A novel approach for recognition of human actions with semi-global features
In this study a new approach is presented for the recognition of human actions of everyday life with a fixed camera. The originality of the presented method consists in characterizing sequences by a temporal succession of semi-global features, which are extracted from “space-time micro-volumes”. The...
Gespeichert in:
Veröffentlicht in: | Machine vision and applications 2008, Vol.19 (1), p.27-34 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 34 |
---|---|
container_issue | 1 |
container_start_page | 27 |
container_title | Machine vision and applications |
container_volume | 19 |
creator | Achard, Catherine Qu, Xingtai Mokhber, Arash Milgram, Maurice |
description | In this study a new approach is presented for the recognition of human actions of everyday life with a fixed camera. The originality of the presented method consists in characterizing sequences by a temporal succession of semi-global features, which are extracted from “space-time micro-volumes”. The advantage of this approach lies in the use of robust features (estimated on several frames) associated with the ability to manage actions with variable durations and easily segment the sequences with algorithms that are specific to time-varying data. Each action is actually characterized by a temporal sequence that constitutes the input of a Hidden Markov Model system for the recognition. Results presented of 1,614 sequences performed by several persons validate the proposed approach. |
doi_str_mv | 10.1007/s00138-007-0074-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02462973v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>31836659</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-8e89c6c6624ab7aa0401fad51b09f6772681bfde96aabac1079377615ab0d2253</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouP75AN5yEjxUJ0mbNMdlUVdc8KLnMM2m2y5tsybtit_elopHD8O8GX5vYB4hNwzuGYB6iABM5Mkop0oTfkIWLBU8YUrqU7IAPeocND8nFzHuASBVKl2Q1yXt_NE1FA-H4NFWtPSBBmf9rqv72nfUl7QaWuwo2mmO9KvuKxpdWye7xhfY0NJhPwQXr8hZiU1017_9knw8Pb6v1snm7flltdwkVmSiT3KXayutlDzFQiFCCqzEbcYK0KVUisucFeXWaYlYoGWgtFBKsgwL2HKeiUtyN9-tsDGHULcYvo3H2qyXGzPtgKeSayWObGRvZ3b87nNwsTdtHa1rGuycH6IRLBdSZnoE2Qza4GMMrvy7zMBMEZs5YjPJKWLDRw-fPXFku50LZu-H0I2__2P6AXHZfY8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>31836659</pqid></control><display><type>article</type><title>A novel approach for recognition of human actions with semi-global features</title><source>SpringerLink Journals - AutoHoldings</source><creator>Achard, Catherine ; Qu, Xingtai ; Mokhber, Arash ; Milgram, Maurice</creator><creatorcontrib>Achard, Catherine ; Qu, Xingtai ; Mokhber, Arash ; Milgram, Maurice</creatorcontrib><description>In this study a new approach is presented for the recognition of human actions of everyday life with a fixed camera. The originality of the presented method consists in characterizing sequences by a temporal succession of semi-global features, which are extracted from “space-time micro-volumes”. The advantage of this approach lies in the use of robust features (estimated on several frames) associated with the ability to manage actions with variable durations and easily segment the sequences with algorithms that are specific to time-varying data. Each action is actually characterized by a temporal sequence that constitutes the input of a Hidden Markov Model system for the recognition. Results presented of 1,614 sequences performed by several persons validate the proposed approach.</description><identifier>ISSN: 0932-8092</identifier><identifier>EISSN: 1432-1769</identifier><identifier>DOI: 10.1007/s00138-007-0074-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Artificial Intelligence ; Communications Engineering ; Computer Science ; Image Processing and Computer Vision ; Networks ; Original Paper ; Pattern Recognition</subject><ispartof>Machine vision and applications, 2008, Vol.19 (1), p.27-34</ispartof><rights>Springer-Verlag 2007</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-8e89c6c6624ab7aa0401fad51b09f6772681bfde96aabac1079377615ab0d2253</citedby><cites>FETCH-LOGICAL-c353t-8e89c6c6624ab7aa0401fad51b09f6772681bfde96aabac1079377615ab0d2253</cites><orcidid>0000-0002-5790-0830</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00138-007-0074-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00138-007-0074-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://hal.sorbonne-universite.fr/hal-02462973$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Achard, Catherine</creatorcontrib><creatorcontrib>Qu, Xingtai</creatorcontrib><creatorcontrib>Mokhber, Arash</creatorcontrib><creatorcontrib>Milgram, Maurice</creatorcontrib><title>A novel approach for recognition of human actions with semi-global features</title><title>Machine vision and applications</title><addtitle>Machine Vision and Applications</addtitle><description>In this study a new approach is presented for the recognition of human actions of everyday life with a fixed camera. The originality of the presented method consists in characterizing sequences by a temporal succession of semi-global features, which are extracted from “space-time micro-volumes”. The advantage of this approach lies in the use of robust features (estimated on several frames) associated with the ability to manage actions with variable durations and easily segment the sequences with algorithms that are specific to time-varying data. Each action is actually characterized by a temporal sequence that constitutes the input of a Hidden Markov Model system for the recognition. Results presented of 1,614 sequences performed by several persons validate the proposed approach.</description><subject>Artificial Intelligence</subject><subject>Communications Engineering</subject><subject>Computer Science</subject><subject>Image Processing and Computer Vision</subject><subject>Networks</subject><subject>Original Paper</subject><subject>Pattern Recognition</subject><issn>0932-8092</issn><issn>1432-1769</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouP75AN5yEjxUJ0mbNMdlUVdc8KLnMM2m2y5tsybtit_elopHD8O8GX5vYB4hNwzuGYB6iABM5Mkop0oTfkIWLBU8YUrqU7IAPeocND8nFzHuASBVKl2Q1yXt_NE1FA-H4NFWtPSBBmf9rqv72nfUl7QaWuwo2mmO9KvuKxpdWye7xhfY0NJhPwQXr8hZiU1017_9knw8Pb6v1snm7flltdwkVmSiT3KXayutlDzFQiFCCqzEbcYK0KVUisucFeXWaYlYoGWgtFBKsgwL2HKeiUtyN9-tsDGHULcYvo3H2qyXGzPtgKeSayWObGRvZ3b87nNwsTdtHa1rGuycH6IRLBdSZnoE2Qza4GMMrvy7zMBMEZs5YjPJKWLDRw-fPXFku50LZu-H0I2__2P6AXHZfY8</recordid><startdate>2008</startdate><enddate>2008</enddate><creator>Achard, Catherine</creator><creator>Qu, Xingtai</creator><creator>Mokhber, Arash</creator><creator>Milgram, Maurice</creator><general>Springer-Verlag</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-5790-0830</orcidid></search><sort><creationdate>2008</creationdate><title>A novel approach for recognition of human actions with semi-global features</title><author>Achard, Catherine ; Qu, Xingtai ; Mokhber, Arash ; Milgram, Maurice</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-8e89c6c6624ab7aa0401fad51b09f6772681bfde96aabac1079377615ab0d2253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Artificial Intelligence</topic><topic>Communications Engineering</topic><topic>Computer Science</topic><topic>Image Processing and Computer Vision</topic><topic>Networks</topic><topic>Original Paper</topic><topic>Pattern Recognition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Achard, Catherine</creatorcontrib><creatorcontrib>Qu, Xingtai</creatorcontrib><creatorcontrib>Mokhber, Arash</creatorcontrib><creatorcontrib>Milgram, Maurice</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Machine vision and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Achard, Catherine</au><au>Qu, Xingtai</au><au>Mokhber, Arash</au><au>Milgram, Maurice</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel approach for recognition of human actions with semi-global features</atitle><jtitle>Machine vision and applications</jtitle><stitle>Machine Vision and Applications</stitle><date>2008</date><risdate>2008</risdate><volume>19</volume><issue>1</issue><spage>27</spage><epage>34</epage><pages>27-34</pages><issn>0932-8092</issn><eissn>1432-1769</eissn><abstract>In this study a new approach is presented for the recognition of human actions of everyday life with a fixed camera. The originality of the presented method consists in characterizing sequences by a temporal succession of semi-global features, which are extracted from “space-time micro-volumes”. The advantage of this approach lies in the use of robust features (estimated on several frames) associated with the ability to manage actions with variable durations and easily segment the sequences with algorithms that are specific to time-varying data. Each action is actually characterized by a temporal sequence that constitutes the input of a Hidden Markov Model system for the recognition. Results presented of 1,614 sequences performed by several persons validate the proposed approach.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00138-007-0074-2</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-5790-0830</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0932-8092 |
ispartof | Machine vision and applications, 2008, Vol.19 (1), p.27-34 |
issn | 0932-8092 1432-1769 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02462973v1 |
source | SpringerLink Journals - AutoHoldings |
subjects | Artificial Intelligence Communications Engineering Computer Science Image Processing and Computer Vision Networks Original Paper Pattern Recognition |
title | A novel approach for recognition of human actions with semi-global features |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T11%3A30%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20approach%20for%20recognition%20of%20human%20actions%20with%20semi-global%20features&rft.jtitle=Machine%20vision%20and%20applications&rft.au=Achard,%20Catherine&rft.date=2008&rft.volume=19&rft.issue=1&rft.spage=27&rft.epage=34&rft.pages=27-34&rft.issn=0932-8092&rft.eissn=1432-1769&rft_id=info:doi/10.1007/s00138-007-0074-2&rft_dat=%3Cproquest_hal_p%3E31836659%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=31836659&rft_id=info:pmid/&rfr_iscdi=true |