A novel approach for recognition of human actions with semi-global features

In this study a new approach is presented for the recognition of human actions of everyday life with a fixed camera. The originality of the presented method consists in characterizing sequences by a temporal succession of semi-global features, which are extracted from “space-time micro-volumes”. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Machine vision and applications 2008, Vol.19 (1), p.27-34
Hauptverfasser: Achard, Catherine, Qu, Xingtai, Mokhber, Arash, Milgram, Maurice
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 34
container_issue 1
container_start_page 27
container_title Machine vision and applications
container_volume 19
creator Achard, Catherine
Qu, Xingtai
Mokhber, Arash
Milgram, Maurice
description In this study a new approach is presented for the recognition of human actions of everyday life with a fixed camera. The originality of the presented method consists in characterizing sequences by a temporal succession of semi-global features, which are extracted from “space-time micro-volumes”. The advantage of this approach lies in the use of robust features (estimated on several frames) associated with the ability to manage actions with variable durations and easily segment the sequences with algorithms that are specific to time-varying data. Each action is actually characterized by a temporal sequence that constitutes the input of a Hidden Markov Model system for the recognition. Results presented of 1,614 sequences performed by several persons validate the proposed approach.
doi_str_mv 10.1007/s00138-007-0074-2
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02462973v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>31836659</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-8e89c6c6624ab7aa0401fad51b09f6772681bfde96aabac1079377615ab0d2253</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouP75AN5yEjxUJ0mbNMdlUVdc8KLnMM2m2y5tsybtit_elopHD8O8GX5vYB4hNwzuGYB6iABM5Mkop0oTfkIWLBU8YUrqU7IAPeocND8nFzHuASBVKl2Q1yXt_NE1FA-H4NFWtPSBBmf9rqv72nfUl7QaWuwo2mmO9KvuKxpdWye7xhfY0NJhPwQXr8hZiU1017_9knw8Pb6v1snm7flltdwkVmSiT3KXayutlDzFQiFCCqzEbcYK0KVUisucFeXWaYlYoGWgtFBKsgwL2HKeiUtyN9-tsDGHULcYvo3H2qyXGzPtgKeSayWObGRvZ3b87nNwsTdtHa1rGuycH6IRLBdSZnoE2Qza4GMMrvy7zMBMEZs5YjPJKWLDRw-fPXFku50LZu-H0I2__2P6AXHZfY8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>31836659</pqid></control><display><type>article</type><title>A novel approach for recognition of human actions with semi-global features</title><source>SpringerLink Journals - AutoHoldings</source><creator>Achard, Catherine ; Qu, Xingtai ; Mokhber, Arash ; Milgram, Maurice</creator><creatorcontrib>Achard, Catherine ; Qu, Xingtai ; Mokhber, Arash ; Milgram, Maurice</creatorcontrib><description>In this study a new approach is presented for the recognition of human actions of everyday life with a fixed camera. The originality of the presented method consists in characterizing sequences by a temporal succession of semi-global features, which are extracted from “space-time micro-volumes”. The advantage of this approach lies in the use of robust features (estimated on several frames) associated with the ability to manage actions with variable durations and easily segment the sequences with algorithms that are specific to time-varying data. Each action is actually characterized by a temporal sequence that constitutes the input of a Hidden Markov Model system for the recognition. Results presented of 1,614 sequences performed by several persons validate the proposed approach.</description><identifier>ISSN: 0932-8092</identifier><identifier>EISSN: 1432-1769</identifier><identifier>DOI: 10.1007/s00138-007-0074-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Artificial Intelligence ; Communications Engineering ; Computer Science ; Image Processing and Computer Vision ; Networks ; Original Paper ; Pattern Recognition</subject><ispartof>Machine vision and applications, 2008, Vol.19 (1), p.27-34</ispartof><rights>Springer-Verlag 2007</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-8e89c6c6624ab7aa0401fad51b09f6772681bfde96aabac1079377615ab0d2253</citedby><cites>FETCH-LOGICAL-c353t-8e89c6c6624ab7aa0401fad51b09f6772681bfde96aabac1079377615ab0d2253</cites><orcidid>0000-0002-5790-0830</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00138-007-0074-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00138-007-0074-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://hal.sorbonne-universite.fr/hal-02462973$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Achard, Catherine</creatorcontrib><creatorcontrib>Qu, Xingtai</creatorcontrib><creatorcontrib>Mokhber, Arash</creatorcontrib><creatorcontrib>Milgram, Maurice</creatorcontrib><title>A novel approach for recognition of human actions with semi-global features</title><title>Machine vision and applications</title><addtitle>Machine Vision and Applications</addtitle><description>In this study a new approach is presented for the recognition of human actions of everyday life with a fixed camera. The originality of the presented method consists in characterizing sequences by a temporal succession of semi-global features, which are extracted from “space-time micro-volumes”. The advantage of this approach lies in the use of robust features (estimated on several frames) associated with the ability to manage actions with variable durations and easily segment the sequences with algorithms that are specific to time-varying data. Each action is actually characterized by a temporal sequence that constitutes the input of a Hidden Markov Model system for the recognition. Results presented of 1,614 sequences performed by several persons validate the proposed approach.</description><subject>Artificial Intelligence</subject><subject>Communications Engineering</subject><subject>Computer Science</subject><subject>Image Processing and Computer Vision</subject><subject>Networks</subject><subject>Original Paper</subject><subject>Pattern Recognition</subject><issn>0932-8092</issn><issn>1432-1769</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouP75AN5yEjxUJ0mbNMdlUVdc8KLnMM2m2y5tsybtit_elopHD8O8GX5vYB4hNwzuGYB6iABM5Mkop0oTfkIWLBU8YUrqU7IAPeocND8nFzHuASBVKl2Q1yXt_NE1FA-H4NFWtPSBBmf9rqv72nfUl7QaWuwo2mmO9KvuKxpdWye7xhfY0NJhPwQXr8hZiU1017_9knw8Pb6v1snm7flltdwkVmSiT3KXayutlDzFQiFCCqzEbcYK0KVUisucFeXWaYlYoGWgtFBKsgwL2HKeiUtyN9-tsDGHULcYvo3H2qyXGzPtgKeSayWObGRvZ3b87nNwsTdtHa1rGuycH6IRLBdSZnoE2Qza4GMMrvy7zMBMEZs5YjPJKWLDRw-fPXFku50LZu-H0I2__2P6AXHZfY8</recordid><startdate>2008</startdate><enddate>2008</enddate><creator>Achard, Catherine</creator><creator>Qu, Xingtai</creator><creator>Mokhber, Arash</creator><creator>Milgram, Maurice</creator><general>Springer-Verlag</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-5790-0830</orcidid></search><sort><creationdate>2008</creationdate><title>A novel approach for recognition of human actions with semi-global features</title><author>Achard, Catherine ; Qu, Xingtai ; Mokhber, Arash ; Milgram, Maurice</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-8e89c6c6624ab7aa0401fad51b09f6772681bfde96aabac1079377615ab0d2253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Artificial Intelligence</topic><topic>Communications Engineering</topic><topic>Computer Science</topic><topic>Image Processing and Computer Vision</topic><topic>Networks</topic><topic>Original Paper</topic><topic>Pattern Recognition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Achard, Catherine</creatorcontrib><creatorcontrib>Qu, Xingtai</creatorcontrib><creatorcontrib>Mokhber, Arash</creatorcontrib><creatorcontrib>Milgram, Maurice</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Machine vision and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Achard, Catherine</au><au>Qu, Xingtai</au><au>Mokhber, Arash</au><au>Milgram, Maurice</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel approach for recognition of human actions with semi-global features</atitle><jtitle>Machine vision and applications</jtitle><stitle>Machine Vision and Applications</stitle><date>2008</date><risdate>2008</risdate><volume>19</volume><issue>1</issue><spage>27</spage><epage>34</epage><pages>27-34</pages><issn>0932-8092</issn><eissn>1432-1769</eissn><abstract>In this study a new approach is presented for the recognition of human actions of everyday life with a fixed camera. The originality of the presented method consists in characterizing sequences by a temporal succession of semi-global features, which are extracted from “space-time micro-volumes”. The advantage of this approach lies in the use of robust features (estimated on several frames) associated with the ability to manage actions with variable durations and easily segment the sequences with algorithms that are specific to time-varying data. Each action is actually characterized by a temporal sequence that constitutes the input of a Hidden Markov Model system for the recognition. Results presented of 1,614 sequences performed by several persons validate the proposed approach.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00138-007-0074-2</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-5790-0830</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0932-8092
ispartof Machine vision and applications, 2008, Vol.19 (1), p.27-34
issn 0932-8092
1432-1769
language eng
recordid cdi_hal_primary_oai_HAL_hal_02462973v1
source SpringerLink Journals - AutoHoldings
subjects Artificial Intelligence
Communications Engineering
Computer Science
Image Processing and Computer Vision
Networks
Original Paper
Pattern Recognition
title A novel approach for recognition of human actions with semi-global features
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T11%3A30%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20approach%20for%20recognition%20of%20human%20actions%20with%20semi-global%20features&rft.jtitle=Machine%20vision%20and%20applications&rft.au=Achard,%20Catherine&rft.date=2008&rft.volume=19&rft.issue=1&rft.spage=27&rft.epage=34&rft.pages=27-34&rft.issn=0932-8092&rft.eissn=1432-1769&rft_id=info:doi/10.1007/s00138-007-0074-2&rft_dat=%3Cproquest_hal_p%3E31836659%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=31836659&rft_id=info:pmid/&rfr_iscdi=true