Modified parallel projection methods for the multivalued lexicographic variational inequalities using proximal operator in Hilbert spaces

In this paper, building upon projection methods and parallel splitting‐up techniques with using proximal operators, we propose new algorithms for solving the multivalued lexicographic variational inequalities in a real Hilbert space. First, the strong convergence theorem is shown with Lipschitz cont...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods in the applied sciences 2020-04, Vol.43 (6), p.3260-3279
Hauptverfasser: Ngoc Anh, Pham, Thi Hoai An, Le
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3279
container_issue 6
container_start_page 3260
container_title Mathematical methods in the applied sciences
container_volume 43
creator Ngoc Anh, Pham
Thi Hoai An, Le
description In this paper, building upon projection methods and parallel splitting‐up techniques with using proximal operators, we propose new algorithms for solving the multivalued lexicographic variational inequalities in a real Hilbert space. First, the strong convergence theorem is shown with Lipschitz continuity of the cost mapping, but it must satisfy a strongly monotone condition. Second, the convergent results are also established to the multivalued lexicographic variational inequalities involving a finite system of demicontractive mappings under mild assumptions imposed on parameters. Finally, some numerical examples are developed to illustrate the behavior of our algorithms with respect to existing algorithms.
doi_str_mv 10.1002/mma.6118
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02502127v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2371543333</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3278-65a85bc2584bdca9f40fd43c22c811d06ac9db62aef707b184d4b94898cd3d13</originalsourceid><addsrcrecordid>eNp1kc9KAzEQxoMoWKvgIwS86GE1yWb_HYuoFVq8eA-zSbZNyTbbZLfaR_CtzVrx5lwGZn7z8Q0fQteU3FNC2EPbwn1OaXmCJpRUVUJ5kZ-iCaEFSTij_BxdhLAhhJSUsgn6WjplGqMV7sCDtdrizruNlr1xW9zqfu1UwI3zuF9r3A62N3uwQ-St_jTSrTx0ayPxHryB8QYsNlu9G8Ca3uiAh2C2q1Hz07Rx5zrtoY9yZovnxtba9zh0IHW4RGcN2KCvfvsUvT8_vT_Ok8Xby-vjbJHIlBVlkmdQZrVkWclrJaFqOGkUTyVjMn6kSA6yUnXOQDcFKWpacsXripdVKVWqaDpFd0fZNVjR-WjKH4QDI-azhRhnhGWEUVbsR_bmyEb7u0GHXmzc4OOLQbC0oBlPx5qi2yMlvQvB6-ZPlhIxZiJiJmLMJKLJEf0wVh_-5cRyOfvhvwEexZAr</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2371543333</pqid></control><display><type>article</type><title>Modified parallel projection methods for the multivalued lexicographic variational inequalities using proximal operator in Hilbert spaces</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Ngoc Anh, Pham ; Thi Hoai An, Le</creator><creatorcontrib>Ngoc Anh, Pham ; Thi Hoai An, Le</creatorcontrib><description>In this paper, building upon projection methods and parallel splitting‐up techniques with using proximal operators, we propose new algorithms for solving the multivalued lexicographic variational inequalities in a real Hilbert space. First, the strong convergence theorem is shown with Lipschitz continuity of the cost mapping, but it must satisfy a strongly monotone condition. Second, the convergent results are also established to the multivalued lexicographic variational inequalities involving a finite system of demicontractive mappings under mild assumptions imposed on parameters. Finally, some numerical examples are developed to illustrate the behavior of our algorithms with respect to existing algorithms.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.6118</identifier><language>eng</language><publisher>Freiburg: Wiley Subscription Services, Inc</publisher><subject>Algorithms ; Computer Science ; Convergence ; demicontractive mappings ; Estimates ; Hilbert space ; Inequalities ; Lipschitz continuous ; Mapping ; monotone projection methods ; multivalued lexicographic variational inequalities ; proximal operator</subject><ispartof>Mathematical methods in the applied sciences, 2020-04, Vol.43 (6), p.3260-3279</ispartof><rights>2019 John Wiley &amp; Sons, Ltd.</rights><rights>2020 John Wiley &amp; Sons, Ltd.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3278-65a85bc2584bdca9f40fd43c22c811d06ac9db62aef707b184d4b94898cd3d13</citedby><cites>FETCH-LOGICAL-c3278-65a85bc2584bdca9f40fd43c22c811d06ac9db62aef707b184d4b94898cd3d13</cites><orcidid>0000-0003-3187-4993 ; 0000-0002-2239-2100</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmma.6118$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmma.6118$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://hal.univ-lorraine.fr/hal-02502127$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ngoc Anh, Pham</creatorcontrib><creatorcontrib>Thi Hoai An, Le</creatorcontrib><title>Modified parallel projection methods for the multivalued lexicographic variational inequalities using proximal operator in Hilbert spaces</title><title>Mathematical methods in the applied sciences</title><description>In this paper, building upon projection methods and parallel splitting‐up techniques with using proximal operators, we propose new algorithms for solving the multivalued lexicographic variational inequalities in a real Hilbert space. First, the strong convergence theorem is shown with Lipschitz continuity of the cost mapping, but it must satisfy a strongly monotone condition. Second, the convergent results are also established to the multivalued lexicographic variational inequalities involving a finite system of demicontractive mappings under mild assumptions imposed on parameters. Finally, some numerical examples are developed to illustrate the behavior of our algorithms with respect to existing algorithms.</description><subject>Algorithms</subject><subject>Computer Science</subject><subject>Convergence</subject><subject>demicontractive mappings</subject><subject>Estimates</subject><subject>Hilbert space</subject><subject>Inequalities</subject><subject>Lipschitz continuous</subject><subject>Mapping</subject><subject>monotone projection methods</subject><subject>multivalued lexicographic variational inequalities</subject><subject>proximal operator</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kc9KAzEQxoMoWKvgIwS86GE1yWb_HYuoFVq8eA-zSbZNyTbbZLfaR_CtzVrx5lwGZn7z8Q0fQteU3FNC2EPbwn1OaXmCJpRUVUJ5kZ-iCaEFSTij_BxdhLAhhJSUsgn6WjplGqMV7sCDtdrizruNlr1xW9zqfu1UwI3zuF9r3A62N3uwQ-St_jTSrTx0ayPxHryB8QYsNlu9G8Ca3uiAh2C2q1Hz07Rx5zrtoY9yZovnxtba9zh0IHW4RGcN2KCvfvsUvT8_vT_Ok8Xby-vjbJHIlBVlkmdQZrVkWclrJaFqOGkUTyVjMn6kSA6yUnXOQDcFKWpacsXripdVKVWqaDpFd0fZNVjR-WjKH4QDI-azhRhnhGWEUVbsR_bmyEb7u0GHXmzc4OOLQbC0oBlPx5qi2yMlvQvB6-ZPlhIxZiJiJmLMJKLJEf0wVh_-5cRyOfvhvwEexZAr</recordid><startdate>202004</startdate><enddate>202004</enddate><creator>Ngoc Anh, Pham</creator><creator>Thi Hoai An, Le</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-3187-4993</orcidid><orcidid>https://orcid.org/0000-0002-2239-2100</orcidid></search><sort><creationdate>202004</creationdate><title>Modified parallel projection methods for the multivalued lexicographic variational inequalities using proximal operator in Hilbert spaces</title><author>Ngoc Anh, Pham ; Thi Hoai An, Le</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3278-65a85bc2584bdca9f40fd43c22c811d06ac9db62aef707b184d4b94898cd3d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Computer Science</topic><topic>Convergence</topic><topic>demicontractive mappings</topic><topic>Estimates</topic><topic>Hilbert space</topic><topic>Inequalities</topic><topic>Lipschitz continuous</topic><topic>Mapping</topic><topic>monotone projection methods</topic><topic>multivalued lexicographic variational inequalities</topic><topic>proximal operator</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ngoc Anh, Pham</creatorcontrib><creatorcontrib>Thi Hoai An, Le</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ngoc Anh, Pham</au><au>Thi Hoai An, Le</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modified parallel projection methods for the multivalued lexicographic variational inequalities using proximal operator in Hilbert spaces</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><date>2020-04</date><risdate>2020</risdate><volume>43</volume><issue>6</issue><spage>3260</spage><epage>3279</epage><pages>3260-3279</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><abstract>In this paper, building upon projection methods and parallel splitting‐up techniques with using proximal operators, we propose new algorithms for solving the multivalued lexicographic variational inequalities in a real Hilbert space. First, the strong convergence theorem is shown with Lipschitz continuity of the cost mapping, but it must satisfy a strongly monotone condition. Second, the convergent results are also established to the multivalued lexicographic variational inequalities involving a finite system of demicontractive mappings under mild assumptions imposed on parameters. Finally, some numerical examples are developed to illustrate the behavior of our algorithms with respect to existing algorithms.</abstract><cop>Freiburg</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mma.6118</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0003-3187-4993</orcidid><orcidid>https://orcid.org/0000-0002-2239-2100</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0170-4214
ispartof Mathematical methods in the applied sciences, 2020-04, Vol.43 (6), p.3260-3279
issn 0170-4214
1099-1476
language eng
recordid cdi_hal_primary_oai_HAL_hal_02502127v1
source Wiley Online Library Journals Frontfile Complete
subjects Algorithms
Computer Science
Convergence
demicontractive mappings
Estimates
Hilbert space
Inequalities
Lipschitz continuous
Mapping
monotone projection methods
multivalued lexicographic variational inequalities
proximal operator
title Modified parallel projection methods for the multivalued lexicographic variational inequalities using proximal operator in Hilbert spaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T20%3A25%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modified%20parallel%20projection%20methods%20for%20the%20multivalued%20lexicographic%20variational%20inequalities%20using%20proximal%20operator%20in%20Hilbert%20spaces&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Ngoc%20Anh,%20Pham&rft.date=2020-04&rft.volume=43&rft.issue=6&rft.spage=3260&rft.epage=3279&rft.pages=3260-3279&rft.issn=0170-4214&rft.eissn=1099-1476&rft_id=info:doi/10.1002/mma.6118&rft_dat=%3Cproquest_hal_p%3E2371543333%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2371543333&rft_id=info:pmid/&rfr_iscdi=true