Dynamic Spatial Formation and Distribution of Intrinsically Disordered Protein Droplets in Macromolecularly Crowded Protocells

Elastin‐like polypeptides (ELPs) have been proposed as a simple model of intrinsically disordered proteins (IDPs) which can form membraneless organelles by liquid–liquid phase separation (LLPS) in cells. Herein, the behavior of fluorescently labeled ELP is studied in cytomimetic aqueous two‐phase sy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2020-06, Vol.59 (27), p.11028-11036
Hauptverfasser: Zhao, Hang, Ibrahimova, Vusala, Garanger, Elisabeth, Lecommandoux, Sébastien
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11036
container_issue 27
container_start_page 11028
container_title Angewandte Chemie International Edition
container_volume 59
creator Zhao, Hang
Ibrahimova, Vusala
Garanger, Elisabeth
Lecommandoux, Sébastien
description Elastin‐like polypeptides (ELPs) have been proposed as a simple model of intrinsically disordered proteins (IDPs) which can form membraneless organelles by liquid–liquid phase separation (LLPS) in cells. Herein, the behavior of fluorescently labeled ELP is studied in cytomimetic aqueous two‐phase system (ATPS) encapsulated protocells that are formed using microfluidics, which enabled confinement, changes in temperature, and statistical analysis. The spatial organization of ELP could be observed in the ATPS. Furthermore, changes in temperature triggered the dynamic formation and distribution of ELP‐rich droplets within the ATPS, resulting from changes in conformation. Proteins were encapsulated along with ELP in the synthetic protocells and distinct partitioning properties of these proteins and ELP in the ATPS were observed. Therefore, the ability of ELP to coacervate with temperature can be maintained inside a cell‐mimicking system. Intrinsically disordered proteins (IDPs) within the cellular milieu can phase‐separate into membraneless organelles. The phase separation of IDPs in the intracellular environment has inspired the study of spatial distribution and dynamic coacervation of a thermoresponsive elastin‐like polypeptide (ELP) as a model of an artificial IDP inside a synthetic cell‐like chassis.
doi_str_mv 10.1002/anie.202001868
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02519909v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2382676935</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5508-e5e5f3092a0ab11b4c3be152b4ebb0e1134cc78fa7321fdfe935ea60ab469f23</originalsourceid><addsrcrecordid>eNqFkc1v1DAQxS0EoqVw5YgicYFDtv7Ih3Nc7bZ0paUg0bs1cSbClWMvdtJqL_ztOOyylXrh5Ofxz88zfoS8Z3TBKOWX4AwuOOWUMlnJF-SclZzloq7Fy6QLIfJaluyMvInxPvFS0uo1OROc01pWxTn5vd47GIzOfuxgNGCzax-GpLzLwHXZ2sQxmHb6W_B9tnFp66LRYO1-PvWhw4Bd9j34EY3L1sHvLI4xS_or6OAHb1FPFkLiV8E_dkfYa7Q2viWverAR3x3XC3J3fXW3usm3375sVsttrsuSyhxLLHtBGw4UWsbaQosW06RtgW1LkTFRaF3LHmrBWd_12IgSoUpwUTU9Fxfk88H2J1i1C2aAsFcejLpZbtVco7xkTUObB5bYTwd2F_yvCeOoBhPnZsGhn6LiQvKqrtILCf34DL33U3BpEMWLOQgqpUzU4kCl34gxYH_qgFE1h6jmENUpxHThw9F2agfsTvi_1BLQHIBHY3H_Hzu1vN1cPZn_Ac6yqj4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2415210888</pqid></control><display><type>article</type><title>Dynamic Spatial Formation and Distribution of Intrinsically Disordered Protein Droplets in Macromolecularly Crowded Protocells</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zhao, Hang ; Ibrahimova, Vusala ; Garanger, Elisabeth ; Lecommandoux, Sébastien</creator><creatorcontrib>Zhao, Hang ; Ibrahimova, Vusala ; Garanger, Elisabeth ; Lecommandoux, Sébastien</creatorcontrib><description>Elastin‐like polypeptides (ELPs) have been proposed as a simple model of intrinsically disordered proteins (IDPs) which can form membraneless organelles by liquid–liquid phase separation (LLPS) in cells. Herein, the behavior of fluorescently labeled ELP is studied in cytomimetic aqueous two‐phase system (ATPS) encapsulated protocells that are formed using microfluidics, which enabled confinement, changes in temperature, and statistical analysis. The spatial organization of ELP could be observed in the ATPS. Furthermore, changes in temperature triggered the dynamic formation and distribution of ELP‐rich droplets within the ATPS, resulting from changes in conformation. Proteins were encapsulated along with ELP in the synthetic protocells and distinct partitioning properties of these proteins and ELP in the ATPS were observed. Therefore, the ability of ELP to coacervate with temperature can be maintained inside a cell‐mimicking system. Intrinsically disordered proteins (IDPs) within the cellular milieu can phase‐separate into membraneless organelles. The phase separation of IDPs in the intracellular environment has inspired the study of spatial distribution and dynamic coacervation of a thermoresponsive elastin‐like polypeptide (ELP) as a model of an artificial IDP inside a synthetic cell‐like chassis.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202001868</identifier><identifier>PMID: 32207864</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Biotechnology ; Chemical Sciences ; Condensed Matter ; Droplets ; Elastin ; Encapsulation ; Intrinsically Disordered Proteins - chemistry ; Life Sciences ; Liquid phases ; liquid–liquid phase separation ; Macromolecular Substances - chemistry ; Microfluidics ; Mimicry ; Organelles ; Organelles - chemistry ; Phase separation ; Physics ; Polyethylene Glycols - chemistry ; Polymers ; Polypeptides ; Proteins ; self-assembly ; Soft Condensed Matter ; Spatial analysis ; Statistical analysis ; synthetic protocells ; Temperature</subject><ispartof>Angewandte Chemie International Edition, 2020-06, Vol.59 (27), p.11028-11036</ispartof><rights>2020 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2020 Wiley-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5508-e5e5f3092a0ab11b4c3be152b4ebb0e1134cc78fa7321fdfe935ea60ab469f23</citedby><cites>FETCH-LOGICAL-c5508-e5e5f3092a0ab11b4c3be152b4ebb0e1134cc78fa7321fdfe935ea60ab469f23</cites><orcidid>0000-0003-0465-8603 ; 0000-0001-9130-8286</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202001868$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202001868$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32207864$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02519909$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Hang</creatorcontrib><creatorcontrib>Ibrahimova, Vusala</creatorcontrib><creatorcontrib>Garanger, Elisabeth</creatorcontrib><creatorcontrib>Lecommandoux, Sébastien</creatorcontrib><title>Dynamic Spatial Formation and Distribution of Intrinsically Disordered Protein Droplets in Macromolecularly Crowded Protocells</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>Elastin‐like polypeptides (ELPs) have been proposed as a simple model of intrinsically disordered proteins (IDPs) which can form membraneless organelles by liquid–liquid phase separation (LLPS) in cells. Herein, the behavior of fluorescently labeled ELP is studied in cytomimetic aqueous two‐phase system (ATPS) encapsulated protocells that are formed using microfluidics, which enabled confinement, changes in temperature, and statistical analysis. The spatial organization of ELP could be observed in the ATPS. Furthermore, changes in temperature triggered the dynamic formation and distribution of ELP‐rich droplets within the ATPS, resulting from changes in conformation. Proteins were encapsulated along with ELP in the synthetic protocells and distinct partitioning properties of these proteins and ELP in the ATPS were observed. Therefore, the ability of ELP to coacervate with temperature can be maintained inside a cell‐mimicking system. Intrinsically disordered proteins (IDPs) within the cellular milieu can phase‐separate into membraneless organelles. The phase separation of IDPs in the intracellular environment has inspired the study of spatial distribution and dynamic coacervation of a thermoresponsive elastin‐like polypeptide (ELP) as a model of an artificial IDP inside a synthetic cell‐like chassis.</description><subject>Biotechnology</subject><subject>Chemical Sciences</subject><subject>Condensed Matter</subject><subject>Droplets</subject><subject>Elastin</subject><subject>Encapsulation</subject><subject>Intrinsically Disordered Proteins - chemistry</subject><subject>Life Sciences</subject><subject>Liquid phases</subject><subject>liquid–liquid phase separation</subject><subject>Macromolecular Substances - chemistry</subject><subject>Microfluidics</subject><subject>Mimicry</subject><subject>Organelles</subject><subject>Organelles - chemistry</subject><subject>Phase separation</subject><subject>Physics</subject><subject>Polyethylene Glycols - chemistry</subject><subject>Polymers</subject><subject>Polypeptides</subject><subject>Proteins</subject><subject>self-assembly</subject><subject>Soft Condensed Matter</subject><subject>Spatial analysis</subject><subject>Statistical analysis</subject><subject>synthetic protocells</subject><subject>Temperature</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1v1DAQxS0EoqVw5YgicYFDtv7Ih3Nc7bZ0paUg0bs1cSbClWMvdtJqL_ztOOyylXrh5Ofxz88zfoS8Z3TBKOWX4AwuOOWUMlnJF-SclZzloq7Fy6QLIfJaluyMvInxPvFS0uo1OROc01pWxTn5vd47GIzOfuxgNGCzax-GpLzLwHXZ2sQxmHb6W_B9tnFp66LRYO1-PvWhw4Bd9j34EY3L1sHvLI4xS_or6OAHb1FPFkLiV8E_dkfYa7Q2viWverAR3x3XC3J3fXW3usm3375sVsttrsuSyhxLLHtBGw4UWsbaQosW06RtgW1LkTFRaF3LHmrBWd_12IgSoUpwUTU9Fxfk88H2J1i1C2aAsFcejLpZbtVco7xkTUObB5bYTwd2F_yvCeOoBhPnZsGhn6LiQvKqrtILCf34DL33U3BpEMWLOQgqpUzU4kCl34gxYH_qgFE1h6jmENUpxHThw9F2agfsTvi_1BLQHIBHY3H_Hzu1vN1cPZn_Ac6yqj4</recordid><startdate>20200626</startdate><enddate>20200626</enddate><creator>Zhao, Hang</creator><creator>Ibrahimova, Vusala</creator><creator>Garanger, Elisabeth</creator><creator>Lecommandoux, Sébastien</creator><general>Wiley Subscription Services, Inc</general><general>Wiley-VCH Verlag</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-0465-8603</orcidid><orcidid>https://orcid.org/0000-0001-9130-8286</orcidid></search><sort><creationdate>20200626</creationdate><title>Dynamic Spatial Formation and Distribution of Intrinsically Disordered Protein Droplets in Macromolecularly Crowded Protocells</title><author>Zhao, Hang ; Ibrahimova, Vusala ; Garanger, Elisabeth ; Lecommandoux, Sébastien</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5508-e5e5f3092a0ab11b4c3be152b4ebb0e1134cc78fa7321fdfe935ea60ab469f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biotechnology</topic><topic>Chemical Sciences</topic><topic>Condensed Matter</topic><topic>Droplets</topic><topic>Elastin</topic><topic>Encapsulation</topic><topic>Intrinsically Disordered Proteins - chemistry</topic><topic>Life Sciences</topic><topic>Liquid phases</topic><topic>liquid–liquid phase separation</topic><topic>Macromolecular Substances - chemistry</topic><topic>Microfluidics</topic><topic>Mimicry</topic><topic>Organelles</topic><topic>Organelles - chemistry</topic><topic>Phase separation</topic><topic>Physics</topic><topic>Polyethylene Glycols - chemistry</topic><topic>Polymers</topic><topic>Polypeptides</topic><topic>Proteins</topic><topic>self-assembly</topic><topic>Soft Condensed Matter</topic><topic>Spatial analysis</topic><topic>Statistical analysis</topic><topic>synthetic protocells</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Hang</creatorcontrib><creatorcontrib>Ibrahimova, Vusala</creatorcontrib><creatorcontrib>Garanger, Elisabeth</creatorcontrib><creatorcontrib>Lecommandoux, Sébastien</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Hang</au><au>Ibrahimova, Vusala</au><au>Garanger, Elisabeth</au><au>Lecommandoux, Sébastien</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic Spatial Formation and Distribution of Intrinsically Disordered Protein Droplets in Macromolecularly Crowded Protocells</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2020-06-26</date><risdate>2020</risdate><volume>59</volume><issue>27</issue><spage>11028</spage><epage>11036</epage><pages>11028-11036</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>Elastin‐like polypeptides (ELPs) have been proposed as a simple model of intrinsically disordered proteins (IDPs) which can form membraneless organelles by liquid–liquid phase separation (LLPS) in cells. Herein, the behavior of fluorescently labeled ELP is studied in cytomimetic aqueous two‐phase system (ATPS) encapsulated protocells that are formed using microfluidics, which enabled confinement, changes in temperature, and statistical analysis. The spatial organization of ELP could be observed in the ATPS. Furthermore, changes in temperature triggered the dynamic formation and distribution of ELP‐rich droplets within the ATPS, resulting from changes in conformation. Proteins were encapsulated along with ELP in the synthetic protocells and distinct partitioning properties of these proteins and ELP in the ATPS were observed. Therefore, the ability of ELP to coacervate with temperature can be maintained inside a cell‐mimicking system. Intrinsically disordered proteins (IDPs) within the cellular milieu can phase‐separate into membraneless organelles. The phase separation of IDPs in the intracellular environment has inspired the study of spatial distribution and dynamic coacervation of a thermoresponsive elastin‐like polypeptide (ELP) as a model of an artificial IDP inside a synthetic cell‐like chassis.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>32207864</pmid><doi>10.1002/anie.202001868</doi><tpages>9</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0003-0465-8603</orcidid><orcidid>https://orcid.org/0000-0001-9130-8286</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie International Edition, 2020-06, Vol.59 (27), p.11028-11036
issn 1433-7851
1521-3773
language eng
recordid cdi_hal_primary_oai_HAL_hal_02519909v1
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Biotechnology
Chemical Sciences
Condensed Matter
Droplets
Elastin
Encapsulation
Intrinsically Disordered Proteins - chemistry
Life Sciences
Liquid phases
liquid–liquid phase separation
Macromolecular Substances - chemistry
Microfluidics
Mimicry
Organelles
Organelles - chemistry
Phase separation
Physics
Polyethylene Glycols - chemistry
Polymers
Polypeptides
Proteins
self-assembly
Soft Condensed Matter
Spatial analysis
Statistical analysis
synthetic protocells
Temperature
title Dynamic Spatial Formation and Distribution of Intrinsically Disordered Protein Droplets in Macromolecularly Crowded Protocells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T17%3A34%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20Spatial%20Formation%20and%20Distribution%20of%20Intrinsically%20Disordered%20Protein%20Droplets%20in%20Macromolecularly%20Crowded%20Protocells&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Zhao,%20Hang&rft.date=2020-06-26&rft.volume=59&rft.issue=27&rft.spage=11028&rft.epage=11036&rft.pages=11028-11036&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202001868&rft_dat=%3Cproquest_hal_p%3E2382676935%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2415210888&rft_id=info:pmid/32207864&rfr_iscdi=true