Spatial segregation of dust grains in transition disks: SPHERE observations of 2MASS J16083070-3828268 and RXJ1852.3-3700

Context. The mechanisms governing the opening of cavities in transition disks are not fully understood. Several processes have been proposed, but their occurrence rate is still unknown. Aims. We present spatially resolved observations of two transition disks, and aim at constraining their vertical a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Astronomy and astrophysics (Berlin) 2019-04, Vol.624 (7), p.A7-6
Hauptverfasser: Villenave, M., Benisty, M., Dent, W. R. F., Ménard, F., Garufi, A., Ginski, C., Pinilla, P., Pinte, C., Williams, J. P., de Boer, J., Morino, J.-I., Fukagawa, M., Dominik, C., Flock, M., Henning, T., Juhász, A., Keppler, M., Muro-Arena, G., Olofsson, J., Pérez, L. M., van der Plas, G., Zurlo, A., Carle, M., Feautrier, P., Pavlov, A., Pragt, J., Ramos, J., Sauvage, J.-F., Stadler, E., Weber, L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6
container_issue 7
container_start_page A7
container_title Astronomy and astrophysics (Berlin)
container_volume 624
creator Villenave, M.
Benisty, M.
Dent, W. R. F.
Ménard, F.
Garufi, A.
Ginski, C.
Pinilla, P.
Pinte, C.
Williams, J. P.
de Boer, J.
Morino, J.-I.
Fukagawa, M.
Dominik, C.
Flock, M.
Henning, T.
Juhász, A.
Keppler, M.
Muro-Arena, G.
Olofsson, J.
Pérez, L. M.
van der Plas, G.
Zurlo, A.
Carle, M.
Feautrier, P.
Pavlov, A.
Pragt, J.
Ramos, J.
Sauvage, J.-F.
Stadler, E.
Weber, L.
description Context. The mechanisms governing the opening of cavities in transition disks are not fully understood. Several processes have been proposed, but their occurrence rate is still unknown. Aims. We present spatially resolved observations of two transition disks, and aim at constraining their vertical and radial structure using multiwavelength observations that probe different regions of the disks and can help understanding the origin of the cavities. Methods. We have obtained near-infrared scattered light observations with VLT/SPHERE of the transition disks 2MASS J16083070-3828268 (J1608) and RXJ1852.3-3700 (J1852), located in the Lupus and Corona Australis star-forming regions respectively. We complement our datasets with archival ALMA observations, and with unresolved photometric observations covering a wide range of wavelengths. We performed radiative transfer modeling to analyze the morphology of the disks, and then compare the results with a sample of 20 other transition disks observed with both SPHERE and ALMA. Results. We detect scattered light in J1608 and J1852 up to a radius of 0.54′′ and 0.4′′ respectively. The image of J1608 reveals a very inclined disk ( i ~ 74°), with two bright lobes and a large cavity. We also marginally detect the scattering surface from the rear-facing side of the disk. J1852 shows an inner ring extending beyond the coronagraphic radius up to 15 au, a gap and a second ring at 42 au. Our radiative transfer model of J1608 indicates that the millimeter-sized grains are less extended vertically and radially than the micron-sized grains, indicating advanced settling and radial drift. We find good agreement with the observations of J1852 with a similar model, but due to the low inclination of the system, the model remains partly degenerate. The analysis of 22 transition disks shows that, in general, the cavities observed in scattered light are smaller than the ones detected at millimeter wavelengths. Conclusions. The analysis of a sample of transition disks indicates that the small grains, well coupled to the gas, can flow inward of the region where millimeter grains are trapped. While 15 out of the 22 cavities in our sample could be explained by a planet of less than 13 Jupiter masses, the others either require the presence of a more massive companion or of several low-mass planets.
doi_str_mv 10.1051/0004-6361/201834800
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02507592v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_02507592v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c233t-ad9f6198c56e3b6548647f651f8bb42d6c7c60ad74d3a4857202b8ca2c0212bc3</originalsourceid><addsrcrecordid>eNo9kEtLxDAQgIMoWFd_gZdcPdSdvNPjsqgrFDyo55AmTY3Wdkmq4L-3dWVP8_pmGD6ErgncEhBkDQC8lEySNQWiGdcAJ6ggnNESFJenqDgS5-gi5_e5pDNYIPm8t1O0Pc5tl9puzscBjwH7rzzhLtk4ZBwHPCU75Pg39DF_5Et0Fmyf26v_uEKv93cv211ZPz08bjd16ShjU2l9FSSptBOyZY0UXEuughQk6Kbh1EunnATrFffMci0UBdpoZ6mb36ONYyt0c7j7ZnuzT_HTph8z2mh2m9osPaAClKjoN5lZdmBdGnNObTguEDCLJrNIMIsEc9TEfgH47Vji</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Spatial segregation of dust grains in transition disks: SPHERE observations of 2MASS J16083070-3828268 and RXJ1852.3-3700</title><source>Bacon EDP Sciences France Licence nationale-ISTEX-PS-Journals-PFISTEX</source><source>EDP Sciences</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Villenave, M. ; Benisty, M. ; Dent, W. R. F. ; Ménard, F. ; Garufi, A. ; Ginski, C. ; Pinilla, P. ; Pinte, C. ; Williams, J. P. ; de Boer, J. ; Morino, J.-I. ; Fukagawa, M. ; Dominik, C. ; Flock, M. ; Henning, T. ; Juhász, A. ; Keppler, M. ; Muro-Arena, G. ; Olofsson, J. ; Pérez, L. M. ; van der Plas, G. ; Zurlo, A. ; Carle, M. ; Feautrier, P. ; Pavlov, A. ; Pragt, J. ; Ramos, J. ; Sauvage, J.-F. ; Stadler, E. ; Weber, L.</creator><creatorcontrib>Villenave, M. ; Benisty, M. ; Dent, W. R. F. ; Ménard, F. ; Garufi, A. ; Ginski, C. ; Pinilla, P. ; Pinte, C. ; Williams, J. P. ; de Boer, J. ; Morino, J.-I. ; Fukagawa, M. ; Dominik, C. ; Flock, M. ; Henning, T. ; Juhász, A. ; Keppler, M. ; Muro-Arena, G. ; Olofsson, J. ; Pérez, L. M. ; van der Plas, G. ; Zurlo, A. ; Carle, M. ; Feautrier, P. ; Pavlov, A. ; Pragt, J. ; Ramos, J. ; Sauvage, J.-F. ; Stadler, E. ; Weber, L.</creatorcontrib><description>Context. The mechanisms governing the opening of cavities in transition disks are not fully understood. Several processes have been proposed, but their occurrence rate is still unknown. Aims. We present spatially resolved observations of two transition disks, and aim at constraining their vertical and radial structure using multiwavelength observations that probe different regions of the disks and can help understanding the origin of the cavities. Methods. We have obtained near-infrared scattered light observations with VLT/SPHERE of the transition disks 2MASS J16083070-3828268 (J1608) and RXJ1852.3-3700 (J1852), located in the Lupus and Corona Australis star-forming regions respectively. We complement our datasets with archival ALMA observations, and with unresolved photometric observations covering a wide range of wavelengths. We performed radiative transfer modeling to analyze the morphology of the disks, and then compare the results with a sample of 20 other transition disks observed with both SPHERE and ALMA. Results. We detect scattered light in J1608 and J1852 up to a radius of 0.54′′ and 0.4′′ respectively. The image of J1608 reveals a very inclined disk ( i ~ 74°), with two bright lobes and a large cavity. We also marginally detect the scattering surface from the rear-facing side of the disk. J1852 shows an inner ring extending beyond the coronagraphic radius up to 15 au, a gap and a second ring at 42 au. Our radiative transfer model of J1608 indicates that the millimeter-sized grains are less extended vertically and radially than the micron-sized grains, indicating advanced settling and radial drift. We find good agreement with the observations of J1852 with a similar model, but due to the low inclination of the system, the model remains partly degenerate. The analysis of 22 transition disks shows that, in general, the cavities observed in scattered light are smaller than the ones detected at millimeter wavelengths. Conclusions. The analysis of a sample of transition disks indicates that the small grains, well coupled to the gas, can flow inward of the region where millimeter grains are trapped. While 15 out of the 22 cavities in our sample could be explained by a planet of less than 13 Jupiter masses, the others either require the presence of a more massive companion or of several low-mass planets.</description><identifier>ISSN: 0004-6361</identifier><identifier>EISSN: 1432-0746</identifier><identifier>EISSN: 1432-0756</identifier><identifier>DOI: 10.1051/0004-6361/201834800</identifier><language>eng</language><publisher>EDP Sciences</publisher><subject>Engineering Sciences ; Physics</subject><ispartof>Astronomy and astrophysics (Berlin), 2019-04, Vol.624 (7), p.A7-6</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c233t-ad9f6198c56e3b6548647f651f8bb42d6c7c60ad74d3a4857202b8ca2c0212bc3</cites><orcidid>0000-0002-8962-448X ; 0000-0001-7937-9815 ; 0000-0002-4266-0643 ; 0000-0003-4475-3605 ; 0000-0002-5903-8316 ; 0000-0002-1493-300X ; 0000-0001-5688-187X ; 0000-0002-1637-7393 ; 0000-0001-5907-5179 ; 0000-0002-7695-7605 ; 0000-0002-3393-2459</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,3714,27901,27902</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02507592$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Villenave, M.</creatorcontrib><creatorcontrib>Benisty, M.</creatorcontrib><creatorcontrib>Dent, W. R. F.</creatorcontrib><creatorcontrib>Ménard, F.</creatorcontrib><creatorcontrib>Garufi, A.</creatorcontrib><creatorcontrib>Ginski, C.</creatorcontrib><creatorcontrib>Pinilla, P.</creatorcontrib><creatorcontrib>Pinte, C.</creatorcontrib><creatorcontrib>Williams, J. P.</creatorcontrib><creatorcontrib>de Boer, J.</creatorcontrib><creatorcontrib>Morino, J.-I.</creatorcontrib><creatorcontrib>Fukagawa, M.</creatorcontrib><creatorcontrib>Dominik, C.</creatorcontrib><creatorcontrib>Flock, M.</creatorcontrib><creatorcontrib>Henning, T.</creatorcontrib><creatorcontrib>Juhász, A.</creatorcontrib><creatorcontrib>Keppler, M.</creatorcontrib><creatorcontrib>Muro-Arena, G.</creatorcontrib><creatorcontrib>Olofsson, J.</creatorcontrib><creatorcontrib>Pérez, L. M.</creatorcontrib><creatorcontrib>van der Plas, G.</creatorcontrib><creatorcontrib>Zurlo, A.</creatorcontrib><creatorcontrib>Carle, M.</creatorcontrib><creatorcontrib>Feautrier, P.</creatorcontrib><creatorcontrib>Pavlov, A.</creatorcontrib><creatorcontrib>Pragt, J.</creatorcontrib><creatorcontrib>Ramos, J.</creatorcontrib><creatorcontrib>Sauvage, J.-F.</creatorcontrib><creatorcontrib>Stadler, E.</creatorcontrib><creatorcontrib>Weber, L.</creatorcontrib><title>Spatial segregation of dust grains in transition disks: SPHERE observations of 2MASS J16083070-3828268 and RXJ1852.3-3700</title><title>Astronomy and astrophysics (Berlin)</title><description>Context. The mechanisms governing the opening of cavities in transition disks are not fully understood. Several processes have been proposed, but their occurrence rate is still unknown. Aims. We present spatially resolved observations of two transition disks, and aim at constraining their vertical and radial structure using multiwavelength observations that probe different regions of the disks and can help understanding the origin of the cavities. Methods. We have obtained near-infrared scattered light observations with VLT/SPHERE of the transition disks 2MASS J16083070-3828268 (J1608) and RXJ1852.3-3700 (J1852), located in the Lupus and Corona Australis star-forming regions respectively. We complement our datasets with archival ALMA observations, and with unresolved photometric observations covering a wide range of wavelengths. We performed radiative transfer modeling to analyze the morphology of the disks, and then compare the results with a sample of 20 other transition disks observed with both SPHERE and ALMA. Results. We detect scattered light in J1608 and J1852 up to a radius of 0.54′′ and 0.4′′ respectively. The image of J1608 reveals a very inclined disk ( i ~ 74°), with two bright lobes and a large cavity. We also marginally detect the scattering surface from the rear-facing side of the disk. J1852 shows an inner ring extending beyond the coronagraphic radius up to 15 au, a gap and a second ring at 42 au. Our radiative transfer model of J1608 indicates that the millimeter-sized grains are less extended vertically and radially than the micron-sized grains, indicating advanced settling and radial drift. We find good agreement with the observations of J1852 with a similar model, but due to the low inclination of the system, the model remains partly degenerate. The analysis of 22 transition disks shows that, in general, the cavities observed in scattered light are smaller than the ones detected at millimeter wavelengths. Conclusions. The analysis of a sample of transition disks indicates that the small grains, well coupled to the gas, can flow inward of the region where millimeter grains are trapped. While 15 out of the 22 cavities in our sample could be explained by a planet of less than 13 Jupiter masses, the others either require the presence of a more massive companion or of several low-mass planets.</description><subject>Engineering Sciences</subject><subject>Physics</subject><issn>0004-6361</issn><issn>1432-0746</issn><issn>1432-0756</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLxDAQgIMoWFd_gZdcPdSdvNPjsqgrFDyo55AmTY3Wdkmq4L-3dWVP8_pmGD6ErgncEhBkDQC8lEySNQWiGdcAJ6ggnNESFJenqDgS5-gi5_e5pDNYIPm8t1O0Pc5tl9puzscBjwH7rzzhLtk4ZBwHPCU75Pg39DF_5Et0Fmyf26v_uEKv93cv211ZPz08bjd16ShjU2l9FSSptBOyZY0UXEuughQk6Kbh1EunnATrFffMci0UBdpoZ6mb36ONYyt0c7j7ZnuzT_HTph8z2mh2m9osPaAClKjoN5lZdmBdGnNObTguEDCLJrNIMIsEc9TEfgH47Vji</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Villenave, M.</creator><creator>Benisty, M.</creator><creator>Dent, W. R. F.</creator><creator>Ménard, F.</creator><creator>Garufi, A.</creator><creator>Ginski, C.</creator><creator>Pinilla, P.</creator><creator>Pinte, C.</creator><creator>Williams, J. P.</creator><creator>de Boer, J.</creator><creator>Morino, J.-I.</creator><creator>Fukagawa, M.</creator><creator>Dominik, C.</creator><creator>Flock, M.</creator><creator>Henning, T.</creator><creator>Juhász, A.</creator><creator>Keppler, M.</creator><creator>Muro-Arena, G.</creator><creator>Olofsson, J.</creator><creator>Pérez, L. M.</creator><creator>van der Plas, G.</creator><creator>Zurlo, A.</creator><creator>Carle, M.</creator><creator>Feautrier, P.</creator><creator>Pavlov, A.</creator><creator>Pragt, J.</creator><creator>Ramos, J.</creator><creator>Sauvage, J.-F.</creator><creator>Stadler, E.</creator><creator>Weber, L.</creator><general>EDP Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-8962-448X</orcidid><orcidid>https://orcid.org/0000-0001-7937-9815</orcidid><orcidid>https://orcid.org/0000-0002-4266-0643</orcidid><orcidid>https://orcid.org/0000-0003-4475-3605</orcidid><orcidid>https://orcid.org/0000-0002-5903-8316</orcidid><orcidid>https://orcid.org/0000-0002-1493-300X</orcidid><orcidid>https://orcid.org/0000-0001-5688-187X</orcidid><orcidid>https://orcid.org/0000-0002-1637-7393</orcidid><orcidid>https://orcid.org/0000-0001-5907-5179</orcidid><orcidid>https://orcid.org/0000-0002-7695-7605</orcidid><orcidid>https://orcid.org/0000-0002-3393-2459</orcidid></search><sort><creationdate>20190401</creationdate><title>Spatial segregation of dust grains in transition disks</title><author>Villenave, M. ; Benisty, M. ; Dent, W. R. F. ; Ménard, F. ; Garufi, A. ; Ginski, C. ; Pinilla, P. ; Pinte, C. ; Williams, J. P. ; de Boer, J. ; Morino, J.-I. ; Fukagawa, M. ; Dominik, C. ; Flock, M. ; Henning, T. ; Juhász, A. ; Keppler, M. ; Muro-Arena, G. ; Olofsson, J. ; Pérez, L. M. ; van der Plas, G. ; Zurlo, A. ; Carle, M. ; Feautrier, P. ; Pavlov, A. ; Pragt, J. ; Ramos, J. ; Sauvage, J.-F. ; Stadler, E. ; Weber, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c233t-ad9f6198c56e3b6548647f651f8bb42d6c7c60ad74d3a4857202b8ca2c0212bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Engineering Sciences</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Villenave, M.</creatorcontrib><creatorcontrib>Benisty, M.</creatorcontrib><creatorcontrib>Dent, W. R. F.</creatorcontrib><creatorcontrib>Ménard, F.</creatorcontrib><creatorcontrib>Garufi, A.</creatorcontrib><creatorcontrib>Ginski, C.</creatorcontrib><creatorcontrib>Pinilla, P.</creatorcontrib><creatorcontrib>Pinte, C.</creatorcontrib><creatorcontrib>Williams, J. P.</creatorcontrib><creatorcontrib>de Boer, J.</creatorcontrib><creatorcontrib>Morino, J.-I.</creatorcontrib><creatorcontrib>Fukagawa, M.</creatorcontrib><creatorcontrib>Dominik, C.</creatorcontrib><creatorcontrib>Flock, M.</creatorcontrib><creatorcontrib>Henning, T.</creatorcontrib><creatorcontrib>Juhász, A.</creatorcontrib><creatorcontrib>Keppler, M.</creatorcontrib><creatorcontrib>Muro-Arena, G.</creatorcontrib><creatorcontrib>Olofsson, J.</creatorcontrib><creatorcontrib>Pérez, L. M.</creatorcontrib><creatorcontrib>van der Plas, G.</creatorcontrib><creatorcontrib>Zurlo, A.</creatorcontrib><creatorcontrib>Carle, M.</creatorcontrib><creatorcontrib>Feautrier, P.</creatorcontrib><creatorcontrib>Pavlov, A.</creatorcontrib><creatorcontrib>Pragt, J.</creatorcontrib><creatorcontrib>Ramos, J.</creatorcontrib><creatorcontrib>Sauvage, J.-F.</creatorcontrib><creatorcontrib>Stadler, E.</creatorcontrib><creatorcontrib>Weber, L.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Astronomy and astrophysics (Berlin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Villenave, M.</au><au>Benisty, M.</au><au>Dent, W. R. F.</au><au>Ménard, F.</au><au>Garufi, A.</au><au>Ginski, C.</au><au>Pinilla, P.</au><au>Pinte, C.</au><au>Williams, J. P.</au><au>de Boer, J.</au><au>Morino, J.-I.</au><au>Fukagawa, M.</au><au>Dominik, C.</au><au>Flock, M.</au><au>Henning, T.</au><au>Juhász, A.</au><au>Keppler, M.</au><au>Muro-Arena, G.</au><au>Olofsson, J.</au><au>Pérez, L. M.</au><au>van der Plas, G.</au><au>Zurlo, A.</au><au>Carle, M.</au><au>Feautrier, P.</au><au>Pavlov, A.</au><au>Pragt, J.</au><au>Ramos, J.</au><au>Sauvage, J.-F.</au><au>Stadler, E.</au><au>Weber, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatial segregation of dust grains in transition disks: SPHERE observations of 2MASS J16083070-3828268 and RXJ1852.3-3700</atitle><jtitle>Astronomy and astrophysics (Berlin)</jtitle><date>2019-04-01</date><risdate>2019</risdate><volume>624</volume><issue>7</issue><spage>A7</spage><epage>6</epage><pages>A7-6</pages><issn>0004-6361</issn><eissn>1432-0746</eissn><eissn>1432-0756</eissn><abstract>Context. The mechanisms governing the opening of cavities in transition disks are not fully understood. Several processes have been proposed, but their occurrence rate is still unknown. Aims. We present spatially resolved observations of two transition disks, and aim at constraining their vertical and radial structure using multiwavelength observations that probe different regions of the disks and can help understanding the origin of the cavities. Methods. We have obtained near-infrared scattered light observations with VLT/SPHERE of the transition disks 2MASS J16083070-3828268 (J1608) and RXJ1852.3-3700 (J1852), located in the Lupus and Corona Australis star-forming regions respectively. We complement our datasets with archival ALMA observations, and with unresolved photometric observations covering a wide range of wavelengths. We performed radiative transfer modeling to analyze the morphology of the disks, and then compare the results with a sample of 20 other transition disks observed with both SPHERE and ALMA. Results. We detect scattered light in J1608 and J1852 up to a radius of 0.54′′ and 0.4′′ respectively. The image of J1608 reveals a very inclined disk ( i ~ 74°), with two bright lobes and a large cavity. We also marginally detect the scattering surface from the rear-facing side of the disk. J1852 shows an inner ring extending beyond the coronagraphic radius up to 15 au, a gap and a second ring at 42 au. Our radiative transfer model of J1608 indicates that the millimeter-sized grains are less extended vertically and radially than the micron-sized grains, indicating advanced settling and radial drift. We find good agreement with the observations of J1852 with a similar model, but due to the low inclination of the system, the model remains partly degenerate. The analysis of 22 transition disks shows that, in general, the cavities observed in scattered light are smaller than the ones detected at millimeter wavelengths. Conclusions. The analysis of a sample of transition disks indicates that the small grains, well coupled to the gas, can flow inward of the region where millimeter grains are trapped. While 15 out of the 22 cavities in our sample could be explained by a planet of less than 13 Jupiter masses, the others either require the presence of a more massive companion or of several low-mass planets.</abstract><pub>EDP Sciences</pub><doi>10.1051/0004-6361/201834800</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-8962-448X</orcidid><orcidid>https://orcid.org/0000-0001-7937-9815</orcidid><orcidid>https://orcid.org/0000-0002-4266-0643</orcidid><orcidid>https://orcid.org/0000-0003-4475-3605</orcidid><orcidid>https://orcid.org/0000-0002-5903-8316</orcidid><orcidid>https://orcid.org/0000-0002-1493-300X</orcidid><orcidid>https://orcid.org/0000-0001-5688-187X</orcidid><orcidid>https://orcid.org/0000-0002-1637-7393</orcidid><orcidid>https://orcid.org/0000-0001-5907-5179</orcidid><orcidid>https://orcid.org/0000-0002-7695-7605</orcidid><orcidid>https://orcid.org/0000-0002-3393-2459</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-6361
ispartof Astronomy and astrophysics (Berlin), 2019-04, Vol.624 (7), p.A7-6
issn 0004-6361
1432-0746
1432-0756
language eng
recordid cdi_hal_primary_oai_HAL_hal_02507592v1
source Bacon EDP Sciences France Licence nationale-ISTEX-PS-Journals-PFISTEX; EDP Sciences; EZB-FREE-00999 freely available EZB journals
subjects Engineering Sciences
Physics
title Spatial segregation of dust grains in transition disks: SPHERE observations of 2MASS J16083070-3828268 and RXJ1852.3-3700
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T23%3A00%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatial%20segregation%20of%20dust%20grains%20in%20transition%20disks:%20SPHERE%20observations%20of%202MASS%20J16083070-3828268%20and%20RXJ1852.3-3700&rft.jtitle=Astronomy%20and%20astrophysics%20(Berlin)&rft.au=Villenave,%20M.&rft.date=2019-04-01&rft.volume=624&rft.issue=7&rft.spage=A7&rft.epage=6&rft.pages=A7-6&rft.issn=0004-6361&rft.eissn=1432-0746&rft_id=info:doi/10.1051/0004-6361/201834800&rft_dat=%3Chal_cross%3Eoai_HAL_hal_02507592v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true