Robust normal vector estimation in 3D point clouds through iterative principal component analysis

This paper introduces a robust normal vector estimator for point cloud data. It can handle sharp features as well as smooth areas. Our method is based on the inclusion of a robust estimator into a Principal Component Analysis in the neighborhood of the studied point, so that it can detect and reject...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ISPRS journal of photogrammetry and remote sensing 2020-05, Vol.163, p.18-35
Hauptverfasser: Sanchez, Julia, Denis, Florence, Coeurjolly, David, Dupont, Florent, Trassoudaine, Laurent, Checchin, Paul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 35
container_issue
container_start_page 18
container_title ISPRS journal of photogrammetry and remote sensing
container_volume 163
creator Sanchez, Julia
Denis, Florence
Coeurjolly, David
Dupont, Florent
Trassoudaine, Laurent
Checchin, Paul
description This paper introduces a robust normal vector estimator for point cloud data. It can handle sharp features as well as smooth areas. Our method is based on the inclusion of a robust estimator into a Principal Component Analysis in the neighborhood of the studied point, so that it can detect and reject outliers automatically during the estimation. A projection process ensures robustness against noise. Two automatic initializations are computed, leading to independent optimizations making the algorithm robust to neighborhood anisotropy around sharp features. An evaluation has been carried out in which the algorithm is compared to state-of-the-art methods. The results show that it is more robust against low and/or non-uniform samplings, high noise levels and outliers. Moreover, our algorithm is fast relative to existing methods handling sharp features. The code is available on the website: https://projet.liris.cnrs.fr/pcr/, and integrated in the platform: https://github.com/MEPP-team/MEPP2.
doi_str_mv 10.1016/j.isprsjprs.2020.02.018
format Article
fullrecord <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02514851v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0924271620300575</els_id><sourcerecordid>S0924271620300575</sourcerecordid><originalsourceid>FETCH-LOGICAL-c398t-c0b76aaaf339787eb51ded95d39d0b7d0651a5fdddac5a94a5088fb00264fce43</originalsourceid><addsrcrecordid>eNqFkE9LxDAQxYMouK5-BnP10DpJmzY9LuufFRYE0XNIk9RN6TYlyRb89mZZ2auHYWDmvcfMD6F7AjkBUj32uQ2TD32qnAKFHGgOhF-gBeE1zTgt2CVaQEPLjNakukY3IfQAQFjFF0h-uPYQIh6d38sBz0ZF57EJ0e5ltG7EdsTFE56cHSNWgzvogOPOu8P3DttofBLNBk_ejspOKUC5_eRGk8RylMNPsOEWXXVyCObury_R18vz53qTbd9f39arbaaKhsdMQVtXUsquKJqa16ZlRBvdMF00Oq00VIxI1mmtpWKyKSUDzrsWgFZlp0xZLNHDKXcnB5EO2kv_I5y0YrPaiuMMKCMlZ2QmSVuftMq7ELzpzgYC4khV9OJMVRypJrdIVJNzdXKa9MpsjRdBWTMqo61P7IR29t-MX0nKiAY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Robust normal vector estimation in 3D point clouds through iterative principal component analysis</title><source>Access via ScienceDirect (Elsevier)</source><creator>Sanchez, Julia ; Denis, Florence ; Coeurjolly, David ; Dupont, Florent ; Trassoudaine, Laurent ; Checchin, Paul</creator><creatorcontrib>Sanchez, Julia ; Denis, Florence ; Coeurjolly, David ; Dupont, Florent ; Trassoudaine, Laurent ; Checchin, Paul</creatorcontrib><description>This paper introduces a robust normal vector estimator for point cloud data. It can handle sharp features as well as smooth areas. Our method is based on the inclusion of a robust estimator into a Principal Component Analysis in the neighborhood of the studied point, so that it can detect and reject outliers automatically during the estimation. A projection process ensures robustness against noise. Two automatic initializations are computed, leading to independent optimizations making the algorithm robust to neighborhood anisotropy around sharp features. An evaluation has been carried out in which the algorithm is compared to state-of-the-art methods. The results show that it is more robust against low and/or non-uniform samplings, high noise levels and outliers. Moreover, our algorithm is fast relative to existing methods handling sharp features. The code is available on the website: https://projet.liris.cnrs.fr/pcr/, and integrated in the platform: https://github.com/MEPP-team/MEPP2.</description><identifier>ISSN: 0924-2716</identifier><identifier>EISSN: 1872-8235</identifier><identifier>DOI: 10.1016/j.isprsjprs.2020.02.018</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Computational Geometry ; Computer Science ; M-estimator ; Normal vector ; Point cloud ; Sharp features ; Weighted PCA</subject><ispartof>ISPRS journal of photogrammetry and remote sensing, 2020-05, Vol.163, p.18-35</ispartof><rights>2020 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS)</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c398t-c0b76aaaf339787eb51ded95d39d0b7d0651a5fdddac5a94a5088fb00264fce43</citedby><cites>FETCH-LOGICAL-c398t-c0b76aaaf339787eb51ded95d39d0b7d0651a5fdddac5a94a5088fb00264fce43</cites><orcidid>0000-0002-2930-3393 ; 0000-0002-3486-3918 ; 0000-0001-6611-4420 ; 0000-0003-3164-8697</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.isprsjprs.2020.02.018$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02514851$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Sanchez, Julia</creatorcontrib><creatorcontrib>Denis, Florence</creatorcontrib><creatorcontrib>Coeurjolly, David</creatorcontrib><creatorcontrib>Dupont, Florent</creatorcontrib><creatorcontrib>Trassoudaine, Laurent</creatorcontrib><creatorcontrib>Checchin, Paul</creatorcontrib><title>Robust normal vector estimation in 3D point clouds through iterative principal component analysis</title><title>ISPRS journal of photogrammetry and remote sensing</title><description>This paper introduces a robust normal vector estimator for point cloud data. It can handle sharp features as well as smooth areas. Our method is based on the inclusion of a robust estimator into a Principal Component Analysis in the neighborhood of the studied point, so that it can detect and reject outliers automatically during the estimation. A projection process ensures robustness against noise. Two automatic initializations are computed, leading to independent optimizations making the algorithm robust to neighborhood anisotropy around sharp features. An evaluation has been carried out in which the algorithm is compared to state-of-the-art methods. The results show that it is more robust against low and/or non-uniform samplings, high noise levels and outliers. Moreover, our algorithm is fast relative to existing methods handling sharp features. The code is available on the website: https://projet.liris.cnrs.fr/pcr/, and integrated in the platform: https://github.com/MEPP-team/MEPP2.</description><subject>Computational Geometry</subject><subject>Computer Science</subject><subject>M-estimator</subject><subject>Normal vector</subject><subject>Point cloud</subject><subject>Sharp features</subject><subject>Weighted PCA</subject><issn>0924-2716</issn><issn>1872-8235</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkE9LxDAQxYMouK5-BnP10DpJmzY9LuufFRYE0XNIk9RN6TYlyRb89mZZ2auHYWDmvcfMD6F7AjkBUj32uQ2TD32qnAKFHGgOhF-gBeE1zTgt2CVaQEPLjNakukY3IfQAQFjFF0h-uPYQIh6d38sBz0ZF57EJ0e5ltG7EdsTFE56cHSNWgzvogOPOu8P3DttofBLNBk_ejspOKUC5_eRGk8RylMNPsOEWXXVyCObury_R18vz53qTbd9f39arbaaKhsdMQVtXUsquKJqa16ZlRBvdMF00Oq00VIxI1mmtpWKyKSUDzrsWgFZlp0xZLNHDKXcnB5EO2kv_I5y0YrPaiuMMKCMlZ2QmSVuftMq7ELzpzgYC4khV9OJMVRypJrdIVJNzdXKa9MpsjRdBWTMqo61P7IR29t-MX0nKiAY</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Sanchez, Julia</creator><creator>Denis, Florence</creator><creator>Coeurjolly, David</creator><creator>Dupont, Florent</creator><creator>Trassoudaine, Laurent</creator><creator>Checchin, Paul</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-2930-3393</orcidid><orcidid>https://orcid.org/0000-0002-3486-3918</orcidid><orcidid>https://orcid.org/0000-0001-6611-4420</orcidid><orcidid>https://orcid.org/0000-0003-3164-8697</orcidid></search><sort><creationdate>20200501</creationdate><title>Robust normal vector estimation in 3D point clouds through iterative principal component analysis</title><author>Sanchez, Julia ; Denis, Florence ; Coeurjolly, David ; Dupont, Florent ; Trassoudaine, Laurent ; Checchin, Paul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c398t-c0b76aaaf339787eb51ded95d39d0b7d0651a5fdddac5a94a5088fb00264fce43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Computational Geometry</topic><topic>Computer Science</topic><topic>M-estimator</topic><topic>Normal vector</topic><topic>Point cloud</topic><topic>Sharp features</topic><topic>Weighted PCA</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sanchez, Julia</creatorcontrib><creatorcontrib>Denis, Florence</creatorcontrib><creatorcontrib>Coeurjolly, David</creatorcontrib><creatorcontrib>Dupont, Florent</creatorcontrib><creatorcontrib>Trassoudaine, Laurent</creatorcontrib><creatorcontrib>Checchin, Paul</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>ISPRS journal of photogrammetry and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sanchez, Julia</au><au>Denis, Florence</au><au>Coeurjolly, David</au><au>Dupont, Florent</au><au>Trassoudaine, Laurent</au><au>Checchin, Paul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust normal vector estimation in 3D point clouds through iterative principal component analysis</atitle><jtitle>ISPRS journal of photogrammetry and remote sensing</jtitle><date>2020-05-01</date><risdate>2020</risdate><volume>163</volume><spage>18</spage><epage>35</epage><pages>18-35</pages><issn>0924-2716</issn><eissn>1872-8235</eissn><abstract>This paper introduces a robust normal vector estimator for point cloud data. It can handle sharp features as well as smooth areas. Our method is based on the inclusion of a robust estimator into a Principal Component Analysis in the neighborhood of the studied point, so that it can detect and reject outliers automatically during the estimation. A projection process ensures robustness against noise. Two automatic initializations are computed, leading to independent optimizations making the algorithm robust to neighborhood anisotropy around sharp features. An evaluation has been carried out in which the algorithm is compared to state-of-the-art methods. The results show that it is more robust against low and/or non-uniform samplings, high noise levels and outliers. Moreover, our algorithm is fast relative to existing methods handling sharp features. The code is available on the website: https://projet.liris.cnrs.fr/pcr/, and integrated in the platform: https://github.com/MEPP-team/MEPP2.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.isprsjprs.2020.02.018</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-2930-3393</orcidid><orcidid>https://orcid.org/0000-0002-3486-3918</orcidid><orcidid>https://orcid.org/0000-0001-6611-4420</orcidid><orcidid>https://orcid.org/0000-0003-3164-8697</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0924-2716
ispartof ISPRS journal of photogrammetry and remote sensing, 2020-05, Vol.163, p.18-35
issn 0924-2716
1872-8235
language eng
recordid cdi_hal_primary_oai_HAL_hal_02514851v1
source Access via ScienceDirect (Elsevier)
subjects Computational Geometry
Computer Science
M-estimator
Normal vector
Point cloud
Sharp features
Weighted PCA
title Robust normal vector estimation in 3D point clouds through iterative principal component analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T20%3A28%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20normal%20vector%20estimation%20in%203D%20point%20clouds%20through%20iterative%20principal%20component%20analysis&rft.jtitle=ISPRS%20journal%20of%20photogrammetry%20and%20remote%20sensing&rft.au=Sanchez,%20Julia&rft.date=2020-05-01&rft.volume=163&rft.spage=18&rft.epage=35&rft.pages=18-35&rft.issn=0924-2716&rft.eissn=1872-8235&rft_id=info:doi/10.1016/j.isprsjprs.2020.02.018&rft_dat=%3Celsevier_hal_p%3ES0924271620300575%3C/elsevier_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0924271620300575&rfr_iscdi=true