isolating it
1
. Therefore, quantum bits undergo errors, putting dauntingly difficult constraints on the hardware suitable for quantum computation
2
. New strategies are emerging to circumvent this problem by encoding a quantum bit non-locally across the phase space of a physical system. Because most sources of decoherence result from local fluctuations, the foundational promise is to exponentially suppress errors by increasing a measure of this non-locality
3
,
4
. Prominent examples are topological quantum bits, which delocalize information over real space and where spatial extent measures non-locality. Here, we encode a quantum bit in the field quadrature space of a superconducting resonator endowed with a special mechanism that dissipates photons in pairs
5
,
6
. This process pins down two computational states to separate locations in phase space. By increasing this separation, we measure an exponential decrease of the bit-flip rate while only linearly increasing the phase-flip rate
7
. Because bit-flips are autonomously corrected, only phase-flips remain to be corrected via a one-dimensional quantum error correction code. This exponential scaling demonstrates that resonators with nonlinear dissipation are promising building blocks for quantum computation with drastically reduced hardware overhead
8
.
The choice of the physical system that represents a qubit can help reduce errors. Encoding them in the quadrature space of a superconducting resonator leads to exponentially reduced bit-flip rates, while phase-flip errors increase only linearly.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41567-020-0824-x</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-9848-3658</orcidid><orcidid>https://orcid.org/0000-0002-9172-1537</orcidid><orcidid>https://orcid.org/0000-0003-3785-9663</orcidid><orcidid>https://orcid.org/0000-0001-5909-437X</orcidid><orcidid>https://orcid.org/0000-0001-7516-4905</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1745-2473 |
ispartof | Nature physics, 2020-05, Vol.16 (5), p.509-513 |
issn | 1745-2473 1745-2481 1476-4636 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02526631v1 |
source | Nature; Alma/SFX Local Collection |
subjects | 639/766/483/2802 639/766/483/481 Atomic Classical and Continuum Physics Complex Systems Condensed Matter Physics Energy Error correction Error correction & detection Fault tolerance Hardware Letter Mathematical and Computational Physics Molecular Optical and Plasma Physics Physics Physics and Astronomy Quadratures Quantum computing Quantum Physics Quantum theory Qubits (quantum computing) Resonators Superconductivity Theoretical |
title | Exponential suppression of bit-flips in a qubit encoded in an oscillator |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T13%3A42%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exponential%20suppression%20of%20bit-flips%20in%20a%20qubit%20encoded%20in%20an%20oscillator&rft.jtitle=Nature%20physics&rft.au=Lescanne,%20Rapha%C3%ABl&rft.date=2020-05-01&rft.volume=16&rft.issue=5&rft.spage=509&rft.epage=513&rft.pages=509-513&rft.issn=1745-2473&rft.eissn=1745-2481&rft_id=info:doi/10.1038/s41567-020-0824-x&rft_dat=%3Cproquest_hal_p%3E2399803014%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2399803014&rft_id=info:pmid/&rfr_iscdi=true |