Post-transcriptional regulation of autophagy in C2C12 myotubes following starvation and nutrient restoration
In skeletal muscle, autophagy is activated in multiple physiological and pathological conditions, notably through the transcriptional regulation of autophagy-related genes by FoxO3. However, recent evidence suggests that autophagy could also be regulated by post-transcriptional mechanisms. The purpo...
Gespeichert in:
Veröffentlicht in: | The international journal of biochemistry & cell biology 2014-09, Vol.54, p.208-216 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 216 |
---|---|
container_issue | |
container_start_page | 208 |
container_title | The international journal of biochemistry & cell biology |
container_volume | 54 |
creator | Desgeorges, Marine Maud Freyssenet, Damien Chanon, Stéphanie Castells, Josiane Pugnière, Pascal Béchet, Daniel Peinnequin, André Devillard, Xavier Defour, Aurélia |
description | In skeletal muscle, autophagy is activated in multiple physiological and pathological conditions, notably through the transcriptional regulation of autophagy-related genes by FoxO3. However, recent evidence suggests that autophagy could also be regulated by post-transcriptional mechanisms. The purpose of the study was therefore to determine the temporal regulation of transcriptional and post-transcriptional events involved in the control of autophagy during starvation (4h) and nutrient restoration (4h) in C2C12 myotubes. Starvation was associated with an activation of autophagy (decrease in mTOR activity, increase in AMPK activity and Ulk1 phosphorylation on Ser467), an increase in autophagy flux (increased LC3B-II/LC3B-I ratio, LC3B-II level and LC3B-positive punctate), and an increase in the content of autophagy-related proteins (Ulk1, Atg13, Vps34, and Atg5–Atg12 conjugate). Our data also indicated that the content of autophagy-related proteins was essentially maintained when nutrient sufficiency was restored. By contrast, mRNA level of Ulk1, Atg5, Bnip3, LC3B and Gabarapl1 did not increase in response to starvation. Accordingly, binding of FoxO3 transcription factor on LC3B promoter was only increased at the end of the starvation period, whereas mRNA levels of Atrogin1/MAFbx and MuRF1, two transcriptional targets of FoxO involved in ubiquitin–proteasome pathway, were markedly increased at this time. Together, these data provide evidence that target genes of FoxO3 are differentially regulated during starvation and that starvation of C2C12 myotubes is associated with a post-transcriptional regulation of autophagy. |
doi_str_mv | 10.1016/j.biocel.2014.07.008 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02498518v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1357272514002271</els_id><sourcerecordid>1561125110</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-9ad4904089ce5a516b277a4f7f0c5d8ca25dfca3587141395f3ba5355f2f89683</originalsourceid><addsrcrecordid>eNp9kUGPFCEQhYnRuOvqPzCGox66paBp6IvJZqKuySR60DOhaZhlwjQj0LOZfy9jr3v0BBRfvYL3EHoLpAUC_cd9O_pobGgpga4loiVEPkPXIIVsuBT8ed0zLhoqKL9Cr3LeE0KAU_YSXVFOOtbL_hqFHzGXpiQ9Z5P8sfg464CT3S1BXw44OqyXEo_3enfGfsYbugGKD-dYltFm7GII8cHPO5yLTqe1R88TnpeSvJ1L1colpr8Xr9ELp0O2bx7XG_Try-efm7tm-_3rt83ttjFs6Esz6KkbSEfkYCzXHPqRCqE7JxwxfJJGUz45o1n9JXTABu7YqDnj3FEnh16yG_Rh1b3XQR2TP-h0VlF7dXe7VZcaod0gOcgTVPb9yh5T_L3Ut6qDz9XWoGcbl6yA9wCUA5CKditqUsw5WfekDURdMlF7tWaiLpkoIlTNpLa9e5ywjAc7PTX9C6ECn1bAVk9O3iaVTbXO2Mkna4qaov__hD9KVZ_Z</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1561125110</pqid></control><display><type>article</type><title>Post-transcriptional regulation of autophagy in C2C12 myotubes following starvation and nutrient restoration</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Desgeorges, Marine Maud ; Freyssenet, Damien ; Chanon, Stéphanie ; Castells, Josiane ; Pugnière, Pascal ; Béchet, Daniel ; Peinnequin, André ; Devillard, Xavier ; Defour, Aurélia</creator><creatorcontrib>Desgeorges, Marine Maud ; Freyssenet, Damien ; Chanon, Stéphanie ; Castells, Josiane ; Pugnière, Pascal ; Béchet, Daniel ; Peinnequin, André ; Devillard, Xavier ; Defour, Aurélia</creatorcontrib><description>In skeletal muscle, autophagy is activated in multiple physiological and pathological conditions, notably through the transcriptional regulation of autophagy-related genes by FoxO3. However, recent evidence suggests that autophagy could also be regulated by post-transcriptional mechanisms. The purpose of the study was therefore to determine the temporal regulation of transcriptional and post-transcriptional events involved in the control of autophagy during starvation (4h) and nutrient restoration (4h) in C2C12 myotubes. Starvation was associated with an activation of autophagy (decrease in mTOR activity, increase in AMPK activity and Ulk1 phosphorylation on Ser467), an increase in autophagy flux (increased LC3B-II/LC3B-I ratio, LC3B-II level and LC3B-positive punctate), and an increase in the content of autophagy-related proteins (Ulk1, Atg13, Vps34, and Atg5–Atg12 conjugate). Our data also indicated that the content of autophagy-related proteins was essentially maintained when nutrient sufficiency was restored. By contrast, mRNA level of Ulk1, Atg5, Bnip3, LC3B and Gabarapl1 did not increase in response to starvation. Accordingly, binding of FoxO3 transcription factor on LC3B promoter was only increased at the end of the starvation period, whereas mRNA levels of Atrogin1/MAFbx and MuRF1, two transcriptional targets of FoxO involved in ubiquitin–proteasome pathway, were markedly increased at this time. Together, these data provide evidence that target genes of FoxO3 are differentially regulated during starvation and that starvation of C2C12 myotubes is associated with a post-transcriptional regulation of autophagy.</description><identifier>ISSN: 1357-2725</identifier><identifier>EISSN: 1878-5875</identifier><identifier>DOI: 10.1016/j.biocel.2014.07.008</identifier><identifier>PMID: 25043686</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Animals ; Autophagy ; Autophagy-Related Protein 5 ; Autophagy-Related Protein-1 Homolog ; Autophagy–lysosome ; Blotting, Western ; Cells, Cultured ; Chromatin Immunoprecipitation ; Fluorescent Antibody Technique ; Gene Expression Regulation ; Life Sciences ; Membrane Proteins - genetics ; Membrane Proteins - metabolism ; Mice ; Microtubule-Associated Proteins - genetics ; Microtubule-Associated Proteins - metabolism ; Mitochondrial Proteins - genetics ; Mitochondrial Proteins - metabolism ; Muscle Fibers, Skeletal - metabolism ; Muscle Fibers, Skeletal - pathology ; Muscle, Skeletal - metabolism ; Muscle, Skeletal - pathology ; Nutritional Physiological Phenomena ; Protein-Serine-Threonine Kinases - genetics ; Protein-Serine-Threonine Kinases - metabolism ; Proteolysis ; Real-Time Polymerase Chain Reaction ; Reverse Transcriptase Polymerase Chain Reaction ; RNA Processing, Post-Transcriptional ; RNA, Messenger - genetics ; Signal Transduction ; Skeletal muscle ; Starvation ; TOR Serine-Threonine Kinases - genetics ; TOR Serine-Threonine Kinases - metabolism ; Ubiquitin–proteasome</subject><ispartof>The international journal of biochemistry & cell biology, 2014-09, Vol.54, p.208-216</ispartof><rights>2014 Elsevier Ltd</rights><rights>Copyright © 2014 Elsevier Ltd. All rights reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-9ad4904089ce5a516b277a4f7f0c5d8ca25dfca3587141395f3ba5355f2f89683</citedby><cites>FETCH-LOGICAL-c396t-9ad4904089ce5a516b277a4f7f0c5d8ca25dfca3587141395f3ba5355f2f89683</cites><orcidid>0000-0001-6930-6671 ; 0000-0002-3812-8099 ; 0009-0008-6116-9965 ; 0000-0002-6130-8207</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1357272514002271$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25043686$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://univ-lyon1.hal.science/hal-02498518$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Desgeorges, Marine Maud</creatorcontrib><creatorcontrib>Freyssenet, Damien</creatorcontrib><creatorcontrib>Chanon, Stéphanie</creatorcontrib><creatorcontrib>Castells, Josiane</creatorcontrib><creatorcontrib>Pugnière, Pascal</creatorcontrib><creatorcontrib>Béchet, Daniel</creatorcontrib><creatorcontrib>Peinnequin, André</creatorcontrib><creatorcontrib>Devillard, Xavier</creatorcontrib><creatorcontrib>Defour, Aurélia</creatorcontrib><title>Post-transcriptional regulation of autophagy in C2C12 myotubes following starvation and nutrient restoration</title><title>The international journal of biochemistry & cell biology</title><addtitle>Int J Biochem Cell Biol</addtitle><description>In skeletal muscle, autophagy is activated in multiple physiological and pathological conditions, notably through the transcriptional regulation of autophagy-related genes by FoxO3. However, recent evidence suggests that autophagy could also be regulated by post-transcriptional mechanisms. The purpose of the study was therefore to determine the temporal regulation of transcriptional and post-transcriptional events involved in the control of autophagy during starvation (4h) and nutrient restoration (4h) in C2C12 myotubes. Starvation was associated with an activation of autophagy (decrease in mTOR activity, increase in AMPK activity and Ulk1 phosphorylation on Ser467), an increase in autophagy flux (increased LC3B-II/LC3B-I ratio, LC3B-II level and LC3B-positive punctate), and an increase in the content of autophagy-related proteins (Ulk1, Atg13, Vps34, and Atg5–Atg12 conjugate). Our data also indicated that the content of autophagy-related proteins was essentially maintained when nutrient sufficiency was restored. By contrast, mRNA level of Ulk1, Atg5, Bnip3, LC3B and Gabarapl1 did not increase in response to starvation. Accordingly, binding of FoxO3 transcription factor on LC3B promoter was only increased at the end of the starvation period, whereas mRNA levels of Atrogin1/MAFbx and MuRF1, two transcriptional targets of FoxO involved in ubiquitin–proteasome pathway, were markedly increased at this time. Together, these data provide evidence that target genes of FoxO3 are differentially regulated during starvation and that starvation of C2C12 myotubes is associated with a post-transcriptional regulation of autophagy.</description><subject>Animals</subject><subject>Autophagy</subject><subject>Autophagy-Related Protein 5</subject><subject>Autophagy-Related Protein-1 Homolog</subject><subject>Autophagy–lysosome</subject><subject>Blotting, Western</subject><subject>Cells, Cultured</subject><subject>Chromatin Immunoprecipitation</subject><subject>Fluorescent Antibody Technique</subject><subject>Gene Expression Regulation</subject><subject>Life Sciences</subject><subject>Membrane Proteins - genetics</subject><subject>Membrane Proteins - metabolism</subject><subject>Mice</subject><subject>Microtubule-Associated Proteins - genetics</subject><subject>Microtubule-Associated Proteins - metabolism</subject><subject>Mitochondrial Proteins - genetics</subject><subject>Mitochondrial Proteins - metabolism</subject><subject>Muscle Fibers, Skeletal - metabolism</subject><subject>Muscle Fibers, Skeletal - pathology</subject><subject>Muscle, Skeletal - metabolism</subject><subject>Muscle, Skeletal - pathology</subject><subject>Nutritional Physiological Phenomena</subject><subject>Protein-Serine-Threonine Kinases - genetics</subject><subject>Protein-Serine-Threonine Kinases - metabolism</subject><subject>Proteolysis</subject><subject>Real-Time Polymerase Chain Reaction</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>RNA Processing, Post-Transcriptional</subject><subject>RNA, Messenger - genetics</subject><subject>Signal Transduction</subject><subject>Skeletal muscle</subject><subject>Starvation</subject><subject>TOR Serine-Threonine Kinases - genetics</subject><subject>TOR Serine-Threonine Kinases - metabolism</subject><subject>Ubiquitin–proteasome</subject><issn>1357-2725</issn><issn>1878-5875</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kUGPFCEQhYnRuOvqPzCGox66paBp6IvJZqKuySR60DOhaZhlwjQj0LOZfy9jr3v0BBRfvYL3EHoLpAUC_cd9O_pobGgpga4loiVEPkPXIIVsuBT8ed0zLhoqKL9Cr3LeE0KAU_YSXVFOOtbL_hqFHzGXpiQ9Z5P8sfg464CT3S1BXw44OqyXEo_3enfGfsYbugGKD-dYltFm7GII8cHPO5yLTqe1R88TnpeSvJ1L1colpr8Xr9ELp0O2bx7XG_Try-efm7tm-_3rt83ttjFs6Esz6KkbSEfkYCzXHPqRCqE7JxwxfJJGUz45o1n9JXTABu7YqDnj3FEnh16yG_Rh1b3XQR2TP-h0VlF7dXe7VZcaod0gOcgTVPb9yh5T_L3Ut6qDz9XWoGcbl6yA9wCUA5CKditqUsw5WfekDURdMlF7tWaiLpkoIlTNpLa9e5ywjAc7PTX9C6ECn1bAVk9O3iaVTbXO2Mkna4qaov__hD9KVZ_Z</recordid><startdate>20140901</startdate><enddate>20140901</enddate><creator>Desgeorges, Marine Maud</creator><creator>Freyssenet, Damien</creator><creator>Chanon, Stéphanie</creator><creator>Castells, Josiane</creator><creator>Pugnière, Pascal</creator><creator>Béchet, Daniel</creator><creator>Peinnequin, André</creator><creator>Devillard, Xavier</creator><creator>Defour, Aurélia</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-6930-6671</orcidid><orcidid>https://orcid.org/0000-0002-3812-8099</orcidid><orcidid>https://orcid.org/0009-0008-6116-9965</orcidid><orcidid>https://orcid.org/0000-0002-6130-8207</orcidid></search><sort><creationdate>20140901</creationdate><title>Post-transcriptional regulation of autophagy in C2C12 myotubes following starvation and nutrient restoration</title><author>Desgeorges, Marine Maud ; Freyssenet, Damien ; Chanon, Stéphanie ; Castells, Josiane ; Pugnière, Pascal ; Béchet, Daniel ; Peinnequin, André ; Devillard, Xavier ; Defour, Aurélia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-9ad4904089ce5a516b277a4f7f0c5d8ca25dfca3587141395f3ba5355f2f89683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Animals</topic><topic>Autophagy</topic><topic>Autophagy-Related Protein 5</topic><topic>Autophagy-Related Protein-1 Homolog</topic><topic>Autophagy–lysosome</topic><topic>Blotting, Western</topic><topic>Cells, Cultured</topic><topic>Chromatin Immunoprecipitation</topic><topic>Fluorescent Antibody Technique</topic><topic>Gene Expression Regulation</topic><topic>Life Sciences</topic><topic>Membrane Proteins - genetics</topic><topic>Membrane Proteins - metabolism</topic><topic>Mice</topic><topic>Microtubule-Associated Proteins - genetics</topic><topic>Microtubule-Associated Proteins - metabolism</topic><topic>Mitochondrial Proteins - genetics</topic><topic>Mitochondrial Proteins - metabolism</topic><topic>Muscle Fibers, Skeletal - metabolism</topic><topic>Muscle Fibers, Skeletal - pathology</topic><topic>Muscle, Skeletal - metabolism</topic><topic>Muscle, Skeletal - pathology</topic><topic>Nutritional Physiological Phenomena</topic><topic>Protein-Serine-Threonine Kinases - genetics</topic><topic>Protein-Serine-Threonine Kinases - metabolism</topic><topic>Proteolysis</topic><topic>Real-Time Polymerase Chain Reaction</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>RNA Processing, Post-Transcriptional</topic><topic>RNA, Messenger - genetics</topic><topic>Signal Transduction</topic><topic>Skeletal muscle</topic><topic>Starvation</topic><topic>TOR Serine-Threonine Kinases - genetics</topic><topic>TOR Serine-Threonine Kinases - metabolism</topic><topic>Ubiquitin–proteasome</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Desgeorges, Marine Maud</creatorcontrib><creatorcontrib>Freyssenet, Damien</creatorcontrib><creatorcontrib>Chanon, Stéphanie</creatorcontrib><creatorcontrib>Castells, Josiane</creatorcontrib><creatorcontrib>Pugnière, Pascal</creatorcontrib><creatorcontrib>Béchet, Daniel</creatorcontrib><creatorcontrib>Peinnequin, André</creatorcontrib><creatorcontrib>Devillard, Xavier</creatorcontrib><creatorcontrib>Defour, Aurélia</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>The international journal of biochemistry & cell biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Desgeorges, Marine Maud</au><au>Freyssenet, Damien</au><au>Chanon, Stéphanie</au><au>Castells, Josiane</au><au>Pugnière, Pascal</au><au>Béchet, Daniel</au><au>Peinnequin, André</au><au>Devillard, Xavier</au><au>Defour, Aurélia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Post-transcriptional regulation of autophagy in C2C12 myotubes following starvation and nutrient restoration</atitle><jtitle>The international journal of biochemistry & cell biology</jtitle><addtitle>Int J Biochem Cell Biol</addtitle><date>2014-09-01</date><risdate>2014</risdate><volume>54</volume><spage>208</spage><epage>216</epage><pages>208-216</pages><issn>1357-2725</issn><eissn>1878-5875</eissn><abstract>In skeletal muscle, autophagy is activated in multiple physiological and pathological conditions, notably through the transcriptional regulation of autophagy-related genes by FoxO3. However, recent evidence suggests that autophagy could also be regulated by post-transcriptional mechanisms. The purpose of the study was therefore to determine the temporal regulation of transcriptional and post-transcriptional events involved in the control of autophagy during starvation (4h) and nutrient restoration (4h) in C2C12 myotubes. Starvation was associated with an activation of autophagy (decrease in mTOR activity, increase in AMPK activity and Ulk1 phosphorylation on Ser467), an increase in autophagy flux (increased LC3B-II/LC3B-I ratio, LC3B-II level and LC3B-positive punctate), and an increase in the content of autophagy-related proteins (Ulk1, Atg13, Vps34, and Atg5–Atg12 conjugate). Our data also indicated that the content of autophagy-related proteins was essentially maintained when nutrient sufficiency was restored. By contrast, mRNA level of Ulk1, Atg5, Bnip3, LC3B and Gabarapl1 did not increase in response to starvation. Accordingly, binding of FoxO3 transcription factor on LC3B promoter was only increased at the end of the starvation period, whereas mRNA levels of Atrogin1/MAFbx and MuRF1, two transcriptional targets of FoxO involved in ubiquitin–proteasome pathway, were markedly increased at this time. Together, these data provide evidence that target genes of FoxO3 are differentially regulated during starvation and that starvation of C2C12 myotubes is associated with a post-transcriptional regulation of autophagy.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>25043686</pmid><doi>10.1016/j.biocel.2014.07.008</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-6930-6671</orcidid><orcidid>https://orcid.org/0000-0002-3812-8099</orcidid><orcidid>https://orcid.org/0009-0008-6116-9965</orcidid><orcidid>https://orcid.org/0000-0002-6130-8207</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1357-2725 |
ispartof | The international journal of biochemistry & cell biology, 2014-09, Vol.54, p.208-216 |
issn | 1357-2725 1878-5875 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02498518v1 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | Animals Autophagy Autophagy-Related Protein 5 Autophagy-Related Protein-1 Homolog Autophagy–lysosome Blotting, Western Cells, Cultured Chromatin Immunoprecipitation Fluorescent Antibody Technique Gene Expression Regulation Life Sciences Membrane Proteins - genetics Membrane Proteins - metabolism Mice Microtubule-Associated Proteins - genetics Microtubule-Associated Proteins - metabolism Mitochondrial Proteins - genetics Mitochondrial Proteins - metabolism Muscle Fibers, Skeletal - metabolism Muscle Fibers, Skeletal - pathology Muscle, Skeletal - metabolism Muscle, Skeletal - pathology Nutritional Physiological Phenomena Protein-Serine-Threonine Kinases - genetics Protein-Serine-Threonine Kinases - metabolism Proteolysis Real-Time Polymerase Chain Reaction Reverse Transcriptase Polymerase Chain Reaction RNA Processing, Post-Transcriptional RNA, Messenger - genetics Signal Transduction Skeletal muscle Starvation TOR Serine-Threonine Kinases - genetics TOR Serine-Threonine Kinases - metabolism Ubiquitin–proteasome |
title | Post-transcriptional regulation of autophagy in C2C12 myotubes following starvation and nutrient restoration |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T22%3A49%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Post-transcriptional%20regulation%20of%20autophagy%20in%20C2C12%20myotubes%20following%20starvation%20and%20nutrient%20restoration&rft.jtitle=The%20international%20journal%20of%20biochemistry%20&%20cell%20biology&rft.au=Desgeorges,%20Marine%20Maud&rft.date=2014-09-01&rft.volume=54&rft.spage=208&rft.epage=216&rft.pages=208-216&rft.issn=1357-2725&rft.eissn=1878-5875&rft_id=info:doi/10.1016/j.biocel.2014.07.008&rft_dat=%3Cproquest_hal_p%3E1561125110%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1561125110&rft_id=info:pmid/25043686&rft_els_id=S1357272514002271&rfr_iscdi=true |