Computer-Assisted Proof of Loss of Ergodicity by Symmetry Breaking in Expanding Coupled Maps
From a dynamical viewpoint, basic phase transitions of statistical mechanics can be regarded as a loss of ergodicity. While many random interacting particle models exhibiting such transitions at the thermodynamics limit exist, finite-dimensional examples with deterministic dynamics on a chaotic attr...
Gespeichert in:
Veröffentlicht in: | Annales Henri Poincaré 2020-02, Vol.21 (2), p.649-674 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 674 |
---|---|
container_issue | 2 |
container_start_page | 649 |
container_title | Annales Henri Poincaré |
container_volume | 21 |
creator | Fernandez, Bastien |
description | From a dynamical viewpoint, basic phase transitions of statistical mechanics can be regarded as a loss of ergodicity. While many random interacting particle models exhibiting such transitions at the thermodynamics limit exist, finite-dimensional examples with deterministic dynamics on a chaotic attractor are rare, if at all existent. Here, the dynamics of a family of
N
coupled expanding circle maps is investigated in a parameter regime where absolutely continuous invariant measures are known to exist. At first, empirical evidence is given of symmetry breaking of the ergodic components upon increase in the coupling strength, suggesting that loss of ergodicity should occur for every integer
N
>
2
. Then, a numerical algorithm is proposed which aims to rigorously construct asymmetric ergodic components of positive Lebesgue measure. Due to the explosive growth of the required computational resources, the algorithm successfully terminates for small values of
N
only. However, this approach shows that phase transitions should be provable for systems of arbitrary number of particles with erratic dynamics, in a purely deterministic setting, without any reference to random processes. |
doi_str_mv | 10.1007/s00023-019-00876-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02500007v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2346493881</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-35512f3fd9898d1564220c3b765505e58bd93b690a8dbd4eabb9d96b7795d5553</originalsourceid><addsrcrecordid>eNp9kMFKxDAURYMoOI7-gKuCKxfVl6Rpm-U4jI5QUVB3QkibdOw4bWrSiv17Uyu6EwIvCedeHgehUwwXGCC5dABAaAiYhwBpEodkD81wRKIQ4hjv_95pcoiOnNsCYJJSPkMvS1O3fadtuHCucp1WwYM1pgz8yYxz41zZjVFVUXVDkA_B41DXurNDcGW1fKuaTVA1weqzlY0aH0vTtzvfcidbd4wOSrlz-uRnztHz9eppuQ6z-5vb5SILC8poF1LGMClpqXjKU4VZHBECBc2TmDFgmqW54jSPOchU5SrSMs-54nGeJJwpxhido_Op91XuRGurWtpBGFmJ9SIT4x8Q5gVB8oE9ezaxrTXvvXad2JreNn49QWgUR5ym6UiRiSqsl2B1-VuLQYzGxWRceOPi27hPzxGdQs7DzUbbv-p_Ul_j_4HV</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2346493881</pqid></control><display><type>article</type><title>Computer-Assisted Proof of Loss of Ergodicity by Symmetry Breaking in Expanding Coupled Maps</title><source>SpringerLink Journals - AutoHoldings</source><creator>Fernandez, Bastien</creator><creatorcontrib>Fernandez, Bastien</creatorcontrib><description>From a dynamical viewpoint, basic phase transitions of statistical mechanics can be regarded as a loss of ergodicity. While many random interacting particle models exhibiting such transitions at the thermodynamics limit exist, finite-dimensional examples with deterministic dynamics on a chaotic attractor are rare, if at all existent. Here, the dynamics of a family of
N
coupled expanding circle maps is investigated in a parameter regime where absolutely continuous invariant measures are known to exist. At first, empirical evidence is given of symmetry breaking of the ergodic components upon increase in the coupling strength, suggesting that loss of ergodicity should occur for every integer
N
>
2
. Then, a numerical algorithm is proposed which aims to rigorously construct asymmetric ergodic components of positive Lebesgue measure. Due to the explosive growth of the required computational resources, the algorithm successfully terminates for small values of
N
only. However, this approach shows that phase transitions should be provable for systems of arbitrary number of particles with erratic dynamics, in a purely deterministic setting, without any reference to random processes.</description><identifier>ISSN: 1424-0637</identifier><identifier>EISSN: 1424-0661</identifier><identifier>DOI: 10.1007/s00023-019-00876-2</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algorithms ; Broken symmetry ; Chaotic Dynamics ; Classical and Quantum Gravitation ; Dynamical Systems ; Dynamical Systems and Ergodic Theory ; Elementary Particles ; Ergodic processes ; Mathematical and Computational Physics ; Mathematical Methods in Physics ; Mathematical Physics ; Mathematics ; Nonlinear Sciences ; Numerical analysis ; Phase transitions ; Physics ; Physics and Astronomy ; Quantum Field Theory ; Quantum Physics ; Random processes ; Relativity Theory ; Statistical mechanics ; Theoretical</subject><ispartof>Annales Henri Poincaré, 2020-02, Vol.21 (2), p.649-674</ispartof><rights>Springer Nature Switzerland AG 2019</rights><rights>2019© Springer Nature Switzerland AG 2019</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-35512f3fd9898d1564220c3b765505e58bd93b690a8dbd4eabb9d96b7795d5553</citedby><cites>FETCH-LOGICAL-c353t-35512f3fd9898d1564220c3b765505e58bd93b690a8dbd4eabb9d96b7795d5553</cites><orcidid>0000-0001-8560-0934</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00023-019-00876-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00023-019-00876-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02500007$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Fernandez, Bastien</creatorcontrib><title>Computer-Assisted Proof of Loss of Ergodicity by Symmetry Breaking in Expanding Coupled Maps</title><title>Annales Henri Poincaré</title><addtitle>Ann. Henri Poincaré</addtitle><description>From a dynamical viewpoint, basic phase transitions of statistical mechanics can be regarded as a loss of ergodicity. While many random interacting particle models exhibiting such transitions at the thermodynamics limit exist, finite-dimensional examples with deterministic dynamics on a chaotic attractor are rare, if at all existent. Here, the dynamics of a family of
N
coupled expanding circle maps is investigated in a parameter regime where absolutely continuous invariant measures are known to exist. At first, empirical evidence is given of symmetry breaking of the ergodic components upon increase in the coupling strength, suggesting that loss of ergodicity should occur for every integer
N
>
2
. Then, a numerical algorithm is proposed which aims to rigorously construct asymmetric ergodic components of positive Lebesgue measure. Due to the explosive growth of the required computational resources, the algorithm successfully terminates for small values of
N
only. However, this approach shows that phase transitions should be provable for systems of arbitrary number of particles with erratic dynamics, in a purely deterministic setting, without any reference to random processes.</description><subject>Algorithms</subject><subject>Broken symmetry</subject><subject>Chaotic Dynamics</subject><subject>Classical and Quantum Gravitation</subject><subject>Dynamical Systems</subject><subject>Dynamical Systems and Ergodic Theory</subject><subject>Elementary Particles</subject><subject>Ergodic processes</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematical Physics</subject><subject>Mathematics</subject><subject>Nonlinear Sciences</subject><subject>Numerical analysis</subject><subject>Phase transitions</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Field Theory</subject><subject>Quantum Physics</subject><subject>Random processes</subject><subject>Relativity Theory</subject><subject>Statistical mechanics</subject><subject>Theoretical</subject><issn>1424-0637</issn><issn>1424-0661</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKxDAURYMoOI7-gKuCKxfVl6Rpm-U4jI5QUVB3QkibdOw4bWrSiv17Uyu6EwIvCedeHgehUwwXGCC5dABAaAiYhwBpEodkD81wRKIQ4hjv_95pcoiOnNsCYJJSPkMvS1O3fadtuHCucp1WwYM1pgz8yYxz41zZjVFVUXVDkA_B41DXurNDcGW1fKuaTVA1weqzlY0aH0vTtzvfcidbd4wOSrlz-uRnztHz9eppuQ6z-5vb5SILC8poF1LGMClpqXjKU4VZHBECBc2TmDFgmqW54jSPOchU5SrSMs-54nGeJJwpxhido_Op91XuRGurWtpBGFmJ9SIT4x8Q5gVB8oE9ezaxrTXvvXad2JreNn49QWgUR5ym6UiRiSqsl2B1-VuLQYzGxWRceOPi27hPzxGdQs7DzUbbv-p_Ul_j_4HV</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Fernandez, Bastien</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-8560-0934</orcidid></search><sort><creationdate>20200201</creationdate><title>Computer-Assisted Proof of Loss of Ergodicity by Symmetry Breaking in Expanding Coupled Maps</title><author>Fernandez, Bastien</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-35512f3fd9898d1564220c3b765505e58bd93b690a8dbd4eabb9d96b7795d5553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Broken symmetry</topic><topic>Chaotic Dynamics</topic><topic>Classical and Quantum Gravitation</topic><topic>Dynamical Systems</topic><topic>Dynamical Systems and Ergodic Theory</topic><topic>Elementary Particles</topic><topic>Ergodic processes</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematical Physics</topic><topic>Mathematics</topic><topic>Nonlinear Sciences</topic><topic>Numerical analysis</topic><topic>Phase transitions</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Field Theory</topic><topic>Quantum Physics</topic><topic>Random processes</topic><topic>Relativity Theory</topic><topic>Statistical mechanics</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fernandez, Bastien</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Annales Henri Poincaré</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fernandez, Bastien</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computer-Assisted Proof of Loss of Ergodicity by Symmetry Breaking in Expanding Coupled Maps</atitle><jtitle>Annales Henri Poincaré</jtitle><stitle>Ann. Henri Poincaré</stitle><date>2020-02-01</date><risdate>2020</risdate><volume>21</volume><issue>2</issue><spage>649</spage><epage>674</epage><pages>649-674</pages><issn>1424-0637</issn><eissn>1424-0661</eissn><abstract>From a dynamical viewpoint, basic phase transitions of statistical mechanics can be regarded as a loss of ergodicity. While many random interacting particle models exhibiting such transitions at the thermodynamics limit exist, finite-dimensional examples with deterministic dynamics on a chaotic attractor are rare, if at all existent. Here, the dynamics of a family of
N
coupled expanding circle maps is investigated in a parameter regime where absolutely continuous invariant measures are known to exist. At first, empirical evidence is given of symmetry breaking of the ergodic components upon increase in the coupling strength, suggesting that loss of ergodicity should occur for every integer
N
>
2
. Then, a numerical algorithm is proposed which aims to rigorously construct asymmetric ergodic components of positive Lebesgue measure. Due to the explosive growth of the required computational resources, the algorithm successfully terminates for small values of
N
only. However, this approach shows that phase transitions should be provable for systems of arbitrary number of particles with erratic dynamics, in a purely deterministic setting, without any reference to random processes.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00023-019-00876-2</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0001-8560-0934</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1424-0637 |
ispartof | Annales Henri Poincaré, 2020-02, Vol.21 (2), p.649-674 |
issn | 1424-0637 1424-0661 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02500007v1 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algorithms Broken symmetry Chaotic Dynamics Classical and Quantum Gravitation Dynamical Systems Dynamical Systems and Ergodic Theory Elementary Particles Ergodic processes Mathematical and Computational Physics Mathematical Methods in Physics Mathematical Physics Mathematics Nonlinear Sciences Numerical analysis Phase transitions Physics Physics and Astronomy Quantum Field Theory Quantum Physics Random processes Relativity Theory Statistical mechanics Theoretical |
title | Computer-Assisted Proof of Loss of Ergodicity by Symmetry Breaking in Expanding Coupled Maps |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T01%3A08%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computer-Assisted%20Proof%20of%20Loss%20of%20Ergodicity%20by%20Symmetry%20Breaking%20in%20Expanding%20Coupled%20Maps&rft.jtitle=Annales%20Henri%20Poincar%C3%A9&rft.au=Fernandez,%20Bastien&rft.date=2020-02-01&rft.volume=21&rft.issue=2&rft.spage=649&rft.epage=674&rft.pages=649-674&rft.issn=1424-0637&rft.eissn=1424-0661&rft_id=info:doi/10.1007/s00023-019-00876-2&rft_dat=%3Cproquest_hal_p%3E2346493881%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2346493881&rft_id=info:pmid/&rfr_iscdi=true |