Families of singular Kähler–Einstein metrics

Refining Yau’s and Kołodziej’s techniques, we establish very precise uniform a priori estimates for degenerate complex Monge–Ampère equations on compact Kähler manifolds, that allow us to control the blow up of the solutions as the cohomology class and the complex structure both vary. We apply these...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the European Mathematical Society : JEMS 2023-01, Vol.25 (7), p.2697-2762
Hauptverfasser: Di Nezza, Eleonora, Guedj, Vincent, Guenancia, Henri
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2762
container_issue 7
container_start_page 2697
container_title Journal of the European Mathematical Society : JEMS
container_volume 25
creator Di Nezza, Eleonora
Guedj, Vincent
Guenancia, Henri
description Refining Yau’s and Kołodziej’s techniques, we establish very precise uniform a priori estimates for degenerate complex Monge–Ampère equations on compact Kähler manifolds, that allow us to control the blow up of the solutions as the cohomology class and the complex structure both vary. We apply these estimates to the study of various families of possibly singular Kähler varieties endowed with twisted Kähler–Einstein metrics, by analyzing the behavior of canonical densities, establishing uniform integrability properties, and developing the first steps of a pluripotential theory in families. This provides interesting information on the moduli space of stable varieties, extending works by Berman–Guenancia and Song, as well as on the behavior of singular Ricci-flat metrics on (log) Calabi–Yau varieties, generalizing works by Rong–Ruan–Zhang, Gross–Tosatti–Zhang, Collins–Tosatti and Tosatti–Weinkove–Yang.
doi_str_mv 10.4171/jems/1249
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02511898v2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_02511898v2</sourcerecordid><originalsourceid>FETCH-LOGICAL-c298t-9bef83c8f20f2bde687ad5939be2e7d90b8fec57a75591521395c5c81e4d4e893</originalsourceid><addsrcrecordid>eNpFkD1OAzEUhC0EEiFQcINtKZb1s9exXUZRQhAr0UBteb3PxNH-IDsg0XEHrsBNuElOAitQqGY0mpniI-QS6HUJEootdqkAVuojMoGSi1yrGT8-eCFOyVlKW0pBipJPSLGyXWgDpmzwWQr900trY3b39blpMe7fP5ahTzsMfdbhLgaXzsmJt23Ciz-dksfV8mGxzqv7m9vFvMod02qX6xq94k55Rj2rG5wpaRuh-U_OUDaa1sqjE9JKITQIBlwLJ5wCLJsSleZTcvX7u7GteY6hs_HNDDaY9bwyY0aZAFBavbL_rotDShH9YQDUjFTMSMWMVPg3FY5WGQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Families of singular Kähler–Einstein metrics</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Di Nezza, Eleonora ; Guedj, Vincent ; Guenancia, Henri</creator><creatorcontrib>Di Nezza, Eleonora ; Guedj, Vincent ; Guenancia, Henri</creatorcontrib><description>Refining Yau’s and Kołodziej’s techniques, we establish very precise uniform a priori estimates for degenerate complex Monge–Ampère equations on compact Kähler manifolds, that allow us to control the blow up of the solutions as the cohomology class and the complex structure both vary. We apply these estimates to the study of various families of possibly singular Kähler varieties endowed with twisted Kähler–Einstein metrics, by analyzing the behavior of canonical densities, establishing uniform integrability properties, and developing the first steps of a pluripotential theory in families. This provides interesting information on the moduli space of stable varieties, extending works by Berman–Guenancia and Song, as well as on the behavior of singular Ricci-flat metrics on (log) Calabi–Yau varieties, generalizing works by Rong–Ruan–Zhang, Gross–Tosatti–Zhang, Collins–Tosatti and Tosatti–Weinkove–Yang.</description><identifier>ISSN: 1435-9855</identifier><identifier>EISSN: 1435-9863</identifier><identifier>DOI: 10.4171/jems/1249</identifier><language>eng</language><publisher>European Mathematical Society</publisher><subject>Complex Variables ; Differential Geometry ; Mathematics</subject><ispartof>Journal of the European Mathematical Society : JEMS, 2023-01, Vol.25 (7), p.2697-2762</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c298t-9bef83c8f20f2bde687ad5939be2e7d90b8fec57a75591521395c5c81e4d4e893</citedby><orcidid>0000-0002-4281-3523 ; 0000-0001-6528-2975</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,778,782,862,883,27907,27908</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02511898$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Di Nezza, Eleonora</creatorcontrib><creatorcontrib>Guedj, Vincent</creatorcontrib><creatorcontrib>Guenancia, Henri</creatorcontrib><title>Families of singular Kähler–Einstein metrics</title><title>Journal of the European Mathematical Society : JEMS</title><description>Refining Yau’s and Kołodziej’s techniques, we establish very precise uniform a priori estimates for degenerate complex Monge–Ampère equations on compact Kähler manifolds, that allow us to control the blow up of the solutions as the cohomology class and the complex structure both vary. We apply these estimates to the study of various families of possibly singular Kähler varieties endowed with twisted Kähler–Einstein metrics, by analyzing the behavior of canonical densities, establishing uniform integrability properties, and developing the first steps of a pluripotential theory in families. This provides interesting information on the moduli space of stable varieties, extending works by Berman–Guenancia and Song, as well as on the behavior of singular Ricci-flat metrics on (log) Calabi–Yau varieties, generalizing works by Rong–Ruan–Zhang, Gross–Tosatti–Zhang, Collins–Tosatti and Tosatti–Weinkove–Yang.</description><subject>Complex Variables</subject><subject>Differential Geometry</subject><subject>Mathematics</subject><issn>1435-9855</issn><issn>1435-9863</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpFkD1OAzEUhC0EEiFQcINtKZb1s9exXUZRQhAr0UBteb3PxNH-IDsg0XEHrsBNuElOAitQqGY0mpniI-QS6HUJEootdqkAVuojMoGSi1yrGT8-eCFOyVlKW0pBipJPSLGyXWgDpmzwWQr900trY3b39blpMe7fP5ahTzsMfdbhLgaXzsmJt23Ciz-dksfV8mGxzqv7m9vFvMod02qX6xq94k55Rj2rG5wpaRuh-U_OUDaa1sqjE9JKITQIBlwLJ5wCLJsSleZTcvX7u7GteY6hs_HNDDaY9bwyY0aZAFBavbL_rotDShH9YQDUjFTMSMWMVPg3FY5WGQ</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Di Nezza, Eleonora</creator><creator>Guedj, Vincent</creator><creator>Guenancia, Henri</creator><general>European Mathematical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-4281-3523</orcidid><orcidid>https://orcid.org/0000-0001-6528-2975</orcidid></search><sort><creationdate>20230101</creationdate><title>Families of singular Kähler–Einstein metrics</title><author>Di Nezza, Eleonora ; Guedj, Vincent ; Guenancia, Henri</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c298t-9bef83c8f20f2bde687ad5939be2e7d90b8fec57a75591521395c5c81e4d4e893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Complex Variables</topic><topic>Differential Geometry</topic><topic>Mathematics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Di Nezza, Eleonora</creatorcontrib><creatorcontrib>Guedj, Vincent</creatorcontrib><creatorcontrib>Guenancia, Henri</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of the European Mathematical Society : JEMS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Di Nezza, Eleonora</au><au>Guedj, Vincent</au><au>Guenancia, Henri</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Families of singular Kähler–Einstein metrics</atitle><jtitle>Journal of the European Mathematical Society : JEMS</jtitle><date>2023-01-01</date><risdate>2023</risdate><volume>25</volume><issue>7</issue><spage>2697</spage><epage>2762</epage><pages>2697-2762</pages><issn>1435-9855</issn><eissn>1435-9863</eissn><abstract>Refining Yau’s and Kołodziej’s techniques, we establish very precise uniform a priori estimates for degenerate complex Monge–Ampère equations on compact Kähler manifolds, that allow us to control the blow up of the solutions as the cohomology class and the complex structure both vary. We apply these estimates to the study of various families of possibly singular Kähler varieties endowed with twisted Kähler–Einstein metrics, by analyzing the behavior of canonical densities, establishing uniform integrability properties, and developing the first steps of a pluripotential theory in families. This provides interesting information on the moduli space of stable varieties, extending works by Berman–Guenancia and Song, as well as on the behavior of singular Ricci-flat metrics on (log) Calabi–Yau varieties, generalizing works by Rong–Ruan–Zhang, Gross–Tosatti–Zhang, Collins–Tosatti and Tosatti–Weinkove–Yang.</abstract><pub>European Mathematical Society</pub><doi>10.4171/jems/1249</doi><tpages>66</tpages><orcidid>https://orcid.org/0000-0002-4281-3523</orcidid><orcidid>https://orcid.org/0000-0001-6528-2975</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1435-9855
ispartof Journal of the European Mathematical Society : JEMS, 2023-01, Vol.25 (7), p.2697-2762
issn 1435-9855
1435-9863
language eng
recordid cdi_hal_primary_oai_HAL_hal_02511898v2
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Complex Variables
Differential Geometry
Mathematics
title Families of singular Kähler–Einstein metrics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T05%3A59%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Families%20of%20singular%20K%C3%A4hler%E2%80%93Einstein%20metrics&rft.jtitle=Journal%20of%20the%20European%20Mathematical%20Society%20:%20JEMS&rft.au=Di%20Nezza,%20Eleonora&rft.date=2023-01-01&rft.volume=25&rft.issue=7&rft.spage=2697&rft.epage=2762&rft.pages=2697-2762&rft.issn=1435-9855&rft.eissn=1435-9863&rft_id=info:doi/10.4171/jems/1249&rft_dat=%3Chal_cross%3Eoai_HAL_hal_02511898v2%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true