High energy primary lithium battery using oxidized sub-fluorinated graphite fluorides

[Display omitted] •Energy density of 2825 Wh.Kg−1 in primary lithium battery is achieved with fluorinated carbons.•Graphite oxyfluorides were synthesized.•Defected graphite fluorides are obtained via oxidation of sub-fluorinated graphites. Different graphite oxyfluorides were synthesized via Hummer&...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluorine chemistry 2019-11, Vol.227, p.109369, Article 109369
Hauptverfasser: Mar, M., Dubois, M., Guérin, K., Batisse, N., Simon, B., Bernard, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 109369
container_title Journal of fluorine chemistry
container_volume 227
creator Mar, M.
Dubois, M.
Guérin, K.
Batisse, N.
Simon, B.
Bernard, P.
description [Display omitted] •Energy density of 2825 Wh.Kg−1 in primary lithium battery is achieved with fluorinated carbons.•Graphite oxyfluorides were synthesized.•Defected graphite fluorides are obtained via oxidation of sub-fluorinated graphites. Different graphite oxyfluorides were synthesized via Hummer's oxidation of sub-fluorinated graphites in order to maintain sp2 carbon atoms available for the oxidation, C–F bonds being non-reactive. In comparison with the graphite fluoride precursors, significant improvement of the energy density in primary lithium battery is achieved when the graphite oxyfluorides are used as cathode. When the Hummer's oxidation was carried out on graphite fluoride with both CF0.60 composition and a homogenous dispersion of non-fluorinated regions into fluorinated lattice, oxidation focused on the remaining sp2 carbon atoms and decomposed them. Defected graphite fluorides were then synthesized. The highest ever measured energy density in primary lithium battery with fluorinated carbons as cathode, i.e. 2825 Wh.Kg−1, was reached with this particular sample. Solid state NMR allowed the functional groups C–F, COC, COH, COOH and sp2 C to be quantified in graphite oxyfluorides and fluorides and their role in electrochemical processes to be highlighted.
doi_str_mv 10.1016/j.jfluchem.2019.109369
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02499890v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022113919302647</els_id><sourcerecordid>2327315034</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-9b35e8c5070df0d60f2b12d05167bb253300727d20e652bc7ff79a0f0771068c3</originalsourceid><addsrcrecordid>eNqFUEFOwzAQtBBIlMIXUCROHFLWdhPHN6oKKFIlLvRsJfYmcdQmxU4q4PW4SuHKaTWj2dnZIeSWwowCTR-aWVNuB13jbsaAykBKnsozMqGZ4DHnLDsnEwDGYkq5vCRX3jcAIEBkE7JZ2aqOsEVXfUV7Z3e5-4q2tq_tsIuKvO8x4MHbtoq6T2vsN5rID0UcLnbOtnkfcOXyfW17jEbSoL8mF2W-9XhzmlOyeX56X67i9dvL63KxjvWcsT6WBU8w00nIYkowKZSsoMxAQlNRFCzhPMRkwjDANGGFFmUpZA4lCEEhzTSfkvvRt8636pRedblVq8VaHTlgcykzCQcatHejdu-6jwF9r5pucG2IpxhngtME-Dyo0lGlXee9w_LPloI61q0a9Vu3OtatxrrD4uO4iOHfg0WnvLbYajTWoe6V6ex_Fj95w4ua</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2327315034</pqid></control><display><type>article</type><title>High energy primary lithium battery using oxidized sub-fluorinated graphite fluorides</title><source>Elsevier ScienceDirect Journals</source><creator>Mar, M. ; Dubois, M. ; Guérin, K. ; Batisse, N. ; Simon, B. ; Bernard, P.</creator><creatorcontrib>Mar, M. ; Dubois, M. ; Guérin, K. ; Batisse, N. ; Simon, B. ; Bernard, P.</creatorcontrib><description>[Display omitted] •Energy density of 2825 Wh.Kg−1 in primary lithium battery is achieved with fluorinated carbons.•Graphite oxyfluorides were synthesized.•Defected graphite fluorides are obtained via oxidation of sub-fluorinated graphites. Different graphite oxyfluorides were synthesized via Hummer's oxidation of sub-fluorinated graphites in order to maintain sp2 carbon atoms available for the oxidation, C–F bonds being non-reactive. In comparison with the graphite fluoride precursors, significant improvement of the energy density in primary lithium battery is achieved when the graphite oxyfluorides are used as cathode. When the Hummer's oxidation was carried out on graphite fluoride with both CF0.60 composition and a homogenous dispersion of non-fluorinated regions into fluorinated lattice, oxidation focused on the remaining sp2 carbon atoms and decomposed them. Defected graphite fluorides were then synthesized. The highest ever measured energy density in primary lithium battery with fluorinated carbons as cathode, i.e. 2825 Wh.Kg−1, was reached with this particular sample. Solid state NMR allowed the functional groups C–F, COC, COH, COOH and sp2 C to be quantified in graphite oxyfluorides and fluorides and their role in electrochemical processes to be highlighted.</description><identifier>ISSN: 0022-1139</identifier><identifier>EISSN: 1873-3328</identifier><identifier>DOI: 10.1016/j.jfluchem.2019.109369</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Carbon ; Cathodes ; Chemical Sciences ; Electrochemistry ; Energy ; Energy density ; Energy measurement ; Fluorides ; Fluorination ; Flux density ; Functional groups ; Graphite ; Graphite oxyfluoride ; Lithium ; Lithium batteries ; Lithium-ion battery ; NMR ; Nuclear magnetic resonance ; Oxidation ; Oxyfluorides ; Solid-gas fluorination ; Synthesis</subject><ispartof>Journal of fluorine chemistry, 2019-11, Vol.227, p.109369, Article 109369</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier BV Nov 2019</rights><rights>Attribution - NonCommercial</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-9b35e8c5070df0d60f2b12d05167bb253300727d20e652bc7ff79a0f0771068c3</citedby><cites>FETCH-LOGICAL-c422t-9b35e8c5070df0d60f2b12d05167bb253300727d20e652bc7ff79a0f0771068c3</cites><orcidid>0000-0002-6184-2143 ; 0000-0002-6596-0905 ; 0000-0003-2501-8496 ; 0000-0002-9192-0931 ; 0000-0001-8797-7444</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022113919302647$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02499890$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Mar, M.</creatorcontrib><creatorcontrib>Dubois, M.</creatorcontrib><creatorcontrib>Guérin, K.</creatorcontrib><creatorcontrib>Batisse, N.</creatorcontrib><creatorcontrib>Simon, B.</creatorcontrib><creatorcontrib>Bernard, P.</creatorcontrib><title>High energy primary lithium battery using oxidized sub-fluorinated graphite fluorides</title><title>Journal of fluorine chemistry</title><description>[Display omitted] •Energy density of 2825 Wh.Kg−1 in primary lithium battery is achieved with fluorinated carbons.•Graphite oxyfluorides were synthesized.•Defected graphite fluorides are obtained via oxidation of sub-fluorinated graphites. Different graphite oxyfluorides were synthesized via Hummer's oxidation of sub-fluorinated graphites in order to maintain sp2 carbon atoms available for the oxidation, C–F bonds being non-reactive. In comparison with the graphite fluoride precursors, significant improvement of the energy density in primary lithium battery is achieved when the graphite oxyfluorides are used as cathode. When the Hummer's oxidation was carried out on graphite fluoride with both CF0.60 composition and a homogenous dispersion of non-fluorinated regions into fluorinated lattice, oxidation focused on the remaining sp2 carbon atoms and decomposed them. Defected graphite fluorides were then synthesized. The highest ever measured energy density in primary lithium battery with fluorinated carbons as cathode, i.e. 2825 Wh.Kg−1, was reached with this particular sample. Solid state NMR allowed the functional groups C–F, COC, COH, COOH and sp2 C to be quantified in graphite oxyfluorides and fluorides and their role in electrochemical processes to be highlighted.</description><subject>Carbon</subject><subject>Cathodes</subject><subject>Chemical Sciences</subject><subject>Electrochemistry</subject><subject>Energy</subject><subject>Energy density</subject><subject>Energy measurement</subject><subject>Fluorides</subject><subject>Fluorination</subject><subject>Flux density</subject><subject>Functional groups</subject><subject>Graphite</subject><subject>Graphite oxyfluoride</subject><subject>Lithium</subject><subject>Lithium batteries</subject><subject>Lithium-ion battery</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Oxidation</subject><subject>Oxyfluorides</subject><subject>Solid-gas fluorination</subject><subject>Synthesis</subject><issn>0022-1139</issn><issn>1873-3328</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFUEFOwzAQtBBIlMIXUCROHFLWdhPHN6oKKFIlLvRsJfYmcdQmxU4q4PW4SuHKaTWj2dnZIeSWwowCTR-aWVNuB13jbsaAykBKnsozMqGZ4DHnLDsnEwDGYkq5vCRX3jcAIEBkE7JZ2aqOsEVXfUV7Z3e5-4q2tq_tsIuKvO8x4MHbtoq6T2vsN5rID0UcLnbOtnkfcOXyfW17jEbSoL8mF2W-9XhzmlOyeX56X67i9dvL63KxjvWcsT6WBU8w00nIYkowKZSsoMxAQlNRFCzhPMRkwjDANGGFFmUpZA4lCEEhzTSfkvvRt8636pRedblVq8VaHTlgcykzCQcatHejdu-6jwF9r5pucG2IpxhngtME-Dyo0lGlXee9w_LPloI61q0a9Vu3OtatxrrD4uO4iOHfg0WnvLbYajTWoe6V6ex_Fj95w4ua</recordid><startdate>201911</startdate><enddate>201911</enddate><creator>Mar, M.</creator><creator>Dubois, M.</creator><creator>Guérin, K.</creator><creator>Batisse, N.</creator><creator>Simon, B.</creator><creator>Bernard, P.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U7</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-6184-2143</orcidid><orcidid>https://orcid.org/0000-0002-6596-0905</orcidid><orcidid>https://orcid.org/0000-0003-2501-8496</orcidid><orcidid>https://orcid.org/0000-0002-9192-0931</orcidid><orcidid>https://orcid.org/0000-0001-8797-7444</orcidid></search><sort><creationdate>201911</creationdate><title>High energy primary lithium battery using oxidized sub-fluorinated graphite fluorides</title><author>Mar, M. ; Dubois, M. ; Guérin, K. ; Batisse, N. ; Simon, B. ; Bernard, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-9b35e8c5070df0d60f2b12d05167bb253300727d20e652bc7ff79a0f0771068c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Carbon</topic><topic>Cathodes</topic><topic>Chemical Sciences</topic><topic>Electrochemistry</topic><topic>Energy</topic><topic>Energy density</topic><topic>Energy measurement</topic><topic>Fluorides</topic><topic>Fluorination</topic><topic>Flux density</topic><topic>Functional groups</topic><topic>Graphite</topic><topic>Graphite oxyfluoride</topic><topic>Lithium</topic><topic>Lithium batteries</topic><topic>Lithium-ion battery</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Oxidation</topic><topic>Oxyfluorides</topic><topic>Solid-gas fluorination</topic><topic>Synthesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mar, M.</creatorcontrib><creatorcontrib>Dubois, M.</creatorcontrib><creatorcontrib>Guérin, K.</creatorcontrib><creatorcontrib>Batisse, N.</creatorcontrib><creatorcontrib>Simon, B.</creatorcontrib><creatorcontrib>Bernard, P.</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of fluorine chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mar, M.</au><au>Dubois, M.</au><au>Guérin, K.</au><au>Batisse, N.</au><au>Simon, B.</au><au>Bernard, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High energy primary lithium battery using oxidized sub-fluorinated graphite fluorides</atitle><jtitle>Journal of fluorine chemistry</jtitle><date>2019-11</date><risdate>2019</risdate><volume>227</volume><spage>109369</spage><pages>109369-</pages><artnum>109369</artnum><issn>0022-1139</issn><eissn>1873-3328</eissn><abstract>[Display omitted] •Energy density of 2825 Wh.Kg−1 in primary lithium battery is achieved with fluorinated carbons.•Graphite oxyfluorides were synthesized.•Defected graphite fluorides are obtained via oxidation of sub-fluorinated graphites. Different graphite oxyfluorides were synthesized via Hummer's oxidation of sub-fluorinated graphites in order to maintain sp2 carbon atoms available for the oxidation, C–F bonds being non-reactive. In comparison with the graphite fluoride precursors, significant improvement of the energy density in primary lithium battery is achieved when the graphite oxyfluorides are used as cathode. When the Hummer's oxidation was carried out on graphite fluoride with both CF0.60 composition and a homogenous dispersion of non-fluorinated regions into fluorinated lattice, oxidation focused on the remaining sp2 carbon atoms and decomposed them. Defected graphite fluorides were then synthesized. The highest ever measured energy density in primary lithium battery with fluorinated carbons as cathode, i.e. 2825 Wh.Kg−1, was reached with this particular sample. Solid state NMR allowed the functional groups C–F, COC, COH, COOH and sp2 C to be quantified in graphite oxyfluorides and fluorides and their role in electrochemical processes to be highlighted.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jfluchem.2019.109369</doi><orcidid>https://orcid.org/0000-0002-6184-2143</orcidid><orcidid>https://orcid.org/0000-0002-6596-0905</orcidid><orcidid>https://orcid.org/0000-0003-2501-8496</orcidid><orcidid>https://orcid.org/0000-0002-9192-0931</orcidid><orcidid>https://orcid.org/0000-0001-8797-7444</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-1139
ispartof Journal of fluorine chemistry, 2019-11, Vol.227, p.109369, Article 109369
issn 0022-1139
1873-3328
language eng
recordid cdi_hal_primary_oai_HAL_hal_02499890v1
source Elsevier ScienceDirect Journals
subjects Carbon
Cathodes
Chemical Sciences
Electrochemistry
Energy
Energy density
Energy measurement
Fluorides
Fluorination
Flux density
Functional groups
Graphite
Graphite oxyfluoride
Lithium
Lithium batteries
Lithium-ion battery
NMR
Nuclear magnetic resonance
Oxidation
Oxyfluorides
Solid-gas fluorination
Synthesis
title High energy primary lithium battery using oxidized sub-fluorinated graphite fluorides
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T21%3A53%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20energy%20primary%20lithium%20battery%20using%20oxidized%20sub-fluorinated%20graphite%20fluorides&rft.jtitle=Journal%20of%20fluorine%20chemistry&rft.au=Mar,%20M.&rft.date=2019-11&rft.volume=227&rft.spage=109369&rft.pages=109369-&rft.artnum=109369&rft.issn=0022-1139&rft.eissn=1873-3328&rft_id=info:doi/10.1016/j.jfluchem.2019.109369&rft_dat=%3Cproquest_hal_p%3E2327315034%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2327315034&rft_id=info:pmid/&rft_els_id=S0022113919302647&rfr_iscdi=true