Families of singular Kähler–Einstein metrics
Refining Yau’s and Kołodziej’s techniques, we establish very precise uniform a priori estimates for degenerate complex Monge–Ampère equations on compact Kähler manifolds, that allow us to control the blow up of the solutions as the cohomology class and the complex structure both vary. We apply these...
Gespeichert in:
Veröffentlicht in: | Journal of the European Mathematical Society : JEMS 2023-01, Vol.25 (7), p.2697-2762 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2762 |
---|---|
container_issue | 7 |
container_start_page | 2697 |
container_title | Journal of the European Mathematical Society : JEMS |
container_volume | 25 |
creator | Di Nezza, Eleonora Guedj, Vincent Guenancia, Henri |
description | Refining Yau’s and Kołodziej’s techniques, we establish very precise uniform a priori estimates for degenerate complex Monge–Ampère equations on compact Kähler manifolds, that allow us to control the blow up of the solutions as the cohomology class and the complex structure both vary.
We apply these estimates to the study of various families of possibly singular Kähler varieties endowed with twisted Kähler–Einstein metrics, by analyzing the behavior of canonical densities, establishing uniform integrability properties, and developing the first steps of a pluripotential theory in families. This provides interesting information on the moduli space of stable varieties, extending works by Berman–Guenancia and Song, as well as on the behavior of singular Ricci-flat metrics on (log) Calabi–Yau varieties, generalizing works by Rong–Ruan–Zhang, Gross–Tosatti–Zhang, Collins–Tosatti and Tosatti–Weinkove–Yang. |
doi_str_mv | 10.4171/jems/1249 |
format | Article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02511898v2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_02511898v2</sourcerecordid><originalsourceid>FETCH-LOGICAL-c298t-9bef83c8f20f2bde687ad5939be2e7d90b8fec57a75591521395c5c81e4d4e893</originalsourceid><addsrcrecordid>eNpFkD1OAzEUhC0EEiFQcINtKZb1s9exXUZRQhAr0UBteb3PxNH-IDsg0XEHrsBNuElOAitQqGY0mpniI-QS6HUJEootdqkAVuojMoGSi1yrGT8-eCFOyVlKW0pBipJPSLGyXWgDpmzwWQr900trY3b39blpMe7fP5ahTzsMfdbhLgaXzsmJt23Ciz-dksfV8mGxzqv7m9vFvMod02qX6xq94k55Rj2rG5wpaRuh-U_OUDaa1sqjE9JKITQIBlwLJ5wCLJsSleZTcvX7u7GteY6hs_HNDDaY9bwyY0aZAFBavbL_rotDShH9YQDUjFTMSMWMVPg3FY5WGQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Families of singular Kähler–Einstein metrics</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Di Nezza, Eleonora ; Guedj, Vincent ; Guenancia, Henri</creator><creatorcontrib>Di Nezza, Eleonora ; Guedj, Vincent ; Guenancia, Henri</creatorcontrib><description>Refining Yau’s and Kołodziej’s techniques, we establish very precise uniform a priori estimates for degenerate complex Monge–Ampère equations on compact Kähler manifolds, that allow us to control the blow up of the solutions as the cohomology class and the complex structure both vary.
We apply these estimates to the study of various families of possibly singular Kähler varieties endowed with twisted Kähler–Einstein metrics, by analyzing the behavior of canonical densities, establishing uniform integrability properties, and developing the first steps of a pluripotential theory in families. This provides interesting information on the moduli space of stable varieties, extending works by Berman–Guenancia and Song, as well as on the behavior of singular Ricci-flat metrics on (log) Calabi–Yau varieties, generalizing works by Rong–Ruan–Zhang, Gross–Tosatti–Zhang, Collins–Tosatti and Tosatti–Weinkove–Yang.</description><identifier>ISSN: 1435-9855</identifier><identifier>EISSN: 1435-9863</identifier><identifier>DOI: 10.4171/jems/1249</identifier><language>eng</language><publisher>European Mathematical Society</publisher><subject>Complex Variables ; Differential Geometry ; Mathematics</subject><ispartof>Journal of the European Mathematical Society : JEMS, 2023-01, Vol.25 (7), p.2697-2762</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c298t-9bef83c8f20f2bde687ad5939be2e7d90b8fec57a75591521395c5c81e4d4e893</citedby><orcidid>0000-0002-4281-3523 ; 0000-0001-6528-2975</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,778,782,862,883,27907,27908</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02511898$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Di Nezza, Eleonora</creatorcontrib><creatorcontrib>Guedj, Vincent</creatorcontrib><creatorcontrib>Guenancia, Henri</creatorcontrib><title>Families of singular Kähler–Einstein metrics</title><title>Journal of the European Mathematical Society : JEMS</title><description>Refining Yau’s and Kołodziej’s techniques, we establish very precise uniform a priori estimates for degenerate complex Monge–Ampère equations on compact Kähler manifolds, that allow us to control the blow up of the solutions as the cohomology class and the complex structure both vary.
We apply these estimates to the study of various families of possibly singular Kähler varieties endowed with twisted Kähler–Einstein metrics, by analyzing the behavior of canonical densities, establishing uniform integrability properties, and developing the first steps of a pluripotential theory in families. This provides interesting information on the moduli space of stable varieties, extending works by Berman–Guenancia and Song, as well as on the behavior of singular Ricci-flat metrics on (log) Calabi–Yau varieties, generalizing works by Rong–Ruan–Zhang, Gross–Tosatti–Zhang, Collins–Tosatti and Tosatti–Weinkove–Yang.</description><subject>Complex Variables</subject><subject>Differential Geometry</subject><subject>Mathematics</subject><issn>1435-9855</issn><issn>1435-9863</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpFkD1OAzEUhC0EEiFQcINtKZb1s9exXUZRQhAr0UBteb3PxNH-IDsg0XEHrsBNuElOAitQqGY0mpniI-QS6HUJEootdqkAVuojMoGSi1yrGT8-eCFOyVlKW0pBipJPSLGyXWgDpmzwWQr900trY3b39blpMe7fP5ahTzsMfdbhLgaXzsmJt23Ciz-dksfV8mGxzqv7m9vFvMod02qX6xq94k55Rj2rG5wpaRuh-U_OUDaa1sqjE9JKITQIBlwLJ5wCLJsSleZTcvX7u7GteY6hs_HNDDaY9bwyY0aZAFBavbL_rotDShH9YQDUjFTMSMWMVPg3FY5WGQ</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Di Nezza, Eleonora</creator><creator>Guedj, Vincent</creator><creator>Guenancia, Henri</creator><general>European Mathematical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-4281-3523</orcidid><orcidid>https://orcid.org/0000-0001-6528-2975</orcidid></search><sort><creationdate>20230101</creationdate><title>Families of singular Kähler–Einstein metrics</title><author>Di Nezza, Eleonora ; Guedj, Vincent ; Guenancia, Henri</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c298t-9bef83c8f20f2bde687ad5939be2e7d90b8fec57a75591521395c5c81e4d4e893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Complex Variables</topic><topic>Differential Geometry</topic><topic>Mathematics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Di Nezza, Eleonora</creatorcontrib><creatorcontrib>Guedj, Vincent</creatorcontrib><creatorcontrib>Guenancia, Henri</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of the European Mathematical Society : JEMS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Di Nezza, Eleonora</au><au>Guedj, Vincent</au><au>Guenancia, Henri</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Families of singular Kähler–Einstein metrics</atitle><jtitle>Journal of the European Mathematical Society : JEMS</jtitle><date>2023-01-01</date><risdate>2023</risdate><volume>25</volume><issue>7</issue><spage>2697</spage><epage>2762</epage><pages>2697-2762</pages><issn>1435-9855</issn><eissn>1435-9863</eissn><abstract>Refining Yau’s and Kołodziej’s techniques, we establish very precise uniform a priori estimates for degenerate complex Monge–Ampère equations on compact Kähler manifolds, that allow us to control the blow up of the solutions as the cohomology class and the complex structure both vary.
We apply these estimates to the study of various families of possibly singular Kähler varieties endowed with twisted Kähler–Einstein metrics, by analyzing the behavior of canonical densities, establishing uniform integrability properties, and developing the first steps of a pluripotential theory in families. This provides interesting information on the moduli space of stable varieties, extending works by Berman–Guenancia and Song, as well as on the behavior of singular Ricci-flat metrics on (log) Calabi–Yau varieties, generalizing works by Rong–Ruan–Zhang, Gross–Tosatti–Zhang, Collins–Tosatti and Tosatti–Weinkove–Yang.</abstract><pub>European Mathematical Society</pub><doi>10.4171/jems/1249</doi><tpages>66</tpages><orcidid>https://orcid.org/0000-0002-4281-3523</orcidid><orcidid>https://orcid.org/0000-0001-6528-2975</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1435-9855 |
ispartof | Journal of the European Mathematical Society : JEMS, 2023-01, Vol.25 (7), p.2697-2762 |
issn | 1435-9855 1435-9863 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02511898v2 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Complex Variables Differential Geometry Mathematics |
title | Families of singular Kähler–Einstein metrics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T05%3A59%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Families%20of%20singular%20K%C3%A4hler%E2%80%93Einstein%20metrics&rft.jtitle=Journal%20of%20the%20European%20Mathematical%20Society%20:%20JEMS&rft.au=Di%20Nezza,%20Eleonora&rft.date=2023-01-01&rft.volume=25&rft.issue=7&rft.spage=2697&rft.epage=2762&rft.pages=2697-2762&rft.issn=1435-9855&rft.eissn=1435-9863&rft_id=info:doi/10.4171/jems/1249&rft_dat=%3Chal_cross%3Eoai_HAL_hal_02511898v2%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |