Compressive learning with privacy guarantees
This work addresses the problem of learning from large collections of data with privacy guarantees. The compressive learning framework proposes to deal with the large scale of datasets by compressing them into a single vector of generalized random moments, called a sketch vector, from which the lear...
Gespeichert in:
Veröffentlicht in: | Information and Inference: A Journal of the IMA 2022-03, Vol.11 (1), p.251-305 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 305 |
---|---|
container_issue | 1 |
container_start_page | 251 |
container_title | Information and Inference: A Journal of the IMA |
container_volume | 11 |
creator | Chatalic, A Schellekens, V Houssiau, F de Montjoye, Y A Jacques, L Gribonval, R |
description | This work addresses the problem of learning from large collections of data with privacy guarantees. The compressive learning framework proposes to deal with the large scale of datasets by compressing them into a single vector of generalized random moments, called a sketch vector, from which the learning task is then performed. We provide sharp bounds on the so-called sensitivity of this sketching mechanism. This allows us to leverage standard techniques to ensure differential privacy—a well-established formalism for defining and quantifying the privacy of a random mechanism—by adding Laplace of Gaussian noise to the sketch. We combine these standard mechanisms with a new feature subsampling mechanism, which reduces the computational cost without damaging privacy. The overall framework is applied to the tasks of Gaussian modeling, k-means clustering and principal component analysis, for which sharp privacy bounds are derived. Empirically, the quality (for subsequent learning) of the compressed representation produced by our mechanism is strongly related with the induced noise level, for which we give analytical expressions. |
doi_str_mv | 10.1093/imaiai/iaab005 |
format | Article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02496896v2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_02496896v2</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-810e9973e49cb079ed55481c48de006229869f894b8d47d981b7eae9a28ba7b23</originalsourceid><addsrcrecordid>eNpNkEFLw0AQhRdRsNRePecqmHZ2s83uHEtQKxS86HmZTSbtQpKWTaz039vQIp5m5vHeY_iEeJQwl4DZIrQUKCwCkQdY3oiJAo2pNUbd_tvvxazvgweppc7P90Q8F_v2EPmsHjlpmGIXum3yE4ZdcojhSOUp2X5TpG5g7h_EXU1Nz7PrnIqv15fPYp1uPt7ei9UmLTNthtRKYESTscbSg0GulkttZaltxQC5UmhzrC1qbyttKrTSGyZGUtaT8SqbiqdL744ad36jpXhyewpuvdq4UQOlMbeYH0fv_OIt477vI9d_AQluROMuaNwVTfYLlqdYLQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Compressive learning with privacy guarantees</title><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Chatalic, A ; Schellekens, V ; Houssiau, F ; de Montjoye, Y A ; Jacques, L ; Gribonval, R</creator><creatorcontrib>Chatalic, A ; Schellekens, V ; Houssiau, F ; de Montjoye, Y A ; Jacques, L ; Gribonval, R</creatorcontrib><description>This work addresses the problem of learning from large collections of data with privacy guarantees. The compressive learning framework proposes to deal with the large scale of datasets by compressing them into a single vector of generalized random moments, called a sketch vector, from which the learning task is then performed. We provide sharp bounds on the so-called sensitivity of this sketching mechanism. This allows us to leverage standard techniques to ensure differential privacy—a well-established formalism for defining and quantifying the privacy of a random mechanism—by adding Laplace of Gaussian noise to the sketch. We combine these standard mechanisms with a new feature subsampling mechanism, which reduces the computational cost without damaging privacy. The overall framework is applied to the tasks of Gaussian modeling, k-means clustering and principal component analysis, for which sharp privacy bounds are derived. Empirically, the quality (for subsequent learning) of the compressed representation produced by our mechanism is strongly related with the induced noise level, for which we give analytical expressions.</description><identifier>ISSN: 2049-8772</identifier><identifier>ISSN: 2049-8764</identifier><identifier>EISSN: 2049-8772</identifier><identifier>DOI: 10.1093/imaiai/iaab005</identifier><language>eng</language><publisher>Oxford University Press (OUP)</publisher><subject>Computer Science ; Cryptography and Security ; Machine Learning ; Signal and Image Processing ; Statistics</subject><ispartof>Information and Inference: A Journal of the IMA, 2022-03, Vol.11 (1), p.251-305</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-810e9973e49cb079ed55481c48de006229869f894b8d47d981b7eae9a28ba7b23</citedby><cites>FETCH-LOGICAL-c347t-810e9973e49cb079ed55481c48de006229869f894b8d47d981b7eae9a28ba7b23</cites><orcidid>0000-0003-2574-2417 ; 0000-0002-6261-0328 ; 0000-0002-9450-8125</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://inria.hal.science/hal-02496896$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Chatalic, A</creatorcontrib><creatorcontrib>Schellekens, V</creatorcontrib><creatorcontrib>Houssiau, F</creatorcontrib><creatorcontrib>de Montjoye, Y A</creatorcontrib><creatorcontrib>Jacques, L</creatorcontrib><creatorcontrib>Gribonval, R</creatorcontrib><title>Compressive learning with privacy guarantees</title><title>Information and Inference: A Journal of the IMA</title><description>This work addresses the problem of learning from large collections of data with privacy guarantees. The compressive learning framework proposes to deal with the large scale of datasets by compressing them into a single vector of generalized random moments, called a sketch vector, from which the learning task is then performed. We provide sharp bounds on the so-called sensitivity of this sketching mechanism. This allows us to leverage standard techniques to ensure differential privacy—a well-established formalism for defining and quantifying the privacy of a random mechanism—by adding Laplace of Gaussian noise to the sketch. We combine these standard mechanisms with a new feature subsampling mechanism, which reduces the computational cost without damaging privacy. The overall framework is applied to the tasks of Gaussian modeling, k-means clustering and principal component analysis, for which sharp privacy bounds are derived. Empirically, the quality (for subsequent learning) of the compressed representation produced by our mechanism is strongly related with the induced noise level, for which we give analytical expressions.</description><subject>Computer Science</subject><subject>Cryptography and Security</subject><subject>Machine Learning</subject><subject>Signal and Image Processing</subject><subject>Statistics</subject><issn>2049-8772</issn><issn>2049-8764</issn><issn>2049-8772</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpNkEFLw0AQhRdRsNRePecqmHZ2s83uHEtQKxS86HmZTSbtQpKWTaz039vQIp5m5vHeY_iEeJQwl4DZIrQUKCwCkQdY3oiJAo2pNUbd_tvvxazvgweppc7P90Q8F_v2EPmsHjlpmGIXum3yE4ZdcojhSOUp2X5TpG5g7h_EXU1Nz7PrnIqv15fPYp1uPt7ei9UmLTNthtRKYESTscbSg0GulkttZaltxQC5UmhzrC1qbyttKrTSGyZGUtaT8SqbiqdL744ad36jpXhyewpuvdq4UQOlMbeYH0fv_OIt477vI9d_AQluROMuaNwVTfYLlqdYLQ</recordid><startdate>20220326</startdate><enddate>20220326</enddate><creator>Chatalic, A</creator><creator>Schellekens, V</creator><creator>Houssiau, F</creator><creator>de Montjoye, Y A</creator><creator>Jacques, L</creator><creator>Gribonval, R</creator><general>Oxford University Press (OUP)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-2574-2417</orcidid><orcidid>https://orcid.org/0000-0002-6261-0328</orcidid><orcidid>https://orcid.org/0000-0002-9450-8125</orcidid></search><sort><creationdate>20220326</creationdate><title>Compressive learning with privacy guarantees</title><author>Chatalic, A ; Schellekens, V ; Houssiau, F ; de Montjoye, Y A ; Jacques, L ; Gribonval, R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-810e9973e49cb079ed55481c48de006229869f894b8d47d981b7eae9a28ba7b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Computer Science</topic><topic>Cryptography and Security</topic><topic>Machine Learning</topic><topic>Signal and Image Processing</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chatalic, A</creatorcontrib><creatorcontrib>Schellekens, V</creatorcontrib><creatorcontrib>Houssiau, F</creatorcontrib><creatorcontrib>de Montjoye, Y A</creatorcontrib><creatorcontrib>Jacques, L</creatorcontrib><creatorcontrib>Gribonval, R</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Information and Inference: A Journal of the IMA</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chatalic, A</au><au>Schellekens, V</au><au>Houssiau, F</au><au>de Montjoye, Y A</au><au>Jacques, L</au><au>Gribonval, R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Compressive learning with privacy guarantees</atitle><jtitle>Information and Inference: A Journal of the IMA</jtitle><date>2022-03-26</date><risdate>2022</risdate><volume>11</volume><issue>1</issue><spage>251</spage><epage>305</epage><pages>251-305</pages><issn>2049-8772</issn><issn>2049-8764</issn><eissn>2049-8772</eissn><abstract>This work addresses the problem of learning from large collections of data with privacy guarantees. The compressive learning framework proposes to deal with the large scale of datasets by compressing them into a single vector of generalized random moments, called a sketch vector, from which the learning task is then performed. We provide sharp bounds on the so-called sensitivity of this sketching mechanism. This allows us to leverage standard techniques to ensure differential privacy—a well-established formalism for defining and quantifying the privacy of a random mechanism—by adding Laplace of Gaussian noise to the sketch. We combine these standard mechanisms with a new feature subsampling mechanism, which reduces the computational cost without damaging privacy. The overall framework is applied to the tasks of Gaussian modeling, k-means clustering and principal component analysis, for which sharp privacy bounds are derived. Empirically, the quality (for subsequent learning) of the compressed representation produced by our mechanism is strongly related with the induced noise level, for which we give analytical expressions.</abstract><pub>Oxford University Press (OUP)</pub><doi>10.1093/imaiai/iaab005</doi><tpages>55</tpages><orcidid>https://orcid.org/0000-0003-2574-2417</orcidid><orcidid>https://orcid.org/0000-0002-6261-0328</orcidid><orcidid>https://orcid.org/0000-0002-9450-8125</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2049-8772 |
ispartof | Information and Inference: A Journal of the IMA, 2022-03, Vol.11 (1), p.251-305 |
issn | 2049-8772 2049-8764 2049-8772 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02496896v2 |
source | Oxford University Press Journals All Titles (1996-Current) |
subjects | Computer Science Cryptography and Security Machine Learning Signal and Image Processing Statistics |
title | Compressive learning with privacy guarantees |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T21%3A01%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Compressive%20learning%20with%20privacy%20guarantees&rft.jtitle=Information%20and%20Inference:%20A%20Journal%20of%20the%20IMA&rft.au=Chatalic,%20A&rft.date=2022-03-26&rft.volume=11&rft.issue=1&rft.spage=251&rft.epage=305&rft.pages=251-305&rft.issn=2049-8772&rft.eissn=2049-8772&rft_id=info:doi/10.1093/imaiai/iaab005&rft_dat=%3Chal_cross%3Eoai_HAL_hal_02496896v2%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |