Post-transcriptional regulation of autophagy in C2C12 myotubes following starvation and nutrient restoration

In skeletal muscle, autophagy is activated in multiple physiological and pathological conditions, notably through the transcriptional regulation of autophagy-related genes by FoxO3. However, recent evidence suggests that autophagy could also be regulated by post-transcriptional mechanisms. The purpo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The international journal of biochemistry & cell biology 2014-09, Vol.54, p.208-216
Hauptverfasser: Desgeorges, Marine Maud, Freyssenet, Damien, Chanon, Stéphanie, Castells, Josiane, Pugnière, Pascal, Béchet, Daniel, Peinnequin, André, Devillard, Xavier, Defour, Aurélia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 216
container_issue
container_start_page 208
container_title The international journal of biochemistry & cell biology
container_volume 54
creator Desgeorges, Marine Maud
Freyssenet, Damien
Chanon, Stéphanie
Castells, Josiane
Pugnière, Pascal
Béchet, Daniel
Peinnequin, André
Devillard, Xavier
Defour, Aurélia
description In skeletal muscle, autophagy is activated in multiple physiological and pathological conditions, notably through the transcriptional regulation of autophagy-related genes by FoxO3. However, recent evidence suggests that autophagy could also be regulated by post-transcriptional mechanisms. The purpose of the study was therefore to determine the temporal regulation of transcriptional and post-transcriptional events involved in the control of autophagy during starvation (4h) and nutrient restoration (4h) in C2C12 myotubes. Starvation was associated with an activation of autophagy (decrease in mTOR activity, increase in AMPK activity and Ulk1 phosphorylation on Ser467), an increase in autophagy flux (increased LC3B-II/LC3B-I ratio, LC3B-II level and LC3B-positive punctate), and an increase in the content of autophagy-related proteins (Ulk1, Atg13, Vps34, and Atg5–Atg12 conjugate). Our data also indicated that the content of autophagy-related proteins was essentially maintained when nutrient sufficiency was restored. By contrast, mRNA level of Ulk1, Atg5, Bnip3, LC3B and Gabarapl1 did not increase in response to starvation. Accordingly, binding of FoxO3 transcription factor on LC3B promoter was only increased at the end of the starvation period, whereas mRNA levels of Atrogin1/MAFbx and MuRF1, two transcriptional targets of FoxO involved in ubiquitin–proteasome pathway, were markedly increased at this time. Together, these data provide evidence that target genes of FoxO3 are differentially regulated during starvation and that starvation of C2C12 myotubes is associated with a post-transcriptional regulation of autophagy.
doi_str_mv 10.1016/j.biocel.2014.07.008
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02498518v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1357272514002271</els_id><sourcerecordid>1561125110</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-9ad4904089ce5a516b277a4f7f0c5d8ca25dfca3587141395f3ba5355f2f89683</originalsourceid><addsrcrecordid>eNp9kUGPFCEQhYnRuOvqPzCGox66paBp6IvJZqKuySR60DOhaZhlwjQj0LOZfy9jr3v0BBRfvYL3EHoLpAUC_cd9O_pobGgpga4loiVEPkPXIIVsuBT8ed0zLhoqKL9Cr3LeE0KAU_YSXVFOOtbL_hqFHzGXpiQ9Z5P8sfg464CT3S1BXw44OqyXEo_3enfGfsYbugGKD-dYltFm7GII8cHPO5yLTqe1R88TnpeSvJ1L1colpr8Xr9ELp0O2bx7XG_Try-efm7tm-_3rt83ttjFs6Esz6KkbSEfkYCzXHPqRCqE7JxwxfJJGUz45o1n9JXTABu7YqDnj3FEnh16yG_Rh1b3XQR2TP-h0VlF7dXe7VZcaod0gOcgTVPb9yh5T_L3Ut6qDz9XWoGcbl6yA9wCUA5CKditqUsw5WfekDURdMlF7tWaiLpkoIlTNpLa9e5ywjAc7PTX9C6ECn1bAVk9O3iaVTbXO2Mkna4qaov__hD9KVZ_Z</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1561125110</pqid></control><display><type>article</type><title>Post-transcriptional regulation of autophagy in C2C12 myotubes following starvation and nutrient restoration</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Desgeorges, Marine Maud ; Freyssenet, Damien ; Chanon, Stéphanie ; Castells, Josiane ; Pugnière, Pascal ; Béchet, Daniel ; Peinnequin, André ; Devillard, Xavier ; Defour, Aurélia</creator><creatorcontrib>Desgeorges, Marine Maud ; Freyssenet, Damien ; Chanon, Stéphanie ; Castells, Josiane ; Pugnière, Pascal ; Béchet, Daniel ; Peinnequin, André ; Devillard, Xavier ; Defour, Aurélia</creatorcontrib><description>In skeletal muscle, autophagy is activated in multiple physiological and pathological conditions, notably through the transcriptional regulation of autophagy-related genes by FoxO3. However, recent evidence suggests that autophagy could also be regulated by post-transcriptional mechanisms. The purpose of the study was therefore to determine the temporal regulation of transcriptional and post-transcriptional events involved in the control of autophagy during starvation (4h) and nutrient restoration (4h) in C2C12 myotubes. Starvation was associated with an activation of autophagy (decrease in mTOR activity, increase in AMPK activity and Ulk1 phosphorylation on Ser467), an increase in autophagy flux (increased LC3B-II/LC3B-I ratio, LC3B-II level and LC3B-positive punctate), and an increase in the content of autophagy-related proteins (Ulk1, Atg13, Vps34, and Atg5–Atg12 conjugate). Our data also indicated that the content of autophagy-related proteins was essentially maintained when nutrient sufficiency was restored. By contrast, mRNA level of Ulk1, Atg5, Bnip3, LC3B and Gabarapl1 did not increase in response to starvation. Accordingly, binding of FoxO3 transcription factor on LC3B promoter was only increased at the end of the starvation period, whereas mRNA levels of Atrogin1/MAFbx and MuRF1, two transcriptional targets of FoxO involved in ubiquitin–proteasome pathway, were markedly increased at this time. Together, these data provide evidence that target genes of FoxO3 are differentially regulated during starvation and that starvation of C2C12 myotubes is associated with a post-transcriptional regulation of autophagy.</description><identifier>ISSN: 1357-2725</identifier><identifier>EISSN: 1878-5875</identifier><identifier>DOI: 10.1016/j.biocel.2014.07.008</identifier><identifier>PMID: 25043686</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Animals ; Autophagy ; Autophagy-Related Protein 5 ; Autophagy-Related Protein-1 Homolog ; Autophagy–lysosome ; Blotting, Western ; Cells, Cultured ; Chromatin Immunoprecipitation ; Fluorescent Antibody Technique ; Gene Expression Regulation ; Life Sciences ; Membrane Proteins - genetics ; Membrane Proteins - metabolism ; Mice ; Microtubule-Associated Proteins - genetics ; Microtubule-Associated Proteins - metabolism ; Mitochondrial Proteins - genetics ; Mitochondrial Proteins - metabolism ; Muscle Fibers, Skeletal - metabolism ; Muscle Fibers, Skeletal - pathology ; Muscle, Skeletal - metabolism ; Muscle, Skeletal - pathology ; Nutritional Physiological Phenomena ; Protein-Serine-Threonine Kinases - genetics ; Protein-Serine-Threonine Kinases - metabolism ; Proteolysis ; Real-Time Polymerase Chain Reaction ; Reverse Transcriptase Polymerase Chain Reaction ; RNA Processing, Post-Transcriptional ; RNA, Messenger - genetics ; Signal Transduction ; Skeletal muscle ; Starvation ; TOR Serine-Threonine Kinases - genetics ; TOR Serine-Threonine Kinases - metabolism ; Ubiquitin–proteasome</subject><ispartof>The international journal of biochemistry &amp; cell biology, 2014-09, Vol.54, p.208-216</ispartof><rights>2014 Elsevier Ltd</rights><rights>Copyright © 2014 Elsevier Ltd. All rights reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-9ad4904089ce5a516b277a4f7f0c5d8ca25dfca3587141395f3ba5355f2f89683</citedby><cites>FETCH-LOGICAL-c396t-9ad4904089ce5a516b277a4f7f0c5d8ca25dfca3587141395f3ba5355f2f89683</cites><orcidid>0000-0001-6930-6671 ; 0000-0002-3812-8099 ; 0009-0008-6116-9965 ; 0000-0002-6130-8207</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1357272514002271$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25043686$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://univ-lyon1.hal.science/hal-02498518$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Desgeorges, Marine Maud</creatorcontrib><creatorcontrib>Freyssenet, Damien</creatorcontrib><creatorcontrib>Chanon, Stéphanie</creatorcontrib><creatorcontrib>Castells, Josiane</creatorcontrib><creatorcontrib>Pugnière, Pascal</creatorcontrib><creatorcontrib>Béchet, Daniel</creatorcontrib><creatorcontrib>Peinnequin, André</creatorcontrib><creatorcontrib>Devillard, Xavier</creatorcontrib><creatorcontrib>Defour, Aurélia</creatorcontrib><title>Post-transcriptional regulation of autophagy in C2C12 myotubes following starvation and nutrient restoration</title><title>The international journal of biochemistry &amp; cell biology</title><addtitle>Int J Biochem Cell Biol</addtitle><description>In skeletal muscle, autophagy is activated in multiple physiological and pathological conditions, notably through the transcriptional regulation of autophagy-related genes by FoxO3. However, recent evidence suggests that autophagy could also be regulated by post-transcriptional mechanisms. The purpose of the study was therefore to determine the temporal regulation of transcriptional and post-transcriptional events involved in the control of autophagy during starvation (4h) and nutrient restoration (4h) in C2C12 myotubes. Starvation was associated with an activation of autophagy (decrease in mTOR activity, increase in AMPK activity and Ulk1 phosphorylation on Ser467), an increase in autophagy flux (increased LC3B-II/LC3B-I ratio, LC3B-II level and LC3B-positive punctate), and an increase in the content of autophagy-related proteins (Ulk1, Atg13, Vps34, and Atg5–Atg12 conjugate). Our data also indicated that the content of autophagy-related proteins was essentially maintained when nutrient sufficiency was restored. By contrast, mRNA level of Ulk1, Atg5, Bnip3, LC3B and Gabarapl1 did not increase in response to starvation. Accordingly, binding of FoxO3 transcription factor on LC3B promoter was only increased at the end of the starvation period, whereas mRNA levels of Atrogin1/MAFbx and MuRF1, two transcriptional targets of FoxO involved in ubiquitin–proteasome pathway, were markedly increased at this time. Together, these data provide evidence that target genes of FoxO3 are differentially regulated during starvation and that starvation of C2C12 myotubes is associated with a post-transcriptional regulation of autophagy.</description><subject>Animals</subject><subject>Autophagy</subject><subject>Autophagy-Related Protein 5</subject><subject>Autophagy-Related Protein-1 Homolog</subject><subject>Autophagy–lysosome</subject><subject>Blotting, Western</subject><subject>Cells, Cultured</subject><subject>Chromatin Immunoprecipitation</subject><subject>Fluorescent Antibody Technique</subject><subject>Gene Expression Regulation</subject><subject>Life Sciences</subject><subject>Membrane Proteins - genetics</subject><subject>Membrane Proteins - metabolism</subject><subject>Mice</subject><subject>Microtubule-Associated Proteins - genetics</subject><subject>Microtubule-Associated Proteins - metabolism</subject><subject>Mitochondrial Proteins - genetics</subject><subject>Mitochondrial Proteins - metabolism</subject><subject>Muscle Fibers, Skeletal - metabolism</subject><subject>Muscle Fibers, Skeletal - pathology</subject><subject>Muscle, Skeletal - metabolism</subject><subject>Muscle, Skeletal - pathology</subject><subject>Nutritional Physiological Phenomena</subject><subject>Protein-Serine-Threonine Kinases - genetics</subject><subject>Protein-Serine-Threonine Kinases - metabolism</subject><subject>Proteolysis</subject><subject>Real-Time Polymerase Chain Reaction</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>RNA Processing, Post-Transcriptional</subject><subject>RNA, Messenger - genetics</subject><subject>Signal Transduction</subject><subject>Skeletal muscle</subject><subject>Starvation</subject><subject>TOR Serine-Threonine Kinases - genetics</subject><subject>TOR Serine-Threonine Kinases - metabolism</subject><subject>Ubiquitin–proteasome</subject><issn>1357-2725</issn><issn>1878-5875</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kUGPFCEQhYnRuOvqPzCGox66paBp6IvJZqKuySR60DOhaZhlwjQj0LOZfy9jr3v0BBRfvYL3EHoLpAUC_cd9O_pobGgpga4loiVEPkPXIIVsuBT8ed0zLhoqKL9Cr3LeE0KAU_YSXVFOOtbL_hqFHzGXpiQ9Z5P8sfg464CT3S1BXw44OqyXEo_3enfGfsYbugGKD-dYltFm7GII8cHPO5yLTqe1R88TnpeSvJ1L1colpr8Xr9ELp0O2bx7XG_Try-efm7tm-_3rt83ttjFs6Esz6KkbSEfkYCzXHPqRCqE7JxwxfJJGUz45o1n9JXTABu7YqDnj3FEnh16yG_Rh1b3XQR2TP-h0VlF7dXe7VZcaod0gOcgTVPb9yh5T_L3Ut6qDz9XWoGcbl6yA9wCUA5CKditqUsw5WfekDURdMlF7tWaiLpkoIlTNpLa9e5ywjAc7PTX9C6ECn1bAVk9O3iaVTbXO2Mkna4qaov__hD9KVZ_Z</recordid><startdate>20140901</startdate><enddate>20140901</enddate><creator>Desgeorges, Marine Maud</creator><creator>Freyssenet, Damien</creator><creator>Chanon, Stéphanie</creator><creator>Castells, Josiane</creator><creator>Pugnière, Pascal</creator><creator>Béchet, Daniel</creator><creator>Peinnequin, André</creator><creator>Devillard, Xavier</creator><creator>Defour, Aurélia</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-6930-6671</orcidid><orcidid>https://orcid.org/0000-0002-3812-8099</orcidid><orcidid>https://orcid.org/0009-0008-6116-9965</orcidid><orcidid>https://orcid.org/0000-0002-6130-8207</orcidid></search><sort><creationdate>20140901</creationdate><title>Post-transcriptional regulation of autophagy in C2C12 myotubes following starvation and nutrient restoration</title><author>Desgeorges, Marine Maud ; Freyssenet, Damien ; Chanon, Stéphanie ; Castells, Josiane ; Pugnière, Pascal ; Béchet, Daniel ; Peinnequin, André ; Devillard, Xavier ; Defour, Aurélia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-9ad4904089ce5a516b277a4f7f0c5d8ca25dfca3587141395f3ba5355f2f89683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Animals</topic><topic>Autophagy</topic><topic>Autophagy-Related Protein 5</topic><topic>Autophagy-Related Protein-1 Homolog</topic><topic>Autophagy–lysosome</topic><topic>Blotting, Western</topic><topic>Cells, Cultured</topic><topic>Chromatin Immunoprecipitation</topic><topic>Fluorescent Antibody Technique</topic><topic>Gene Expression Regulation</topic><topic>Life Sciences</topic><topic>Membrane Proteins - genetics</topic><topic>Membrane Proteins - metabolism</topic><topic>Mice</topic><topic>Microtubule-Associated Proteins - genetics</topic><topic>Microtubule-Associated Proteins - metabolism</topic><topic>Mitochondrial Proteins - genetics</topic><topic>Mitochondrial Proteins - metabolism</topic><topic>Muscle Fibers, Skeletal - metabolism</topic><topic>Muscle Fibers, Skeletal - pathology</topic><topic>Muscle, Skeletal - metabolism</topic><topic>Muscle, Skeletal - pathology</topic><topic>Nutritional Physiological Phenomena</topic><topic>Protein-Serine-Threonine Kinases - genetics</topic><topic>Protein-Serine-Threonine Kinases - metabolism</topic><topic>Proteolysis</topic><topic>Real-Time Polymerase Chain Reaction</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>RNA Processing, Post-Transcriptional</topic><topic>RNA, Messenger - genetics</topic><topic>Signal Transduction</topic><topic>Skeletal muscle</topic><topic>Starvation</topic><topic>TOR Serine-Threonine Kinases - genetics</topic><topic>TOR Serine-Threonine Kinases - metabolism</topic><topic>Ubiquitin–proteasome</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Desgeorges, Marine Maud</creatorcontrib><creatorcontrib>Freyssenet, Damien</creatorcontrib><creatorcontrib>Chanon, Stéphanie</creatorcontrib><creatorcontrib>Castells, Josiane</creatorcontrib><creatorcontrib>Pugnière, Pascal</creatorcontrib><creatorcontrib>Béchet, Daniel</creatorcontrib><creatorcontrib>Peinnequin, André</creatorcontrib><creatorcontrib>Devillard, Xavier</creatorcontrib><creatorcontrib>Defour, Aurélia</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>The international journal of biochemistry &amp; cell biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Desgeorges, Marine Maud</au><au>Freyssenet, Damien</au><au>Chanon, Stéphanie</au><au>Castells, Josiane</au><au>Pugnière, Pascal</au><au>Béchet, Daniel</au><au>Peinnequin, André</au><au>Devillard, Xavier</au><au>Defour, Aurélia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Post-transcriptional regulation of autophagy in C2C12 myotubes following starvation and nutrient restoration</atitle><jtitle>The international journal of biochemistry &amp; cell biology</jtitle><addtitle>Int J Biochem Cell Biol</addtitle><date>2014-09-01</date><risdate>2014</risdate><volume>54</volume><spage>208</spage><epage>216</epage><pages>208-216</pages><issn>1357-2725</issn><eissn>1878-5875</eissn><abstract>In skeletal muscle, autophagy is activated in multiple physiological and pathological conditions, notably through the transcriptional regulation of autophagy-related genes by FoxO3. However, recent evidence suggests that autophagy could also be regulated by post-transcriptional mechanisms. The purpose of the study was therefore to determine the temporal regulation of transcriptional and post-transcriptional events involved in the control of autophagy during starvation (4h) and nutrient restoration (4h) in C2C12 myotubes. Starvation was associated with an activation of autophagy (decrease in mTOR activity, increase in AMPK activity and Ulk1 phosphorylation on Ser467), an increase in autophagy flux (increased LC3B-II/LC3B-I ratio, LC3B-II level and LC3B-positive punctate), and an increase in the content of autophagy-related proteins (Ulk1, Atg13, Vps34, and Atg5–Atg12 conjugate). Our data also indicated that the content of autophagy-related proteins was essentially maintained when nutrient sufficiency was restored. By contrast, mRNA level of Ulk1, Atg5, Bnip3, LC3B and Gabarapl1 did not increase in response to starvation. Accordingly, binding of FoxO3 transcription factor on LC3B promoter was only increased at the end of the starvation period, whereas mRNA levels of Atrogin1/MAFbx and MuRF1, two transcriptional targets of FoxO involved in ubiquitin–proteasome pathway, were markedly increased at this time. Together, these data provide evidence that target genes of FoxO3 are differentially regulated during starvation and that starvation of C2C12 myotubes is associated with a post-transcriptional regulation of autophagy.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>25043686</pmid><doi>10.1016/j.biocel.2014.07.008</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-6930-6671</orcidid><orcidid>https://orcid.org/0000-0002-3812-8099</orcidid><orcidid>https://orcid.org/0009-0008-6116-9965</orcidid><orcidid>https://orcid.org/0000-0002-6130-8207</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1357-2725
ispartof The international journal of biochemistry & cell biology, 2014-09, Vol.54, p.208-216
issn 1357-2725
1878-5875
language eng
recordid cdi_hal_primary_oai_HAL_hal_02498518v1
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Animals
Autophagy
Autophagy-Related Protein 5
Autophagy-Related Protein-1 Homolog
Autophagy–lysosome
Blotting, Western
Cells, Cultured
Chromatin Immunoprecipitation
Fluorescent Antibody Technique
Gene Expression Regulation
Life Sciences
Membrane Proteins - genetics
Membrane Proteins - metabolism
Mice
Microtubule-Associated Proteins - genetics
Microtubule-Associated Proteins - metabolism
Mitochondrial Proteins - genetics
Mitochondrial Proteins - metabolism
Muscle Fibers, Skeletal - metabolism
Muscle Fibers, Skeletal - pathology
Muscle, Skeletal - metabolism
Muscle, Skeletal - pathology
Nutritional Physiological Phenomena
Protein-Serine-Threonine Kinases - genetics
Protein-Serine-Threonine Kinases - metabolism
Proteolysis
Real-Time Polymerase Chain Reaction
Reverse Transcriptase Polymerase Chain Reaction
RNA Processing, Post-Transcriptional
RNA, Messenger - genetics
Signal Transduction
Skeletal muscle
Starvation
TOR Serine-Threonine Kinases - genetics
TOR Serine-Threonine Kinases - metabolism
Ubiquitin–proteasome
title Post-transcriptional regulation of autophagy in C2C12 myotubes following starvation and nutrient restoration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T22%3A49%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Post-transcriptional%20regulation%20of%20autophagy%20in%20C2C12%20myotubes%20following%20starvation%20and%20nutrient%20restoration&rft.jtitle=The%20international%20journal%20of%20biochemistry%20&%20cell%20biology&rft.au=Desgeorges,%20Marine%20Maud&rft.date=2014-09-01&rft.volume=54&rft.spage=208&rft.epage=216&rft.pages=208-216&rft.issn=1357-2725&rft.eissn=1878-5875&rft_id=info:doi/10.1016/j.biocel.2014.07.008&rft_dat=%3Cproquest_hal_p%3E1561125110%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1561125110&rft_id=info:pmid/25043686&rft_els_id=S1357272514002271&rfr_iscdi=true