Robust normal vector estimation in 3D point clouds through iterative principal component analysis
This paper introduces a robust normal vector estimator for point cloud data. It can handle sharp features as well as smooth areas. Our method is based on the inclusion of a robust estimator into a Principal Component Analysis in the neighborhood of the studied point, so that it can detect and reject...
Gespeichert in:
Veröffentlicht in: | ISPRS journal of photogrammetry and remote sensing 2020-05, Vol.163, p.18-35 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 35 |
---|---|
container_issue | |
container_start_page | 18 |
container_title | ISPRS journal of photogrammetry and remote sensing |
container_volume | 163 |
creator | Sanchez, Julia Denis, Florence Coeurjolly, David Dupont, Florent Trassoudaine, Laurent Checchin, Paul |
description | This paper introduces a robust normal vector estimator for point cloud data. It can handle sharp features as well as smooth areas. Our method is based on the inclusion of a robust estimator into a Principal Component Analysis in the neighborhood of the studied point, so that it can detect and reject outliers automatically during the estimation. A projection process ensures robustness against noise. Two automatic initializations are computed, leading to independent optimizations making the algorithm robust to neighborhood anisotropy around sharp features. An evaluation has been carried out in which the algorithm is compared to state-of-the-art methods. The results show that it is more robust against low and/or non-uniform samplings, high noise levels and outliers. Moreover, our algorithm is fast relative to existing methods handling sharp features. The code is available on the website: https://projet.liris.cnrs.fr/pcr/, and integrated in the platform: https://github.com/MEPP-team/MEPP2. |
doi_str_mv | 10.1016/j.isprsjprs.2020.02.018 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02514851v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0924271620300575</els_id><sourcerecordid>S0924271620300575</sourcerecordid><originalsourceid>FETCH-LOGICAL-c398t-c0b76aaaf339787eb51ded95d39d0b7d0651a5fdddac5a94a5088fb00264fce43</originalsourceid><addsrcrecordid>eNqFkE9LxDAQxYMouK5-BnP10DpJmzY9LuufFRYE0XNIk9RN6TYlyRb89mZZ2auHYWDmvcfMD6F7AjkBUj32uQ2TD32qnAKFHGgOhF-gBeE1zTgt2CVaQEPLjNakukY3IfQAQFjFF0h-uPYQIh6d38sBz0ZF57EJ0e5ltG7EdsTFE56cHSNWgzvogOPOu8P3DttofBLNBk_ejspOKUC5_eRGk8RylMNPsOEWXXVyCObury_R18vz53qTbd9f39arbaaKhsdMQVtXUsquKJqa16ZlRBvdMF00Oq00VIxI1mmtpWKyKSUDzrsWgFZlp0xZLNHDKXcnB5EO2kv_I5y0YrPaiuMMKCMlZ2QmSVuftMq7ELzpzgYC4khV9OJMVRypJrdIVJNzdXKa9MpsjRdBWTMqo61P7IR29t-MX0nKiAY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Robust normal vector estimation in 3D point clouds through iterative principal component analysis</title><source>Access via ScienceDirect (Elsevier)</source><creator>Sanchez, Julia ; Denis, Florence ; Coeurjolly, David ; Dupont, Florent ; Trassoudaine, Laurent ; Checchin, Paul</creator><creatorcontrib>Sanchez, Julia ; Denis, Florence ; Coeurjolly, David ; Dupont, Florent ; Trassoudaine, Laurent ; Checchin, Paul</creatorcontrib><description>This paper introduces a robust normal vector estimator for point cloud data. It can handle sharp features as well as smooth areas. Our method is based on the inclusion of a robust estimator into a Principal Component Analysis in the neighborhood of the studied point, so that it can detect and reject outliers automatically during the estimation. A projection process ensures robustness against noise. Two automatic initializations are computed, leading to independent optimizations making the algorithm robust to neighborhood anisotropy around sharp features. An evaluation has been carried out in which the algorithm is compared to state-of-the-art methods. The results show that it is more robust against low and/or non-uniform samplings, high noise levels and outliers. Moreover, our algorithm is fast relative to existing methods handling sharp features. The code is available on the website: https://projet.liris.cnrs.fr/pcr/, and integrated in the platform: https://github.com/MEPP-team/MEPP2.</description><identifier>ISSN: 0924-2716</identifier><identifier>EISSN: 1872-8235</identifier><identifier>DOI: 10.1016/j.isprsjprs.2020.02.018</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Computational Geometry ; Computer Science ; M-estimator ; Normal vector ; Point cloud ; Sharp features ; Weighted PCA</subject><ispartof>ISPRS journal of photogrammetry and remote sensing, 2020-05, Vol.163, p.18-35</ispartof><rights>2020 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS)</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c398t-c0b76aaaf339787eb51ded95d39d0b7d0651a5fdddac5a94a5088fb00264fce43</citedby><cites>FETCH-LOGICAL-c398t-c0b76aaaf339787eb51ded95d39d0b7d0651a5fdddac5a94a5088fb00264fce43</cites><orcidid>0000-0002-2930-3393 ; 0000-0002-3486-3918 ; 0000-0001-6611-4420 ; 0000-0003-3164-8697</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.isprsjprs.2020.02.018$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02514851$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Sanchez, Julia</creatorcontrib><creatorcontrib>Denis, Florence</creatorcontrib><creatorcontrib>Coeurjolly, David</creatorcontrib><creatorcontrib>Dupont, Florent</creatorcontrib><creatorcontrib>Trassoudaine, Laurent</creatorcontrib><creatorcontrib>Checchin, Paul</creatorcontrib><title>Robust normal vector estimation in 3D point clouds through iterative principal component analysis</title><title>ISPRS journal of photogrammetry and remote sensing</title><description>This paper introduces a robust normal vector estimator for point cloud data. It can handle sharp features as well as smooth areas. Our method is based on the inclusion of a robust estimator into a Principal Component Analysis in the neighborhood of the studied point, so that it can detect and reject outliers automatically during the estimation. A projection process ensures robustness against noise. Two automatic initializations are computed, leading to independent optimizations making the algorithm robust to neighborhood anisotropy around sharp features. An evaluation has been carried out in which the algorithm is compared to state-of-the-art methods. The results show that it is more robust against low and/or non-uniform samplings, high noise levels and outliers. Moreover, our algorithm is fast relative to existing methods handling sharp features. The code is available on the website: https://projet.liris.cnrs.fr/pcr/, and integrated in the platform: https://github.com/MEPP-team/MEPP2.</description><subject>Computational Geometry</subject><subject>Computer Science</subject><subject>M-estimator</subject><subject>Normal vector</subject><subject>Point cloud</subject><subject>Sharp features</subject><subject>Weighted PCA</subject><issn>0924-2716</issn><issn>1872-8235</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkE9LxDAQxYMouK5-BnP10DpJmzY9LuufFRYE0XNIk9RN6TYlyRb89mZZ2auHYWDmvcfMD6F7AjkBUj32uQ2TD32qnAKFHGgOhF-gBeE1zTgt2CVaQEPLjNakukY3IfQAQFjFF0h-uPYQIh6d38sBz0ZF57EJ0e5ltG7EdsTFE56cHSNWgzvogOPOu8P3DttofBLNBk_ejspOKUC5_eRGk8RylMNPsOEWXXVyCObury_R18vz53qTbd9f39arbaaKhsdMQVtXUsquKJqa16ZlRBvdMF00Oq00VIxI1mmtpWKyKSUDzrsWgFZlp0xZLNHDKXcnB5EO2kv_I5y0YrPaiuMMKCMlZ2QmSVuftMq7ELzpzgYC4khV9OJMVRypJrdIVJNzdXKa9MpsjRdBWTMqo61P7IR29t-MX0nKiAY</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Sanchez, Julia</creator><creator>Denis, Florence</creator><creator>Coeurjolly, David</creator><creator>Dupont, Florent</creator><creator>Trassoudaine, Laurent</creator><creator>Checchin, Paul</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-2930-3393</orcidid><orcidid>https://orcid.org/0000-0002-3486-3918</orcidid><orcidid>https://orcid.org/0000-0001-6611-4420</orcidid><orcidid>https://orcid.org/0000-0003-3164-8697</orcidid></search><sort><creationdate>20200501</creationdate><title>Robust normal vector estimation in 3D point clouds through iterative principal component analysis</title><author>Sanchez, Julia ; Denis, Florence ; Coeurjolly, David ; Dupont, Florent ; Trassoudaine, Laurent ; Checchin, Paul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c398t-c0b76aaaf339787eb51ded95d39d0b7d0651a5fdddac5a94a5088fb00264fce43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Computational Geometry</topic><topic>Computer Science</topic><topic>M-estimator</topic><topic>Normal vector</topic><topic>Point cloud</topic><topic>Sharp features</topic><topic>Weighted PCA</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sanchez, Julia</creatorcontrib><creatorcontrib>Denis, Florence</creatorcontrib><creatorcontrib>Coeurjolly, David</creatorcontrib><creatorcontrib>Dupont, Florent</creatorcontrib><creatorcontrib>Trassoudaine, Laurent</creatorcontrib><creatorcontrib>Checchin, Paul</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>ISPRS journal of photogrammetry and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sanchez, Julia</au><au>Denis, Florence</au><au>Coeurjolly, David</au><au>Dupont, Florent</au><au>Trassoudaine, Laurent</au><au>Checchin, Paul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust normal vector estimation in 3D point clouds through iterative principal component analysis</atitle><jtitle>ISPRS journal of photogrammetry and remote sensing</jtitle><date>2020-05-01</date><risdate>2020</risdate><volume>163</volume><spage>18</spage><epage>35</epage><pages>18-35</pages><issn>0924-2716</issn><eissn>1872-8235</eissn><abstract>This paper introduces a robust normal vector estimator for point cloud data. It can handle sharp features as well as smooth areas. Our method is based on the inclusion of a robust estimator into a Principal Component Analysis in the neighborhood of the studied point, so that it can detect and reject outliers automatically during the estimation. A projection process ensures robustness against noise. Two automatic initializations are computed, leading to independent optimizations making the algorithm robust to neighborhood anisotropy around sharp features. An evaluation has been carried out in which the algorithm is compared to state-of-the-art methods. The results show that it is more robust against low and/or non-uniform samplings, high noise levels and outliers. Moreover, our algorithm is fast relative to existing methods handling sharp features. The code is available on the website: https://projet.liris.cnrs.fr/pcr/, and integrated in the platform: https://github.com/MEPP-team/MEPP2.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.isprsjprs.2020.02.018</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-2930-3393</orcidid><orcidid>https://orcid.org/0000-0002-3486-3918</orcidid><orcidid>https://orcid.org/0000-0001-6611-4420</orcidid><orcidid>https://orcid.org/0000-0003-3164-8697</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0924-2716 |
ispartof | ISPRS journal of photogrammetry and remote sensing, 2020-05, Vol.163, p.18-35 |
issn | 0924-2716 1872-8235 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02514851v1 |
source | Access via ScienceDirect (Elsevier) |
subjects | Computational Geometry Computer Science M-estimator Normal vector Point cloud Sharp features Weighted PCA |
title | Robust normal vector estimation in 3D point clouds through iterative principal component analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T20%3A28%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20normal%20vector%20estimation%20in%203D%20point%20clouds%20through%20iterative%20principal%20component%20analysis&rft.jtitle=ISPRS%20journal%20of%20photogrammetry%20and%20remote%20sensing&rft.au=Sanchez,%20Julia&rft.date=2020-05-01&rft.volume=163&rft.spage=18&rft.epage=35&rft.pages=18-35&rft.issn=0924-2716&rft.eissn=1872-8235&rft_id=info:doi/10.1016/j.isprsjprs.2020.02.018&rft_dat=%3Celsevier_hal_p%3ES0924271620300575%3C/elsevier_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0924271620300575&rfr_iscdi=true |