Flocking with discrete symmetry: The two-dimensional active Ising model
We study in detail the active Ising model, a stochastic lattice gas where collective motion emerges from the spontaneous breaking of a discrete symmetry. On a two-dimensional lattice, active particles undergo a diffusion biased in one of two possible directions (left and right) and align ferromagnet...
Gespeichert in:
Veröffentlicht in: | Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2015-10, Vol.92 (4), p.042119-042119, Article 042119 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 042119 |
---|---|
container_issue | 4 |
container_start_page | 042119 |
container_title | Physical review. E, Statistical, nonlinear, and soft matter physics |
container_volume | 92 |
creator | Solon, A P Tailleur, J |
description | We study in detail the active Ising model, a stochastic lattice gas where collective motion emerges from the spontaneous breaking of a discrete symmetry. On a two-dimensional lattice, active particles undergo a diffusion biased in one of two possible directions (left and right) and align ferromagnetically their direction of motion, hence yielding a minimal flocking model with discrete rotational symmetry. We show that the transition to collective motion amounts in this model to a bona fide liquid-gas phase transition in the canonical ensemble. The phase diagram in the density-velocity parameter plane has a critical point at zero velocity which belongs to the Ising universality class. In the density-temperature "canonical" ensemble, the usual critical point of the equilibrium liquid-gas transition is sent to infinite density because the different symmetries between liquid and gas phases preclude a supercritical region. We build a continuum theory which reproduces qualitatively the behavior of the microscopic model. In particular, we predict analytically the shapes of the phase diagrams in the vicinity of the critical points, the binodal and spinodal densities at coexistence, and the speeds and shapes of the phase-separated profiles. |
doi_str_mv | 10.1103/PhysRevE.92.042119 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02466568v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1747327193</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-f711a360acf8000b8b137e06b526a083b285e59c7dd7cf93887855da60ab0c723</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMobk7_gBfSS73oPEmaJvVujH3BQJF5HdI0tdV2mU230X9vS7ddncPheV44L0KPGMYYA339yBr3aQ6zcUTGEBCMoys0xIyBTygPr7udRj7ljA3QnXM_AJRQEdyiAQlZyLCAIVrMC6t_8-23d8zrzEtypytTG881ZWnqqnnzNpnx6qP1k7w0W5fbrSo8pev8YLyV68TSJqa4RzepKpx5OM0R-prPNtOlv35frKaTta-pwLWfcowVDUHpVABALGJMuYEwZiRUIGhMBDMs0jxJuE4jKgQXjCWqNWLQnNAReulzM1XIXZWXqmqkVblcTtayuwEJwvY7ccAt-9yzu8r-7Y2rZdm-Z4pCbY3dO4l5wCnhOKItSnpUV9a5yqSXbAyyK1uey5YRkX3ZrfR0yt_HpUkuyrld-g878Xrn</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1747327193</pqid></control><display><type>article</type><title>Flocking with discrete symmetry: The two-dimensional active Ising model</title><source>American Physical Society Journals</source><creator>Solon, A P ; Tailleur, J</creator><creatorcontrib>Solon, A P ; Tailleur, J</creatorcontrib><description>We study in detail the active Ising model, a stochastic lattice gas where collective motion emerges from the spontaneous breaking of a discrete symmetry. On a two-dimensional lattice, active particles undergo a diffusion biased in one of two possible directions (left and right) and align ferromagnetically their direction of motion, hence yielding a minimal flocking model with discrete rotational symmetry. We show that the transition to collective motion amounts in this model to a bona fide liquid-gas phase transition in the canonical ensemble. The phase diagram in the density-velocity parameter plane has a critical point at zero velocity which belongs to the Ising universality class. In the density-temperature "canonical" ensemble, the usual critical point of the equilibrium liquid-gas transition is sent to infinite density because the different symmetries between liquid and gas phases preclude a supercritical region. We build a continuum theory which reproduces qualitatively the behavior of the microscopic model. In particular, we predict analytically the shapes of the phase diagrams in the vicinity of the critical points, the binodal and spinodal densities at coexistence, and the speeds and shapes of the phase-separated profiles.</description><identifier>ISSN: 1539-3755</identifier><identifier>EISSN: 1550-2376</identifier><identifier>DOI: 10.1103/PhysRevE.92.042119</identifier><identifier>PMID: 26565180</identifier><language>eng</language><publisher>United States: American Physical Society</publisher><subject>Condensed Matter ; Physics ; Statistical Mechanics</subject><ispartof>Physical review. E, Statistical, nonlinear, and soft matter physics, 2015-10, Vol.92 (4), p.042119-042119, Article 042119</ispartof><rights>Attribution</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-f711a360acf8000b8b137e06b526a083b285e59c7dd7cf93887855da60ab0c723</citedby><cites>FETCH-LOGICAL-c381t-f711a360acf8000b8b137e06b526a083b285e59c7dd7cf93887855da60ab0c723</cites><orcidid>0000-0002-0222-1347 ; 0000-0001-6847-3304</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26565180$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02466568$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Solon, A P</creatorcontrib><creatorcontrib>Tailleur, J</creatorcontrib><title>Flocking with discrete symmetry: The two-dimensional active Ising model</title><title>Physical review. E, Statistical, nonlinear, and soft matter physics</title><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><description>We study in detail the active Ising model, a stochastic lattice gas where collective motion emerges from the spontaneous breaking of a discrete symmetry. On a two-dimensional lattice, active particles undergo a diffusion biased in one of two possible directions (left and right) and align ferromagnetically their direction of motion, hence yielding a minimal flocking model with discrete rotational symmetry. We show that the transition to collective motion amounts in this model to a bona fide liquid-gas phase transition in the canonical ensemble. The phase diagram in the density-velocity parameter plane has a critical point at zero velocity which belongs to the Ising universality class. In the density-temperature "canonical" ensemble, the usual critical point of the equilibrium liquid-gas transition is sent to infinite density because the different symmetries between liquid and gas phases preclude a supercritical region. We build a continuum theory which reproduces qualitatively the behavior of the microscopic model. In particular, we predict analytically the shapes of the phase diagrams in the vicinity of the critical points, the binodal and spinodal densities at coexistence, and the speeds and shapes of the phase-separated profiles.</description><subject>Condensed Matter</subject><subject>Physics</subject><subject>Statistical Mechanics</subject><issn>1539-3755</issn><issn>1550-2376</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNo9kF1LwzAUhoMobk7_gBfSS73oPEmaJvVujH3BQJF5HdI0tdV2mU230X9vS7ddncPheV44L0KPGMYYA339yBr3aQ6zcUTGEBCMoys0xIyBTygPr7udRj7ljA3QnXM_AJRQEdyiAQlZyLCAIVrMC6t_8-23d8zrzEtypytTG881ZWnqqnnzNpnx6qP1k7w0W5fbrSo8pev8YLyV68TSJqa4RzepKpx5OM0R-prPNtOlv35frKaTta-pwLWfcowVDUHpVABALGJMuYEwZiRUIGhMBDMs0jxJuE4jKgQXjCWqNWLQnNAReulzM1XIXZWXqmqkVblcTtayuwEJwvY7ccAt-9yzu8r-7Y2rZdm-Z4pCbY3dO4l5wCnhOKItSnpUV9a5yqSXbAyyK1uey5YRkX3ZrfR0yt_HpUkuyrld-g878Xrn</recordid><startdate>20151008</startdate><enddate>20151008</enddate><creator>Solon, A P</creator><creator>Tailleur, J</creator><general>American Physical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-0222-1347</orcidid><orcidid>https://orcid.org/0000-0001-6847-3304</orcidid></search><sort><creationdate>20151008</creationdate><title>Flocking with discrete symmetry: The two-dimensional active Ising model</title><author>Solon, A P ; Tailleur, J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-f711a360acf8000b8b137e06b526a083b285e59c7dd7cf93887855da60ab0c723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Condensed Matter</topic><topic>Physics</topic><topic>Statistical Mechanics</topic><toplevel>online_resources</toplevel><creatorcontrib>Solon, A P</creatorcontrib><creatorcontrib>Tailleur, J</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Solon, A P</au><au>Tailleur, J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flocking with discrete symmetry: The two-dimensional active Ising model</atitle><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><date>2015-10-08</date><risdate>2015</risdate><volume>92</volume><issue>4</issue><spage>042119</spage><epage>042119</epage><pages>042119-042119</pages><artnum>042119</artnum><issn>1539-3755</issn><eissn>1550-2376</eissn><abstract>We study in detail the active Ising model, a stochastic lattice gas where collective motion emerges from the spontaneous breaking of a discrete symmetry. On a two-dimensional lattice, active particles undergo a diffusion biased in one of two possible directions (left and right) and align ferromagnetically their direction of motion, hence yielding a minimal flocking model with discrete rotational symmetry. We show that the transition to collective motion amounts in this model to a bona fide liquid-gas phase transition in the canonical ensemble. The phase diagram in the density-velocity parameter plane has a critical point at zero velocity which belongs to the Ising universality class. In the density-temperature "canonical" ensemble, the usual critical point of the equilibrium liquid-gas transition is sent to infinite density because the different symmetries between liquid and gas phases preclude a supercritical region. We build a continuum theory which reproduces qualitatively the behavior of the microscopic model. In particular, we predict analytically the shapes of the phase diagrams in the vicinity of the critical points, the binodal and spinodal densities at coexistence, and the speeds and shapes of the phase-separated profiles.</abstract><cop>United States</cop><pub>American Physical Society</pub><pmid>26565180</pmid><doi>10.1103/PhysRevE.92.042119</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-0222-1347</orcidid><orcidid>https://orcid.org/0000-0001-6847-3304</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1539-3755 |
ispartof | Physical review. E, Statistical, nonlinear, and soft matter physics, 2015-10, Vol.92 (4), p.042119-042119, Article 042119 |
issn | 1539-3755 1550-2376 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02466568v1 |
source | American Physical Society Journals |
subjects | Condensed Matter Physics Statistical Mechanics |
title | Flocking with discrete symmetry: The two-dimensional active Ising model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T12%3A57%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flocking%20with%20discrete%20symmetry:%20The%20two-dimensional%20active%20Ising%20model&rft.jtitle=Physical%20review.%20E,%20Statistical,%20nonlinear,%20and%20soft%20matter%20physics&rft.au=Solon,%20A%20P&rft.date=2015-10-08&rft.volume=92&rft.issue=4&rft.spage=042119&rft.epage=042119&rft.pages=042119-042119&rft.artnum=042119&rft.issn=1539-3755&rft.eissn=1550-2376&rft_id=info:doi/10.1103/PhysRevE.92.042119&rft_dat=%3Cproquest_hal_p%3E1747327193%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1747327193&rft_id=info:pmid/26565180&rfr_iscdi=true |