Modified parallel projection methods for the multivalued lexicographic variational inequalities using proximal operator in Hilbert spaces
In this paper, building upon projection methods and parallel splitting‐up techniques with using proximal operators, we propose new algorithms for solving the multivalued lexicographic variational inequalities in a real Hilbert space. First, the strong convergence theorem is shown with Lipschitz cont...
Gespeichert in:
Veröffentlicht in: | Mathematical methods in the applied sciences 2020-04, Vol.43 (6), p.3260-3279 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3279 |
---|---|
container_issue | 6 |
container_start_page | 3260 |
container_title | Mathematical methods in the applied sciences |
container_volume | 43 |
creator | Ngoc Anh, Pham Thi Hoai An, Le |
description | In this paper, building upon projection methods and parallel splitting‐up techniques with using proximal operators, we propose new algorithms for solving the multivalued lexicographic variational inequalities in a real Hilbert space. First, the strong convergence theorem is shown with Lipschitz continuity of the cost mapping, but it must satisfy a strongly monotone condition. Second, the convergent results are also established to the multivalued lexicographic variational inequalities involving a finite system of demicontractive mappings under mild assumptions imposed on parameters. Finally, some numerical examples are developed to illustrate the behavior of our algorithms with respect to existing algorithms. |
doi_str_mv | 10.1002/mma.6118 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02502127v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2371543333</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3278-65a85bc2584bdca9f40fd43c22c811d06ac9db62aef707b184d4b94898cd3d13</originalsourceid><addsrcrecordid>eNp1kc9KAzEQxoMoWKvgIwS86GE1yWb_HYuoFVq8eA-zSbZNyTbbZLfaR_CtzVrx5lwGZn7z8Q0fQteU3FNC2EPbwn1OaXmCJpRUVUJ5kZ-iCaEFSTij_BxdhLAhhJSUsgn6WjplGqMV7sCDtdrizruNlr1xW9zqfu1UwI3zuF9r3A62N3uwQ-St_jTSrTx0ayPxHryB8QYsNlu9G8Ca3uiAh2C2q1Hz07Rx5zrtoY9yZovnxtba9zh0IHW4RGcN2KCvfvsUvT8_vT_Ok8Xby-vjbJHIlBVlkmdQZrVkWclrJaFqOGkUTyVjMn6kSA6yUnXOQDcFKWpacsXripdVKVWqaDpFd0fZNVjR-WjKH4QDI-azhRhnhGWEUVbsR_bmyEb7u0GHXmzc4OOLQbC0oBlPx5qi2yMlvQvB6-ZPlhIxZiJiJmLMJKLJEf0wVh_-5cRyOfvhvwEexZAr</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2371543333</pqid></control><display><type>article</type><title>Modified parallel projection methods for the multivalued lexicographic variational inequalities using proximal operator in Hilbert spaces</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Ngoc Anh, Pham ; Thi Hoai An, Le</creator><creatorcontrib>Ngoc Anh, Pham ; Thi Hoai An, Le</creatorcontrib><description>In this paper, building upon projection methods and parallel splitting‐up techniques with using proximal operators, we propose new algorithms for solving the multivalued lexicographic variational inequalities in a real Hilbert space. First, the strong convergence theorem is shown with Lipschitz continuity of the cost mapping, but it must satisfy a strongly monotone condition. Second, the convergent results are also established to the multivalued lexicographic variational inequalities involving a finite system of demicontractive mappings under mild assumptions imposed on parameters. Finally, some numerical examples are developed to illustrate the behavior of our algorithms with respect to existing algorithms.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.6118</identifier><language>eng</language><publisher>Freiburg: Wiley Subscription Services, Inc</publisher><subject>Algorithms ; Computer Science ; Convergence ; demicontractive mappings ; Estimates ; Hilbert space ; Inequalities ; Lipschitz continuous ; Mapping ; monotone projection methods ; multivalued lexicographic variational inequalities ; proximal operator</subject><ispartof>Mathematical methods in the applied sciences, 2020-04, Vol.43 (6), p.3260-3279</ispartof><rights>2019 John Wiley & Sons, Ltd.</rights><rights>2020 John Wiley & Sons, Ltd.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3278-65a85bc2584bdca9f40fd43c22c811d06ac9db62aef707b184d4b94898cd3d13</citedby><cites>FETCH-LOGICAL-c3278-65a85bc2584bdca9f40fd43c22c811d06ac9db62aef707b184d4b94898cd3d13</cites><orcidid>0000-0003-3187-4993 ; 0000-0002-2239-2100</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmma.6118$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmma.6118$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://hal.univ-lorraine.fr/hal-02502127$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ngoc Anh, Pham</creatorcontrib><creatorcontrib>Thi Hoai An, Le</creatorcontrib><title>Modified parallel projection methods for the multivalued lexicographic variational inequalities using proximal operator in Hilbert spaces</title><title>Mathematical methods in the applied sciences</title><description>In this paper, building upon projection methods and parallel splitting‐up techniques with using proximal operators, we propose new algorithms for solving the multivalued lexicographic variational inequalities in a real Hilbert space. First, the strong convergence theorem is shown with Lipschitz continuity of the cost mapping, but it must satisfy a strongly monotone condition. Second, the convergent results are also established to the multivalued lexicographic variational inequalities involving a finite system of demicontractive mappings under mild assumptions imposed on parameters. Finally, some numerical examples are developed to illustrate the behavior of our algorithms with respect to existing algorithms.</description><subject>Algorithms</subject><subject>Computer Science</subject><subject>Convergence</subject><subject>demicontractive mappings</subject><subject>Estimates</subject><subject>Hilbert space</subject><subject>Inequalities</subject><subject>Lipschitz continuous</subject><subject>Mapping</subject><subject>monotone projection methods</subject><subject>multivalued lexicographic variational inequalities</subject><subject>proximal operator</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kc9KAzEQxoMoWKvgIwS86GE1yWb_HYuoFVq8eA-zSbZNyTbbZLfaR_CtzVrx5lwGZn7z8Q0fQteU3FNC2EPbwn1OaXmCJpRUVUJ5kZ-iCaEFSTij_BxdhLAhhJSUsgn6WjplGqMV7sCDtdrizruNlr1xW9zqfu1UwI3zuF9r3A62N3uwQ-St_jTSrTx0ayPxHryB8QYsNlu9G8Ca3uiAh2C2q1Hz07Rx5zrtoY9yZovnxtba9zh0IHW4RGcN2KCvfvsUvT8_vT_Ok8Xby-vjbJHIlBVlkmdQZrVkWclrJaFqOGkUTyVjMn6kSA6yUnXOQDcFKWpacsXripdVKVWqaDpFd0fZNVjR-WjKH4QDI-azhRhnhGWEUVbsR_bmyEb7u0GHXmzc4OOLQbC0oBlPx5qi2yMlvQvB6-ZPlhIxZiJiJmLMJKLJEf0wVh_-5cRyOfvhvwEexZAr</recordid><startdate>202004</startdate><enddate>202004</enddate><creator>Ngoc Anh, Pham</creator><creator>Thi Hoai An, Le</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-3187-4993</orcidid><orcidid>https://orcid.org/0000-0002-2239-2100</orcidid></search><sort><creationdate>202004</creationdate><title>Modified parallel projection methods for the multivalued lexicographic variational inequalities using proximal operator in Hilbert spaces</title><author>Ngoc Anh, Pham ; Thi Hoai An, Le</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3278-65a85bc2584bdca9f40fd43c22c811d06ac9db62aef707b184d4b94898cd3d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Computer Science</topic><topic>Convergence</topic><topic>demicontractive mappings</topic><topic>Estimates</topic><topic>Hilbert space</topic><topic>Inequalities</topic><topic>Lipschitz continuous</topic><topic>Mapping</topic><topic>monotone projection methods</topic><topic>multivalued lexicographic variational inequalities</topic><topic>proximal operator</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ngoc Anh, Pham</creatorcontrib><creatorcontrib>Thi Hoai An, Le</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ngoc Anh, Pham</au><au>Thi Hoai An, Le</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modified parallel projection methods for the multivalued lexicographic variational inequalities using proximal operator in Hilbert spaces</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><date>2020-04</date><risdate>2020</risdate><volume>43</volume><issue>6</issue><spage>3260</spage><epage>3279</epage><pages>3260-3279</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><abstract>In this paper, building upon projection methods and parallel splitting‐up techniques with using proximal operators, we propose new algorithms for solving the multivalued lexicographic variational inequalities in a real Hilbert space. First, the strong convergence theorem is shown with Lipschitz continuity of the cost mapping, but it must satisfy a strongly monotone condition. Second, the convergent results are also established to the multivalued lexicographic variational inequalities involving a finite system of demicontractive mappings under mild assumptions imposed on parameters. Finally, some numerical examples are developed to illustrate the behavior of our algorithms with respect to existing algorithms.</abstract><cop>Freiburg</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mma.6118</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0003-3187-4993</orcidid><orcidid>https://orcid.org/0000-0002-2239-2100</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0170-4214 |
ispartof | Mathematical methods in the applied sciences, 2020-04, Vol.43 (6), p.3260-3279 |
issn | 0170-4214 1099-1476 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02502127v1 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Algorithms Computer Science Convergence demicontractive mappings Estimates Hilbert space Inequalities Lipschitz continuous Mapping monotone projection methods multivalued lexicographic variational inequalities proximal operator |
title | Modified parallel projection methods for the multivalued lexicographic variational inequalities using proximal operator in Hilbert spaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T20%3A25%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modified%20parallel%20projection%20methods%20for%20the%20multivalued%20lexicographic%20variational%20inequalities%20using%20proximal%20operator%20in%20Hilbert%20spaces&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Ngoc%20Anh,%20Pham&rft.date=2020-04&rft.volume=43&rft.issue=6&rft.spage=3260&rft.epage=3279&rft.pages=3260-3279&rft.issn=0170-4214&rft.eissn=1099-1476&rft_id=info:doi/10.1002/mma.6118&rft_dat=%3Cproquest_hal_p%3E2371543333%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2371543333&rft_id=info:pmid/&rfr_iscdi=true |