Computer-Assisted Proof of Loss of Ergodicity by Symmetry Breaking in Expanding Coupled Maps

From a dynamical viewpoint, basic phase transitions of statistical mechanics can be regarded as a loss of ergodicity. While many random interacting particle models exhibiting such transitions at the thermodynamics limit exist, finite-dimensional examples with deterministic dynamics on a chaotic attr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annales Henri Poincaré 2020-02, Vol.21 (2), p.649-674
1. Verfasser: Fernandez, Bastien
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 674
container_issue 2
container_start_page 649
container_title Annales Henri Poincaré
container_volume 21
creator Fernandez, Bastien
description From a dynamical viewpoint, basic phase transitions of statistical mechanics can be regarded as a loss of ergodicity. While many random interacting particle models exhibiting such transitions at the thermodynamics limit exist, finite-dimensional examples with deterministic dynamics on a chaotic attractor are rare, if at all existent. Here, the dynamics of a family of N coupled expanding circle maps is investigated in a parameter regime where absolutely continuous invariant measures are known to exist. At first, empirical evidence is given of symmetry breaking of the ergodic components upon increase in the coupling strength, suggesting that loss of ergodicity should occur for every integer N > 2 . Then, a numerical algorithm is proposed which aims to rigorously construct asymmetric ergodic components of positive Lebesgue measure. Due to the explosive growth of the required computational resources, the algorithm successfully terminates for small values of N only. However, this approach shows that phase transitions should be provable for systems of arbitrary number of particles with erratic dynamics, in a purely deterministic setting, without any reference to random processes.
doi_str_mv 10.1007/s00023-019-00876-2
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02500007v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2346493881</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-35512f3fd9898d1564220c3b765505e58bd93b690a8dbd4eabb9d96b7795d5553</originalsourceid><addsrcrecordid>eNp9kMFKxDAURYMoOI7-gKuCKxfVl6Rpm-U4jI5QUVB3QkibdOw4bWrSiv17Uyu6EwIvCedeHgehUwwXGCC5dABAaAiYhwBpEodkD81wRKIQ4hjv_95pcoiOnNsCYJJSPkMvS1O3fadtuHCucp1WwYM1pgz8yYxz41zZjVFVUXVDkA_B41DXurNDcGW1fKuaTVA1weqzlY0aH0vTtzvfcidbd4wOSrlz-uRnztHz9eppuQ6z-5vb5SILC8poF1LGMClpqXjKU4VZHBECBc2TmDFgmqW54jSPOchU5SrSMs-54nGeJJwpxhido_Op91XuRGurWtpBGFmJ9SIT4x8Q5gVB8oE9ezaxrTXvvXad2JreNn49QWgUR5ym6UiRiSqsl2B1-VuLQYzGxWRceOPi27hPzxGdQs7DzUbbv-p_Ul_j_4HV</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2346493881</pqid></control><display><type>article</type><title>Computer-Assisted Proof of Loss of Ergodicity by Symmetry Breaking in Expanding Coupled Maps</title><source>SpringerLink Journals - AutoHoldings</source><creator>Fernandez, Bastien</creator><creatorcontrib>Fernandez, Bastien</creatorcontrib><description>From a dynamical viewpoint, basic phase transitions of statistical mechanics can be regarded as a loss of ergodicity. While many random interacting particle models exhibiting such transitions at the thermodynamics limit exist, finite-dimensional examples with deterministic dynamics on a chaotic attractor are rare, if at all existent. Here, the dynamics of a family of N coupled expanding circle maps is investigated in a parameter regime where absolutely continuous invariant measures are known to exist. At first, empirical evidence is given of symmetry breaking of the ergodic components upon increase in the coupling strength, suggesting that loss of ergodicity should occur for every integer N &gt; 2 . Then, a numerical algorithm is proposed which aims to rigorously construct asymmetric ergodic components of positive Lebesgue measure. Due to the explosive growth of the required computational resources, the algorithm successfully terminates for small values of N only. However, this approach shows that phase transitions should be provable for systems of arbitrary number of particles with erratic dynamics, in a purely deterministic setting, without any reference to random processes.</description><identifier>ISSN: 1424-0637</identifier><identifier>EISSN: 1424-0661</identifier><identifier>DOI: 10.1007/s00023-019-00876-2</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algorithms ; Broken symmetry ; Chaotic Dynamics ; Classical and Quantum Gravitation ; Dynamical Systems ; Dynamical Systems and Ergodic Theory ; Elementary Particles ; Ergodic processes ; Mathematical and Computational Physics ; Mathematical Methods in Physics ; Mathematical Physics ; Mathematics ; Nonlinear Sciences ; Numerical analysis ; Phase transitions ; Physics ; Physics and Astronomy ; Quantum Field Theory ; Quantum Physics ; Random processes ; Relativity Theory ; Statistical mechanics ; Theoretical</subject><ispartof>Annales Henri Poincaré, 2020-02, Vol.21 (2), p.649-674</ispartof><rights>Springer Nature Switzerland AG 2019</rights><rights>2019© Springer Nature Switzerland AG 2019</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-35512f3fd9898d1564220c3b765505e58bd93b690a8dbd4eabb9d96b7795d5553</citedby><cites>FETCH-LOGICAL-c353t-35512f3fd9898d1564220c3b765505e58bd93b690a8dbd4eabb9d96b7795d5553</cites><orcidid>0000-0001-8560-0934</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00023-019-00876-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00023-019-00876-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02500007$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Fernandez, Bastien</creatorcontrib><title>Computer-Assisted Proof of Loss of Ergodicity by Symmetry Breaking in Expanding Coupled Maps</title><title>Annales Henri Poincaré</title><addtitle>Ann. Henri Poincaré</addtitle><description>From a dynamical viewpoint, basic phase transitions of statistical mechanics can be regarded as a loss of ergodicity. While many random interacting particle models exhibiting such transitions at the thermodynamics limit exist, finite-dimensional examples with deterministic dynamics on a chaotic attractor are rare, if at all existent. Here, the dynamics of a family of N coupled expanding circle maps is investigated in a parameter regime where absolutely continuous invariant measures are known to exist. At first, empirical evidence is given of symmetry breaking of the ergodic components upon increase in the coupling strength, suggesting that loss of ergodicity should occur for every integer N &gt; 2 . Then, a numerical algorithm is proposed which aims to rigorously construct asymmetric ergodic components of positive Lebesgue measure. Due to the explosive growth of the required computational resources, the algorithm successfully terminates for small values of N only. However, this approach shows that phase transitions should be provable for systems of arbitrary number of particles with erratic dynamics, in a purely deterministic setting, without any reference to random processes.</description><subject>Algorithms</subject><subject>Broken symmetry</subject><subject>Chaotic Dynamics</subject><subject>Classical and Quantum Gravitation</subject><subject>Dynamical Systems</subject><subject>Dynamical Systems and Ergodic Theory</subject><subject>Elementary Particles</subject><subject>Ergodic processes</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematical Physics</subject><subject>Mathematics</subject><subject>Nonlinear Sciences</subject><subject>Numerical analysis</subject><subject>Phase transitions</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Field Theory</subject><subject>Quantum Physics</subject><subject>Random processes</subject><subject>Relativity Theory</subject><subject>Statistical mechanics</subject><subject>Theoretical</subject><issn>1424-0637</issn><issn>1424-0661</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKxDAURYMoOI7-gKuCKxfVl6Rpm-U4jI5QUVB3QkibdOw4bWrSiv17Uyu6EwIvCedeHgehUwwXGCC5dABAaAiYhwBpEodkD81wRKIQ4hjv_95pcoiOnNsCYJJSPkMvS1O3fadtuHCucp1WwYM1pgz8yYxz41zZjVFVUXVDkA_B41DXurNDcGW1fKuaTVA1weqzlY0aH0vTtzvfcidbd4wOSrlz-uRnztHz9eppuQ6z-5vb5SILC8poF1LGMClpqXjKU4VZHBECBc2TmDFgmqW54jSPOchU5SrSMs-54nGeJJwpxhido_Op91XuRGurWtpBGFmJ9SIT4x8Q5gVB8oE9ezaxrTXvvXad2JreNn49QWgUR5ym6UiRiSqsl2B1-VuLQYzGxWRceOPi27hPzxGdQs7DzUbbv-p_Ul_j_4HV</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Fernandez, Bastien</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-8560-0934</orcidid></search><sort><creationdate>20200201</creationdate><title>Computer-Assisted Proof of Loss of Ergodicity by Symmetry Breaking in Expanding Coupled Maps</title><author>Fernandez, Bastien</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-35512f3fd9898d1564220c3b765505e58bd93b690a8dbd4eabb9d96b7795d5553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Broken symmetry</topic><topic>Chaotic Dynamics</topic><topic>Classical and Quantum Gravitation</topic><topic>Dynamical Systems</topic><topic>Dynamical Systems and Ergodic Theory</topic><topic>Elementary Particles</topic><topic>Ergodic processes</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematical Physics</topic><topic>Mathematics</topic><topic>Nonlinear Sciences</topic><topic>Numerical analysis</topic><topic>Phase transitions</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Field Theory</topic><topic>Quantum Physics</topic><topic>Random processes</topic><topic>Relativity Theory</topic><topic>Statistical mechanics</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fernandez, Bastien</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Annales Henri Poincaré</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fernandez, Bastien</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computer-Assisted Proof of Loss of Ergodicity by Symmetry Breaking in Expanding Coupled Maps</atitle><jtitle>Annales Henri Poincaré</jtitle><stitle>Ann. Henri Poincaré</stitle><date>2020-02-01</date><risdate>2020</risdate><volume>21</volume><issue>2</issue><spage>649</spage><epage>674</epage><pages>649-674</pages><issn>1424-0637</issn><eissn>1424-0661</eissn><abstract>From a dynamical viewpoint, basic phase transitions of statistical mechanics can be regarded as a loss of ergodicity. While many random interacting particle models exhibiting such transitions at the thermodynamics limit exist, finite-dimensional examples with deterministic dynamics on a chaotic attractor are rare, if at all existent. Here, the dynamics of a family of N coupled expanding circle maps is investigated in a parameter regime where absolutely continuous invariant measures are known to exist. At first, empirical evidence is given of symmetry breaking of the ergodic components upon increase in the coupling strength, suggesting that loss of ergodicity should occur for every integer N &gt; 2 . Then, a numerical algorithm is proposed which aims to rigorously construct asymmetric ergodic components of positive Lebesgue measure. Due to the explosive growth of the required computational resources, the algorithm successfully terminates for small values of N only. However, this approach shows that phase transitions should be provable for systems of arbitrary number of particles with erratic dynamics, in a purely deterministic setting, without any reference to random processes.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00023-019-00876-2</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0001-8560-0934</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1424-0637
ispartof Annales Henri Poincaré, 2020-02, Vol.21 (2), p.649-674
issn 1424-0637
1424-0661
language eng
recordid cdi_hal_primary_oai_HAL_hal_02500007v1
source SpringerLink Journals - AutoHoldings
subjects Algorithms
Broken symmetry
Chaotic Dynamics
Classical and Quantum Gravitation
Dynamical Systems
Dynamical Systems and Ergodic Theory
Elementary Particles
Ergodic processes
Mathematical and Computational Physics
Mathematical Methods in Physics
Mathematical Physics
Mathematics
Nonlinear Sciences
Numerical analysis
Phase transitions
Physics
Physics and Astronomy
Quantum Field Theory
Quantum Physics
Random processes
Relativity Theory
Statistical mechanics
Theoretical
title Computer-Assisted Proof of Loss of Ergodicity by Symmetry Breaking in Expanding Coupled Maps
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T01%3A08%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computer-Assisted%20Proof%20of%20Loss%20of%20Ergodicity%20by%20Symmetry%20Breaking%20in%20Expanding%20Coupled%20Maps&rft.jtitle=Annales%20Henri%20Poincar%C3%A9&rft.au=Fernandez,%20Bastien&rft.date=2020-02-01&rft.volume=21&rft.issue=2&rft.spage=649&rft.epage=674&rft.pages=649-674&rft.issn=1424-0637&rft.eissn=1424-0661&rft_id=info:doi/10.1007/s00023-019-00876-2&rft_dat=%3Cproquest_hal_p%3E2346493881%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2346493881&rft_id=info:pmid/&rfr_iscdi=true