Dynamic Spatial Formation and Distribution of Intrinsically Disordered Protein Droplets in Macromolecularly Crowded Protocells
Elastin‐like polypeptides (ELPs) have been proposed as a simple model of intrinsically disordered proteins (IDPs) which can form membraneless organelles by liquid–liquid phase separation (LLPS) in cells. Herein, the behavior of fluorescently labeled ELP is studied in cytomimetic aqueous two‐phase sy...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie International Edition 2020-06, Vol.59 (27), p.11028-11036 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11036 |
---|---|
container_issue | 27 |
container_start_page | 11028 |
container_title | Angewandte Chemie International Edition |
container_volume | 59 |
creator | Zhao, Hang Ibrahimova, Vusala Garanger, Elisabeth Lecommandoux, Sébastien |
description | Elastin‐like polypeptides (ELPs) have been proposed as a simple model of intrinsically disordered proteins (IDPs) which can form membraneless organelles by liquid–liquid phase separation (LLPS) in cells. Herein, the behavior of fluorescently labeled ELP is studied in cytomimetic aqueous two‐phase system (ATPS) encapsulated protocells that are formed using microfluidics, which enabled confinement, changes in temperature, and statistical analysis. The spatial organization of ELP could be observed in the ATPS. Furthermore, changes in temperature triggered the dynamic formation and distribution of ELP‐rich droplets within the ATPS, resulting from changes in conformation. Proteins were encapsulated along with ELP in the synthetic protocells and distinct partitioning properties of these proteins and ELP in the ATPS were observed. Therefore, the ability of ELP to coacervate with temperature can be maintained inside a cell‐mimicking system.
Intrinsically disordered proteins (IDPs) within the cellular milieu can phase‐separate into membraneless organelles. The phase separation of IDPs in the intracellular environment has inspired the study of spatial distribution and dynamic coacervation of a thermoresponsive elastin‐like polypeptide (ELP) as a model of an artificial IDP inside a synthetic cell‐like chassis. |
doi_str_mv | 10.1002/anie.202001868 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02519909v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2382676935</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5508-e5e5f3092a0ab11b4c3be152b4ebb0e1134cc78fa7321fdfe935ea60ab469f23</originalsourceid><addsrcrecordid>eNqFkc1v1DAQxS0EoqVw5YgicYFDtv7Ih3Nc7bZ0paUg0bs1cSbClWMvdtJqL_ztOOyylXrh5Ofxz88zfoS8Z3TBKOWX4AwuOOWUMlnJF-SclZzloq7Fy6QLIfJaluyMvInxPvFS0uo1OROc01pWxTn5vd47GIzOfuxgNGCzax-GpLzLwHXZ2sQxmHb6W_B9tnFp66LRYO1-PvWhw4Bd9j34EY3L1sHvLI4xS_or6OAHb1FPFkLiV8E_dkfYa7Q2viWverAR3x3XC3J3fXW3usm3375sVsttrsuSyhxLLHtBGw4UWsbaQosW06RtgW1LkTFRaF3LHmrBWd_12IgSoUpwUTU9Fxfk88H2J1i1C2aAsFcejLpZbtVco7xkTUObB5bYTwd2F_yvCeOoBhPnZsGhn6LiQvKqrtILCf34DL33U3BpEMWLOQgqpUzU4kCl34gxYH_qgFE1h6jmENUpxHThw9F2agfsTvi_1BLQHIBHY3H_Hzu1vN1cPZn_Ac6yqj4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2415210888</pqid></control><display><type>article</type><title>Dynamic Spatial Formation and Distribution of Intrinsically Disordered Protein Droplets in Macromolecularly Crowded Protocells</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zhao, Hang ; Ibrahimova, Vusala ; Garanger, Elisabeth ; Lecommandoux, Sébastien</creator><creatorcontrib>Zhao, Hang ; Ibrahimova, Vusala ; Garanger, Elisabeth ; Lecommandoux, Sébastien</creatorcontrib><description>Elastin‐like polypeptides (ELPs) have been proposed as a simple model of intrinsically disordered proteins (IDPs) which can form membraneless organelles by liquid–liquid phase separation (LLPS) in cells. Herein, the behavior of fluorescently labeled ELP is studied in cytomimetic aqueous two‐phase system (ATPS) encapsulated protocells that are formed using microfluidics, which enabled confinement, changes in temperature, and statistical analysis. The spatial organization of ELP could be observed in the ATPS. Furthermore, changes in temperature triggered the dynamic formation and distribution of ELP‐rich droplets within the ATPS, resulting from changes in conformation. Proteins were encapsulated along with ELP in the synthetic protocells and distinct partitioning properties of these proteins and ELP in the ATPS were observed. Therefore, the ability of ELP to coacervate with temperature can be maintained inside a cell‐mimicking system.
Intrinsically disordered proteins (IDPs) within the cellular milieu can phase‐separate into membraneless organelles. The phase separation of IDPs in the intracellular environment has inspired the study of spatial distribution and dynamic coacervation of a thermoresponsive elastin‐like polypeptide (ELP) as a model of an artificial IDP inside a synthetic cell‐like chassis.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202001868</identifier><identifier>PMID: 32207864</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Biotechnology ; Chemical Sciences ; Condensed Matter ; Droplets ; Elastin ; Encapsulation ; Intrinsically Disordered Proteins - chemistry ; Life Sciences ; Liquid phases ; liquid–liquid phase separation ; Macromolecular Substances - chemistry ; Microfluidics ; Mimicry ; Organelles ; Organelles - chemistry ; Phase separation ; Physics ; Polyethylene Glycols - chemistry ; Polymers ; Polypeptides ; Proteins ; self-assembly ; Soft Condensed Matter ; Spatial analysis ; Statistical analysis ; synthetic protocells ; Temperature</subject><ispartof>Angewandte Chemie International Edition, 2020-06, Vol.59 (27), p.11028-11036</ispartof><rights>2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5508-e5e5f3092a0ab11b4c3be152b4ebb0e1134cc78fa7321fdfe935ea60ab469f23</citedby><cites>FETCH-LOGICAL-c5508-e5e5f3092a0ab11b4c3be152b4ebb0e1134cc78fa7321fdfe935ea60ab469f23</cites><orcidid>0000-0003-0465-8603 ; 0000-0001-9130-8286</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202001868$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202001868$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32207864$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02519909$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Hang</creatorcontrib><creatorcontrib>Ibrahimova, Vusala</creatorcontrib><creatorcontrib>Garanger, Elisabeth</creatorcontrib><creatorcontrib>Lecommandoux, Sébastien</creatorcontrib><title>Dynamic Spatial Formation and Distribution of Intrinsically Disordered Protein Droplets in Macromolecularly Crowded Protocells</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>Elastin‐like polypeptides (ELPs) have been proposed as a simple model of intrinsically disordered proteins (IDPs) which can form membraneless organelles by liquid–liquid phase separation (LLPS) in cells. Herein, the behavior of fluorescently labeled ELP is studied in cytomimetic aqueous two‐phase system (ATPS) encapsulated protocells that are formed using microfluidics, which enabled confinement, changes in temperature, and statistical analysis. The spatial organization of ELP could be observed in the ATPS. Furthermore, changes in temperature triggered the dynamic formation and distribution of ELP‐rich droplets within the ATPS, resulting from changes in conformation. Proteins were encapsulated along with ELP in the synthetic protocells and distinct partitioning properties of these proteins and ELP in the ATPS were observed. Therefore, the ability of ELP to coacervate with temperature can be maintained inside a cell‐mimicking system.
Intrinsically disordered proteins (IDPs) within the cellular milieu can phase‐separate into membraneless organelles. The phase separation of IDPs in the intracellular environment has inspired the study of spatial distribution and dynamic coacervation of a thermoresponsive elastin‐like polypeptide (ELP) as a model of an artificial IDP inside a synthetic cell‐like chassis.</description><subject>Biotechnology</subject><subject>Chemical Sciences</subject><subject>Condensed Matter</subject><subject>Droplets</subject><subject>Elastin</subject><subject>Encapsulation</subject><subject>Intrinsically Disordered Proteins - chemistry</subject><subject>Life Sciences</subject><subject>Liquid phases</subject><subject>liquid–liquid phase separation</subject><subject>Macromolecular Substances - chemistry</subject><subject>Microfluidics</subject><subject>Mimicry</subject><subject>Organelles</subject><subject>Organelles - chemistry</subject><subject>Phase separation</subject><subject>Physics</subject><subject>Polyethylene Glycols - chemistry</subject><subject>Polymers</subject><subject>Polypeptides</subject><subject>Proteins</subject><subject>self-assembly</subject><subject>Soft Condensed Matter</subject><subject>Spatial analysis</subject><subject>Statistical analysis</subject><subject>synthetic protocells</subject><subject>Temperature</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1v1DAQxS0EoqVw5YgicYFDtv7Ih3Nc7bZ0paUg0bs1cSbClWMvdtJqL_ztOOyylXrh5Ofxz88zfoS8Z3TBKOWX4AwuOOWUMlnJF-SclZzloq7Fy6QLIfJaluyMvInxPvFS0uo1OROc01pWxTn5vd47GIzOfuxgNGCzax-GpLzLwHXZ2sQxmHb6W_B9tnFp66LRYO1-PvWhw4Bd9j34EY3L1sHvLI4xS_or6OAHb1FPFkLiV8E_dkfYa7Q2viWverAR3x3XC3J3fXW3usm3375sVsttrsuSyhxLLHtBGw4UWsbaQosW06RtgW1LkTFRaF3LHmrBWd_12IgSoUpwUTU9Fxfk88H2J1i1C2aAsFcejLpZbtVco7xkTUObB5bYTwd2F_yvCeOoBhPnZsGhn6LiQvKqrtILCf34DL33U3BpEMWLOQgqpUzU4kCl34gxYH_qgFE1h6jmENUpxHThw9F2agfsTvi_1BLQHIBHY3H_Hzu1vN1cPZn_Ac6yqj4</recordid><startdate>20200626</startdate><enddate>20200626</enddate><creator>Zhao, Hang</creator><creator>Ibrahimova, Vusala</creator><creator>Garanger, Elisabeth</creator><creator>Lecommandoux, Sébastien</creator><general>Wiley Subscription Services, Inc</general><general>Wiley-VCH Verlag</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-0465-8603</orcidid><orcidid>https://orcid.org/0000-0001-9130-8286</orcidid></search><sort><creationdate>20200626</creationdate><title>Dynamic Spatial Formation and Distribution of Intrinsically Disordered Protein Droplets in Macromolecularly Crowded Protocells</title><author>Zhao, Hang ; Ibrahimova, Vusala ; Garanger, Elisabeth ; Lecommandoux, Sébastien</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5508-e5e5f3092a0ab11b4c3be152b4ebb0e1134cc78fa7321fdfe935ea60ab469f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biotechnology</topic><topic>Chemical Sciences</topic><topic>Condensed Matter</topic><topic>Droplets</topic><topic>Elastin</topic><topic>Encapsulation</topic><topic>Intrinsically Disordered Proteins - chemistry</topic><topic>Life Sciences</topic><topic>Liquid phases</topic><topic>liquid–liquid phase separation</topic><topic>Macromolecular Substances - chemistry</topic><topic>Microfluidics</topic><topic>Mimicry</topic><topic>Organelles</topic><topic>Organelles - chemistry</topic><topic>Phase separation</topic><topic>Physics</topic><topic>Polyethylene Glycols - chemistry</topic><topic>Polymers</topic><topic>Polypeptides</topic><topic>Proteins</topic><topic>self-assembly</topic><topic>Soft Condensed Matter</topic><topic>Spatial analysis</topic><topic>Statistical analysis</topic><topic>synthetic protocells</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Hang</creatorcontrib><creatorcontrib>Ibrahimova, Vusala</creatorcontrib><creatorcontrib>Garanger, Elisabeth</creatorcontrib><creatorcontrib>Lecommandoux, Sébastien</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Hang</au><au>Ibrahimova, Vusala</au><au>Garanger, Elisabeth</au><au>Lecommandoux, Sébastien</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic Spatial Formation and Distribution of Intrinsically Disordered Protein Droplets in Macromolecularly Crowded Protocells</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2020-06-26</date><risdate>2020</risdate><volume>59</volume><issue>27</issue><spage>11028</spage><epage>11036</epage><pages>11028-11036</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>Elastin‐like polypeptides (ELPs) have been proposed as a simple model of intrinsically disordered proteins (IDPs) which can form membraneless organelles by liquid–liquid phase separation (LLPS) in cells. Herein, the behavior of fluorescently labeled ELP is studied in cytomimetic aqueous two‐phase system (ATPS) encapsulated protocells that are formed using microfluidics, which enabled confinement, changes in temperature, and statistical analysis. The spatial organization of ELP could be observed in the ATPS. Furthermore, changes in temperature triggered the dynamic formation and distribution of ELP‐rich droplets within the ATPS, resulting from changes in conformation. Proteins were encapsulated along with ELP in the synthetic protocells and distinct partitioning properties of these proteins and ELP in the ATPS were observed. Therefore, the ability of ELP to coacervate with temperature can be maintained inside a cell‐mimicking system.
Intrinsically disordered proteins (IDPs) within the cellular milieu can phase‐separate into membraneless organelles. The phase separation of IDPs in the intracellular environment has inspired the study of spatial distribution and dynamic coacervation of a thermoresponsive elastin‐like polypeptide (ELP) as a model of an artificial IDP inside a synthetic cell‐like chassis.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>32207864</pmid><doi>10.1002/anie.202001868</doi><tpages>9</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0003-0465-8603</orcidid><orcidid>https://orcid.org/0000-0001-9130-8286</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-7851 |
ispartof | Angewandte Chemie International Edition, 2020-06, Vol.59 (27), p.11028-11036 |
issn | 1433-7851 1521-3773 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02519909v1 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Biotechnology Chemical Sciences Condensed Matter Droplets Elastin Encapsulation Intrinsically Disordered Proteins - chemistry Life Sciences Liquid phases liquid–liquid phase separation Macromolecular Substances - chemistry Microfluidics Mimicry Organelles Organelles - chemistry Phase separation Physics Polyethylene Glycols - chemistry Polymers Polypeptides Proteins self-assembly Soft Condensed Matter Spatial analysis Statistical analysis synthetic protocells Temperature |
title | Dynamic Spatial Formation and Distribution of Intrinsically Disordered Protein Droplets in Macromolecularly Crowded Protocells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T17%3A34%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20Spatial%20Formation%20and%20Distribution%20of%20Intrinsically%20Disordered%20Protein%20Droplets%20in%20Macromolecularly%20Crowded%20Protocells&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Zhao,%20Hang&rft.date=2020-06-26&rft.volume=59&rft.issue=27&rft.spage=11028&rft.epage=11036&rft.pages=11028-11036&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202001868&rft_dat=%3Cproquest_hal_p%3E2382676935%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2415210888&rft_id=info:pmid/32207864&rfr_iscdi=true |