Macrophage-Derived IL1β and TNFα Regulate Arginine Metabolism in Neuroblastoma
Neuroblastoma is the most common childhood solid tumor, yet the prognosis for high-risk disease remains poor. We demonstrate here that arginase 2 (ARG2) drives neuroblastoma cell proliferation via regulation of arginine metabolism. Targeting arginine metabolism, either by blocking cationic amino aci...
Gespeichert in:
Veröffentlicht in: | Cancer research (Chicago, Ill.) Ill.), 2019-02, Vol.79 (3), p.611-624 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 624 |
---|---|
container_issue | 3 |
container_start_page | 611 |
container_title | Cancer research (Chicago, Ill.) |
container_volume | 79 |
creator | Fultang, Livingstone Gamble, Laura D Gneo, Luciana Berry, Andrea M Egan, Sharon A De Bie, Fenna Yogev, Orli Eden, Georgina L Booth, Sarah Brownhill, Samantha Vardon, Ashley McConville, Carmel M Cheng, Paul N Norris, Murray D Etchevers, Heather C Murray, Jayne Ziegler, David S Chesler, Louis Schmidt, Ronny Burchill, Susan A Haber, Michelle De Santo, Carmela Mussai, Francis |
description | Neuroblastoma is the most common childhood solid tumor, yet the prognosis for high-risk disease remains poor. We demonstrate here that arginase 2 (ARG2) drives neuroblastoma cell proliferation via regulation of arginine metabolism. Targeting arginine metabolism, either by blocking cationic amino acid transporter 1 (CAT-1)-dependent arginine uptake
or therapeutic depletion of arginine by pegylated recombinant arginase BCT-100, significantly delayed tumor development and prolonged murine survival. Tumor cells polarized infiltrating monocytes to an M1-macrophage phenotype, which released IL1β and TNFα in a RAC-alpha serine/threonine-protein kinase (AKT)-dependent manner. IL1β and TNFα established a feedback loop to upregulate ARG2 expression via p38 and extracellular regulated kinases 1/2 (ERK1/2) signaling in neuroblastoma and neural crest-derived cells. Proteomic analysis revealed that enrichment of IL1β and TNFα in stage IV human tumor microenvironments was associated with a worse prognosis. These data thus describe an immune-metabolic regulatory loop between tumor cells and infiltrating myeloid cells regulating ARG2, which can be clinically exploited. SIGNIFICANCE: These findings illustrate that cross-talk between myeloid cells and tumor cells creates a metabolic regulatory loop that promotes neuroblastoma progression. |
doi_str_mv | 10.1158/0008-5472.CAN-18-2139 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02462178v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2157669744</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-89b94afef3b76da90a8f8b3ecacf731aaeb5f40071a72d0b657c1b93dc132fda3</originalsourceid><addsrcrecordid>eNo9kNtO20AQhldVqxIoj9DKl-XC6c4evOvLKC0QKQRUhevVrD1OXPmQem0kHgsehGeqrdBcjWb0_f9IH2Nfgc8BtP3BObexVkbMl4tNDDYWINMPbAZa2tgopT-y2Yk5Y-ch_BlXDVx_ZmeSa6VTwWfs4Q6zrj3scUfxT-rKJ8qj1RreXiNs8mi7uX57iX7Tbqiwp2jR7cqmbCi6ox59W5Whjsom2tDQtb7C0Lc1fmGfCqwCXb7PC_Z4_Wu7vI3X9zer5WIdZ0qoPrapTxUWVEhvkhxTjrawXlKGWWEkIJLXheLcABqRc59ok4FPZZ6BFEWO8oJdHXv3WLlDV9bYPbsWS3e7WLvpxoVKBBj7BCP7_cgeuvbvQKF3dRkyqipsqB2CE6BNkqSjtRHVR3S0EkJHxakbuJvEu0mqm6S6UbwD6ybxY-7b-4vB15SfUv9Ny39G5H9B</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2157669744</pqid></control><display><type>article</type><title>Macrophage-Derived IL1β and TNFα Regulate Arginine Metabolism in Neuroblastoma</title><source>MEDLINE</source><source>American Association for Cancer Research</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Fultang, Livingstone ; Gamble, Laura D ; Gneo, Luciana ; Berry, Andrea M ; Egan, Sharon A ; De Bie, Fenna ; Yogev, Orli ; Eden, Georgina L ; Booth, Sarah ; Brownhill, Samantha ; Vardon, Ashley ; McConville, Carmel M ; Cheng, Paul N ; Norris, Murray D ; Etchevers, Heather C ; Murray, Jayne ; Ziegler, David S ; Chesler, Louis ; Schmidt, Ronny ; Burchill, Susan A ; Haber, Michelle ; De Santo, Carmela ; Mussai, Francis</creator><creatorcontrib>Fultang, Livingstone ; Gamble, Laura D ; Gneo, Luciana ; Berry, Andrea M ; Egan, Sharon A ; De Bie, Fenna ; Yogev, Orli ; Eden, Georgina L ; Booth, Sarah ; Brownhill, Samantha ; Vardon, Ashley ; McConville, Carmel M ; Cheng, Paul N ; Norris, Murray D ; Etchevers, Heather C ; Murray, Jayne ; Ziegler, David S ; Chesler, Louis ; Schmidt, Ronny ; Burchill, Susan A ; Haber, Michelle ; De Santo, Carmela ; Mussai, Francis</creatorcontrib><description>Neuroblastoma is the most common childhood solid tumor, yet the prognosis for high-risk disease remains poor. We demonstrate here that arginase 2 (ARG2) drives neuroblastoma cell proliferation via regulation of arginine metabolism. Targeting arginine metabolism, either by blocking cationic amino acid transporter 1 (CAT-1)-dependent arginine uptake
or therapeutic depletion of arginine by pegylated recombinant arginase BCT-100, significantly delayed tumor development and prolonged murine survival. Tumor cells polarized infiltrating monocytes to an M1-macrophage phenotype, which released IL1β and TNFα in a RAC-alpha serine/threonine-protein kinase (AKT)-dependent manner. IL1β and TNFα established a feedback loop to upregulate ARG2 expression via p38 and extracellular regulated kinases 1/2 (ERK1/2) signaling in neuroblastoma and neural crest-derived cells. Proteomic analysis revealed that enrichment of IL1β and TNFα in stage IV human tumor microenvironments was associated with a worse prognosis. These data thus describe an immune-metabolic regulatory loop between tumor cells and infiltrating myeloid cells regulating ARG2, which can be clinically exploited. SIGNIFICANCE: These findings illustrate that cross-talk between myeloid cells and tumor cells creates a metabolic regulatory loop that promotes neuroblastoma progression.</description><identifier>ISSN: 0008-5472</identifier><identifier>EISSN: 1538-7445</identifier><identifier>DOI: 10.1158/0008-5472.CAN-18-2139</identifier><identifier>PMID: 30545920</identifier><language>eng</language><publisher>United States: American Association for Cancer Research</publisher><subject>Animals ; Arginase - metabolism ; Arginine - metabolism ; Cell Line, Tumor ; Genetics ; Humans ; Interleukin-1beta - immunology ; Interleukin-1beta - metabolism ; Life Sciences ; Macrophages - immunology ; Macrophages - metabolism ; Macrophages - pathology ; MAP Kinase Signaling System ; Mice ; Mice, Transgenic ; Myeloid Cells - immunology ; Myeloid Cells - metabolism ; Myeloid Cells - pathology ; Neuroblastoma - immunology ; Neuroblastoma - metabolism ; Neuroblastoma - pathology ; Sarcoma, Ewing - immunology ; Sarcoma, Ewing - metabolism ; Sarcoma, Ewing - pathology ; Tumor Microenvironment ; Tumor Necrosis Factor-alpha - immunology ; Tumor Necrosis Factor-alpha - metabolism</subject><ispartof>Cancer research (Chicago, Ill.), 2019-02, Vol.79 (3), p.611-624</ispartof><rights>2018 American Association for Cancer Research.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-89b94afef3b76da90a8f8b3ecacf731aaeb5f40071a72d0b657c1b93dc132fda3</citedby><cites>FETCH-LOGICAL-c424t-89b94afef3b76da90a8f8b3ecacf731aaeb5f40071a72d0b657c1b93dc132fda3</cites><orcidid>0000-0001-8496-9705 ; 0000-0002-0632-4589 ; 0000-0001-6821-6690 ; 0000-0002-1890-2665 ; 0000-0003-2036-8817 ; 0000-0003-0201-3799</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,3343,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30545920$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02462178$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Fultang, Livingstone</creatorcontrib><creatorcontrib>Gamble, Laura D</creatorcontrib><creatorcontrib>Gneo, Luciana</creatorcontrib><creatorcontrib>Berry, Andrea M</creatorcontrib><creatorcontrib>Egan, Sharon A</creatorcontrib><creatorcontrib>De Bie, Fenna</creatorcontrib><creatorcontrib>Yogev, Orli</creatorcontrib><creatorcontrib>Eden, Georgina L</creatorcontrib><creatorcontrib>Booth, Sarah</creatorcontrib><creatorcontrib>Brownhill, Samantha</creatorcontrib><creatorcontrib>Vardon, Ashley</creatorcontrib><creatorcontrib>McConville, Carmel M</creatorcontrib><creatorcontrib>Cheng, Paul N</creatorcontrib><creatorcontrib>Norris, Murray D</creatorcontrib><creatorcontrib>Etchevers, Heather C</creatorcontrib><creatorcontrib>Murray, Jayne</creatorcontrib><creatorcontrib>Ziegler, David S</creatorcontrib><creatorcontrib>Chesler, Louis</creatorcontrib><creatorcontrib>Schmidt, Ronny</creatorcontrib><creatorcontrib>Burchill, Susan A</creatorcontrib><creatorcontrib>Haber, Michelle</creatorcontrib><creatorcontrib>De Santo, Carmela</creatorcontrib><creatorcontrib>Mussai, Francis</creatorcontrib><title>Macrophage-Derived IL1β and TNFα Regulate Arginine Metabolism in Neuroblastoma</title><title>Cancer research (Chicago, Ill.)</title><addtitle>Cancer Res</addtitle><description>Neuroblastoma is the most common childhood solid tumor, yet the prognosis for high-risk disease remains poor. We demonstrate here that arginase 2 (ARG2) drives neuroblastoma cell proliferation via regulation of arginine metabolism. Targeting arginine metabolism, either by blocking cationic amino acid transporter 1 (CAT-1)-dependent arginine uptake
or therapeutic depletion of arginine by pegylated recombinant arginase BCT-100, significantly delayed tumor development and prolonged murine survival. Tumor cells polarized infiltrating monocytes to an M1-macrophage phenotype, which released IL1β and TNFα in a RAC-alpha serine/threonine-protein kinase (AKT)-dependent manner. IL1β and TNFα established a feedback loop to upregulate ARG2 expression via p38 and extracellular regulated kinases 1/2 (ERK1/2) signaling in neuroblastoma and neural crest-derived cells. Proteomic analysis revealed that enrichment of IL1β and TNFα in stage IV human tumor microenvironments was associated with a worse prognosis. These data thus describe an immune-metabolic regulatory loop between tumor cells and infiltrating myeloid cells regulating ARG2, which can be clinically exploited. SIGNIFICANCE: These findings illustrate that cross-talk between myeloid cells and tumor cells creates a metabolic regulatory loop that promotes neuroblastoma progression.</description><subject>Animals</subject><subject>Arginase - metabolism</subject><subject>Arginine - metabolism</subject><subject>Cell Line, Tumor</subject><subject>Genetics</subject><subject>Humans</subject><subject>Interleukin-1beta - immunology</subject><subject>Interleukin-1beta - metabolism</subject><subject>Life Sciences</subject><subject>Macrophages - immunology</subject><subject>Macrophages - metabolism</subject><subject>Macrophages - pathology</subject><subject>MAP Kinase Signaling System</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>Myeloid Cells - immunology</subject><subject>Myeloid Cells - metabolism</subject><subject>Myeloid Cells - pathology</subject><subject>Neuroblastoma - immunology</subject><subject>Neuroblastoma - metabolism</subject><subject>Neuroblastoma - pathology</subject><subject>Sarcoma, Ewing - immunology</subject><subject>Sarcoma, Ewing - metabolism</subject><subject>Sarcoma, Ewing - pathology</subject><subject>Tumor Microenvironment</subject><subject>Tumor Necrosis Factor-alpha - immunology</subject><subject>Tumor Necrosis Factor-alpha - metabolism</subject><issn>0008-5472</issn><issn>1538-7445</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kNtO20AQhldVqxIoj9DKl-XC6c4evOvLKC0QKQRUhevVrD1OXPmQem0kHgsehGeqrdBcjWb0_f9IH2Nfgc8BtP3BObexVkbMl4tNDDYWINMPbAZa2tgopT-y2Yk5Y-ch_BlXDVx_ZmeSa6VTwWfs4Q6zrj3scUfxT-rKJ8qj1RreXiNs8mi7uX57iX7Tbqiwp2jR7cqmbCi6ox59W5Whjsom2tDQtb7C0Lc1fmGfCqwCXb7PC_Z4_Wu7vI3X9zer5WIdZ0qoPrapTxUWVEhvkhxTjrawXlKGWWEkIJLXheLcABqRc59ok4FPZZ6BFEWO8oJdHXv3WLlDV9bYPbsWS3e7WLvpxoVKBBj7BCP7_cgeuvbvQKF3dRkyqipsqB2CE6BNkqSjtRHVR3S0EkJHxakbuJvEu0mqm6S6UbwD6ybxY-7b-4vB15SfUv9Ny39G5H9B</recordid><startdate>20190201</startdate><enddate>20190201</enddate><creator>Fultang, Livingstone</creator><creator>Gamble, Laura D</creator><creator>Gneo, Luciana</creator><creator>Berry, Andrea M</creator><creator>Egan, Sharon A</creator><creator>De Bie, Fenna</creator><creator>Yogev, Orli</creator><creator>Eden, Georgina L</creator><creator>Booth, Sarah</creator><creator>Brownhill, Samantha</creator><creator>Vardon, Ashley</creator><creator>McConville, Carmel M</creator><creator>Cheng, Paul N</creator><creator>Norris, Murray D</creator><creator>Etchevers, Heather C</creator><creator>Murray, Jayne</creator><creator>Ziegler, David S</creator><creator>Chesler, Louis</creator><creator>Schmidt, Ronny</creator><creator>Burchill, Susan A</creator><creator>Haber, Michelle</creator><creator>De Santo, Carmela</creator><creator>Mussai, Francis</creator><general>American Association for Cancer Research</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-8496-9705</orcidid><orcidid>https://orcid.org/0000-0002-0632-4589</orcidid><orcidid>https://orcid.org/0000-0001-6821-6690</orcidid><orcidid>https://orcid.org/0000-0002-1890-2665</orcidid><orcidid>https://orcid.org/0000-0003-2036-8817</orcidid><orcidid>https://orcid.org/0000-0003-0201-3799</orcidid></search><sort><creationdate>20190201</creationdate><title>Macrophage-Derived IL1β and TNFα Regulate Arginine Metabolism in Neuroblastoma</title><author>Fultang, Livingstone ; Gamble, Laura D ; Gneo, Luciana ; Berry, Andrea M ; Egan, Sharon A ; De Bie, Fenna ; Yogev, Orli ; Eden, Georgina L ; Booth, Sarah ; Brownhill, Samantha ; Vardon, Ashley ; McConville, Carmel M ; Cheng, Paul N ; Norris, Murray D ; Etchevers, Heather C ; Murray, Jayne ; Ziegler, David S ; Chesler, Louis ; Schmidt, Ronny ; Burchill, Susan A ; Haber, Michelle ; De Santo, Carmela ; Mussai, Francis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-89b94afef3b76da90a8f8b3ecacf731aaeb5f40071a72d0b657c1b93dc132fda3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>Arginase - metabolism</topic><topic>Arginine - metabolism</topic><topic>Cell Line, Tumor</topic><topic>Genetics</topic><topic>Humans</topic><topic>Interleukin-1beta - immunology</topic><topic>Interleukin-1beta - metabolism</topic><topic>Life Sciences</topic><topic>Macrophages - immunology</topic><topic>Macrophages - metabolism</topic><topic>Macrophages - pathology</topic><topic>MAP Kinase Signaling System</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>Myeloid Cells - immunology</topic><topic>Myeloid Cells - metabolism</topic><topic>Myeloid Cells - pathology</topic><topic>Neuroblastoma - immunology</topic><topic>Neuroblastoma - metabolism</topic><topic>Neuroblastoma - pathology</topic><topic>Sarcoma, Ewing - immunology</topic><topic>Sarcoma, Ewing - metabolism</topic><topic>Sarcoma, Ewing - pathology</topic><topic>Tumor Microenvironment</topic><topic>Tumor Necrosis Factor-alpha - immunology</topic><topic>Tumor Necrosis Factor-alpha - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fultang, Livingstone</creatorcontrib><creatorcontrib>Gamble, Laura D</creatorcontrib><creatorcontrib>Gneo, Luciana</creatorcontrib><creatorcontrib>Berry, Andrea M</creatorcontrib><creatorcontrib>Egan, Sharon A</creatorcontrib><creatorcontrib>De Bie, Fenna</creatorcontrib><creatorcontrib>Yogev, Orli</creatorcontrib><creatorcontrib>Eden, Georgina L</creatorcontrib><creatorcontrib>Booth, Sarah</creatorcontrib><creatorcontrib>Brownhill, Samantha</creatorcontrib><creatorcontrib>Vardon, Ashley</creatorcontrib><creatorcontrib>McConville, Carmel M</creatorcontrib><creatorcontrib>Cheng, Paul N</creatorcontrib><creatorcontrib>Norris, Murray D</creatorcontrib><creatorcontrib>Etchevers, Heather C</creatorcontrib><creatorcontrib>Murray, Jayne</creatorcontrib><creatorcontrib>Ziegler, David S</creatorcontrib><creatorcontrib>Chesler, Louis</creatorcontrib><creatorcontrib>Schmidt, Ronny</creatorcontrib><creatorcontrib>Burchill, Susan A</creatorcontrib><creatorcontrib>Haber, Michelle</creatorcontrib><creatorcontrib>De Santo, Carmela</creatorcontrib><creatorcontrib>Mussai, Francis</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Cancer research (Chicago, Ill.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fultang, Livingstone</au><au>Gamble, Laura D</au><au>Gneo, Luciana</au><au>Berry, Andrea M</au><au>Egan, Sharon A</au><au>De Bie, Fenna</au><au>Yogev, Orli</au><au>Eden, Georgina L</au><au>Booth, Sarah</au><au>Brownhill, Samantha</au><au>Vardon, Ashley</au><au>McConville, Carmel M</au><au>Cheng, Paul N</au><au>Norris, Murray D</au><au>Etchevers, Heather C</au><au>Murray, Jayne</au><au>Ziegler, David S</au><au>Chesler, Louis</au><au>Schmidt, Ronny</au><au>Burchill, Susan A</au><au>Haber, Michelle</au><au>De Santo, Carmela</au><au>Mussai, Francis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Macrophage-Derived IL1β and TNFα Regulate Arginine Metabolism in Neuroblastoma</atitle><jtitle>Cancer research (Chicago, Ill.)</jtitle><addtitle>Cancer Res</addtitle><date>2019-02-01</date><risdate>2019</risdate><volume>79</volume><issue>3</issue><spage>611</spage><epage>624</epage><pages>611-624</pages><issn>0008-5472</issn><eissn>1538-7445</eissn><abstract>Neuroblastoma is the most common childhood solid tumor, yet the prognosis for high-risk disease remains poor. We demonstrate here that arginase 2 (ARG2) drives neuroblastoma cell proliferation via regulation of arginine metabolism. Targeting arginine metabolism, either by blocking cationic amino acid transporter 1 (CAT-1)-dependent arginine uptake
or therapeutic depletion of arginine by pegylated recombinant arginase BCT-100, significantly delayed tumor development and prolonged murine survival. Tumor cells polarized infiltrating monocytes to an M1-macrophage phenotype, which released IL1β and TNFα in a RAC-alpha serine/threonine-protein kinase (AKT)-dependent manner. IL1β and TNFα established a feedback loop to upregulate ARG2 expression via p38 and extracellular regulated kinases 1/2 (ERK1/2) signaling in neuroblastoma and neural crest-derived cells. Proteomic analysis revealed that enrichment of IL1β and TNFα in stage IV human tumor microenvironments was associated with a worse prognosis. These data thus describe an immune-metabolic regulatory loop between tumor cells and infiltrating myeloid cells regulating ARG2, which can be clinically exploited. SIGNIFICANCE: These findings illustrate that cross-talk between myeloid cells and tumor cells creates a metabolic regulatory loop that promotes neuroblastoma progression.</abstract><cop>United States</cop><pub>American Association for Cancer Research</pub><pmid>30545920</pmid><doi>10.1158/0008-5472.CAN-18-2139</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-8496-9705</orcidid><orcidid>https://orcid.org/0000-0002-0632-4589</orcidid><orcidid>https://orcid.org/0000-0001-6821-6690</orcidid><orcidid>https://orcid.org/0000-0002-1890-2665</orcidid><orcidid>https://orcid.org/0000-0003-2036-8817</orcidid><orcidid>https://orcid.org/0000-0003-0201-3799</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0008-5472 |
ispartof | Cancer research (Chicago, Ill.), 2019-02, Vol.79 (3), p.611-624 |
issn | 0008-5472 1538-7445 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02462178v1 |
source | MEDLINE; American Association for Cancer Research; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Animals Arginase - metabolism Arginine - metabolism Cell Line, Tumor Genetics Humans Interleukin-1beta - immunology Interleukin-1beta - metabolism Life Sciences Macrophages - immunology Macrophages - metabolism Macrophages - pathology MAP Kinase Signaling System Mice Mice, Transgenic Myeloid Cells - immunology Myeloid Cells - metabolism Myeloid Cells - pathology Neuroblastoma - immunology Neuroblastoma - metabolism Neuroblastoma - pathology Sarcoma, Ewing - immunology Sarcoma, Ewing - metabolism Sarcoma, Ewing - pathology Tumor Microenvironment Tumor Necrosis Factor-alpha - immunology Tumor Necrosis Factor-alpha - metabolism |
title | Macrophage-Derived IL1β and TNFα Regulate Arginine Metabolism in Neuroblastoma |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T21%3A07%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Macrophage-Derived%20IL1%CE%B2%20and%20TNF%CE%B1%20Regulate%20Arginine%20Metabolism%20in%20Neuroblastoma&rft.jtitle=Cancer%20research%20(Chicago,%20Ill.)&rft.au=Fultang,%20Livingstone&rft.date=2019-02-01&rft.volume=79&rft.issue=3&rft.spage=611&rft.epage=624&rft.pages=611-624&rft.issn=0008-5472&rft.eissn=1538-7445&rft_id=info:doi/10.1158/0008-5472.CAN-18-2139&rft_dat=%3Cproquest_hal_p%3E2157669744%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2157669744&rft_id=info:pmid/30545920&rfr_iscdi=true |