On a conjecture of Mohar concerning Kempe equivalence of regular graphs
Let G be a graph with a vertex colouring α. Let a and b be two colours. Then a connected component of the subgraph induced by those vertices coloured either a or b is known as a Kempe chain. A colouring of G obtained from α by swapping the colours on the vertices of a Kempe chain is said to have bee...
Gespeichert in:
Veröffentlicht in: | Journal of combinatorial theory. Series B 2019-03, Vol.135, p.179-199 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 199 |
---|---|
container_issue | |
container_start_page | 179 |
container_title | Journal of combinatorial theory. Series B |
container_volume | 135 |
creator | Bonamy, Marthe Bousquet, Nicolas Feghali, Carl Johnson, Matthew |
description | Let G be a graph with a vertex colouring α. Let a and b be two colours. Then a connected component of the subgraph induced by those vertices coloured either a or b is known as a Kempe chain. A colouring of G obtained from α by swapping the colours on the vertices of a Kempe chain is said to have been obtained by a Kempe change. Two colourings of G are Kempe equivalent if one can be obtained from the other by a sequence of Kempe changes.
A conjecture of Mohar (2007) asserts that, for k≥3, all k-colourings of a k-regular graph that is not complete are Kempe equivalent. It was later shown that all 3-colourings of a cubic graph that is neither K4 nor the triangular prism are Kempe equivalent. In this paper, we prove that the conjecture holds for each k≥4. We also report the implications of this result on the validity of the Wang–Swendsen–Kotecký algorithm for the antiferromagnetic Potts model at zero-temperature. |
doi_str_mv | 10.1016/j.jctb.2018.08.002 |
format | Article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02467364v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S009589561830073X</els_id><sourcerecordid>oai_HAL_hal_02467364v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c444t-bde4d2c4e7ff9cc5dd2e4d1caf0b0f644acd3c5596327f6996833cee3d5e57e43</originalsourceid><addsrcrecordid>eNp9kE9LAzEUxIMoWKtfwNNePez68mezG_BSirZipRc9hzR5abNsuzXbFvz2Zql4FAYeDL95MEPIPYWCApWPTdHYw6pgQOsCkoBdkBEFJXNQwC7JCECVea1KeU1u-r4BAM6rekRmy11mMtvtGrSHY8Ss89l7tzFx8CzGXditszfc7jHDr2M4mRaTPVAR18c2ceto9pv-llx50_Z493vH5PPl-WM6zxfL2et0ssitEOKQrxwKx6zAyntlbekcSwa1xsMKvBTCWMdtWSrJWeWlUrLm3CJyV2JZoeBj8nD-uzGt3sewNfFbdybo-WShBw-YkBWX4kQTy86sjV3fR_R_AQp6mE03ephND7NpSAKWQk_nEKYWp4BR9zYMnV2IaSLtuvBf_Ac963aC</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On a conjecture of Mohar concerning Kempe equivalence of regular graphs</title><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Bonamy, Marthe ; Bousquet, Nicolas ; Feghali, Carl ; Johnson, Matthew</creator><creatorcontrib>Bonamy, Marthe ; Bousquet, Nicolas ; Feghali, Carl ; Johnson, Matthew</creatorcontrib><description>Let G be a graph with a vertex colouring α. Let a and b be two colours. Then a connected component of the subgraph induced by those vertices coloured either a or b is known as a Kempe chain. A colouring of G obtained from α by swapping the colours on the vertices of a Kempe chain is said to have been obtained by a Kempe change. Two colourings of G are Kempe equivalent if one can be obtained from the other by a sequence of Kempe changes.
A conjecture of Mohar (2007) asserts that, for k≥3, all k-colourings of a k-regular graph that is not complete are Kempe equivalent. It was later shown that all 3-colourings of a cubic graph that is neither K4 nor the triangular prism are Kempe equivalent. In this paper, we prove that the conjecture holds for each k≥4. We also report the implications of this result on the validity of the Wang–Swendsen–Kotecký algorithm for the antiferromagnetic Potts model at zero-temperature.</description><identifier>ISSN: 0095-8956</identifier><identifier>EISSN: 1096-0902</identifier><identifier>DOI: 10.1016/j.jctb.2018.08.002</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Antiferromagnetic Potts model ; Combinatorics ; Computer Science ; Discrete Mathematics ; Graph colouring ; Kempe chain ; Kempe equivalence ; Mathematics ; Regular graphs ; Wang–Swendsen–Kotecký algorithm</subject><ispartof>Journal of combinatorial theory. Series B, 2019-03, Vol.135, p.179-199</ispartof><rights>2018 Elsevier Inc.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c444t-bde4d2c4e7ff9cc5dd2e4d1caf0b0f644acd3c5596327f6996833cee3d5e57e43</citedby><cites>FETCH-LOGICAL-c444t-bde4d2c4e7ff9cc5dd2e4d1caf0b0f644acd3c5596327f6996833cee3d5e57e43</cites><orcidid>0000-0002-7295-2663 ; 0000-0003-0170-0503 ; 0000-0002-3645-3955 ; 0000-0001-7905-8018</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S009589561830073X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02467364$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bonamy, Marthe</creatorcontrib><creatorcontrib>Bousquet, Nicolas</creatorcontrib><creatorcontrib>Feghali, Carl</creatorcontrib><creatorcontrib>Johnson, Matthew</creatorcontrib><title>On a conjecture of Mohar concerning Kempe equivalence of regular graphs</title><title>Journal of combinatorial theory. Series B</title><description>Let G be a graph with a vertex colouring α. Let a and b be two colours. Then a connected component of the subgraph induced by those vertices coloured either a or b is known as a Kempe chain. A colouring of G obtained from α by swapping the colours on the vertices of a Kempe chain is said to have been obtained by a Kempe change. Two colourings of G are Kempe equivalent if one can be obtained from the other by a sequence of Kempe changes.
A conjecture of Mohar (2007) asserts that, for k≥3, all k-colourings of a k-regular graph that is not complete are Kempe equivalent. It was later shown that all 3-colourings of a cubic graph that is neither K4 nor the triangular prism are Kempe equivalent. In this paper, we prove that the conjecture holds for each k≥4. We also report the implications of this result on the validity of the Wang–Swendsen–Kotecký algorithm for the antiferromagnetic Potts model at zero-temperature.</description><subject>Antiferromagnetic Potts model</subject><subject>Combinatorics</subject><subject>Computer Science</subject><subject>Discrete Mathematics</subject><subject>Graph colouring</subject><subject>Kempe chain</subject><subject>Kempe equivalence</subject><subject>Mathematics</subject><subject>Regular graphs</subject><subject>Wang–Swendsen–Kotecký algorithm</subject><issn>0095-8956</issn><issn>1096-0902</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEUxIMoWKtfwNNePez68mezG_BSirZipRc9hzR5abNsuzXbFvz2Zql4FAYeDL95MEPIPYWCApWPTdHYw6pgQOsCkoBdkBEFJXNQwC7JCECVea1KeU1u-r4BAM6rekRmy11mMtvtGrSHY8Ss89l7tzFx8CzGXditszfc7jHDr2M4mRaTPVAR18c2ceto9pv-llx50_Z493vH5PPl-WM6zxfL2et0ssitEOKQrxwKx6zAyntlbekcSwa1xsMKvBTCWMdtWSrJWeWlUrLm3CJyV2JZoeBj8nD-uzGt3sewNfFbdybo-WShBw-YkBWX4kQTy86sjV3fR_R_AQp6mE03ephND7NpSAKWQk_nEKYWp4BR9zYMnV2IaSLtuvBf_Ac963aC</recordid><startdate>201903</startdate><enddate>201903</enddate><creator>Bonamy, Marthe</creator><creator>Bousquet, Nicolas</creator><creator>Feghali, Carl</creator><creator>Johnson, Matthew</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-7295-2663</orcidid><orcidid>https://orcid.org/0000-0003-0170-0503</orcidid><orcidid>https://orcid.org/0000-0002-3645-3955</orcidid><orcidid>https://orcid.org/0000-0001-7905-8018</orcidid></search><sort><creationdate>201903</creationdate><title>On a conjecture of Mohar concerning Kempe equivalence of regular graphs</title><author>Bonamy, Marthe ; Bousquet, Nicolas ; Feghali, Carl ; Johnson, Matthew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c444t-bde4d2c4e7ff9cc5dd2e4d1caf0b0f644acd3c5596327f6996833cee3d5e57e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Antiferromagnetic Potts model</topic><topic>Combinatorics</topic><topic>Computer Science</topic><topic>Discrete Mathematics</topic><topic>Graph colouring</topic><topic>Kempe chain</topic><topic>Kempe equivalence</topic><topic>Mathematics</topic><topic>Regular graphs</topic><topic>Wang–Swendsen–Kotecký algorithm</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bonamy, Marthe</creatorcontrib><creatorcontrib>Bousquet, Nicolas</creatorcontrib><creatorcontrib>Feghali, Carl</creatorcontrib><creatorcontrib>Johnson, Matthew</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of combinatorial theory. Series B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bonamy, Marthe</au><au>Bousquet, Nicolas</au><au>Feghali, Carl</au><au>Johnson, Matthew</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On a conjecture of Mohar concerning Kempe equivalence of regular graphs</atitle><jtitle>Journal of combinatorial theory. Series B</jtitle><date>2019-03</date><risdate>2019</risdate><volume>135</volume><spage>179</spage><epage>199</epage><pages>179-199</pages><issn>0095-8956</issn><eissn>1096-0902</eissn><abstract>Let G be a graph with a vertex colouring α. Let a and b be two colours. Then a connected component of the subgraph induced by those vertices coloured either a or b is known as a Kempe chain. A colouring of G obtained from α by swapping the colours on the vertices of a Kempe chain is said to have been obtained by a Kempe change. Two colourings of G are Kempe equivalent if one can be obtained from the other by a sequence of Kempe changes.
A conjecture of Mohar (2007) asserts that, for k≥3, all k-colourings of a k-regular graph that is not complete are Kempe equivalent. It was later shown that all 3-colourings of a cubic graph that is neither K4 nor the triangular prism are Kempe equivalent. In this paper, we prove that the conjecture holds for each k≥4. We also report the implications of this result on the validity of the Wang–Swendsen–Kotecký algorithm for the antiferromagnetic Potts model at zero-temperature.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jctb.2018.08.002</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-7295-2663</orcidid><orcidid>https://orcid.org/0000-0003-0170-0503</orcidid><orcidid>https://orcid.org/0000-0002-3645-3955</orcidid><orcidid>https://orcid.org/0000-0001-7905-8018</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0095-8956 |
ispartof | Journal of combinatorial theory. Series B, 2019-03, Vol.135, p.179-199 |
issn | 0095-8956 1096-0902 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02467364v1 |
source | Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Antiferromagnetic Potts model Combinatorics Computer Science Discrete Mathematics Graph colouring Kempe chain Kempe equivalence Mathematics Regular graphs Wang–Swendsen–Kotecký algorithm |
title | On a conjecture of Mohar concerning Kempe equivalence of regular graphs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T20%3A33%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20a%20conjecture%20of%20Mohar%20concerning%20Kempe%20equivalence%20of%20regular%20graphs&rft.jtitle=Journal%20of%20combinatorial%20theory.%20Series%20B&rft.au=Bonamy,%20Marthe&rft.date=2019-03&rft.volume=135&rft.spage=179&rft.epage=199&rft.pages=179-199&rft.issn=0095-8956&rft.eissn=1096-0902&rft_id=info:doi/10.1016/j.jctb.2018.08.002&rft_dat=%3Chal_cross%3Eoai_HAL_hal_02467364v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S009589561830073X&rfr_iscdi=true |