Polysiloxane-based scintillators for shashlik calorimeters

We present the first application of polysiloxane-based scintillators as active medium in a shashlik sampling calorimeter. These results were obtained from a testbeam campaign of a ∼6×6×45 cm3 (13 X0 depth) prototype. A Wavelength Shifting fiber array of 36 elements runs perpendicularly to the stack...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment Accelerators, spectrometers, detectors and associated equipment, 2020-03, Vol.956, p.163379, Article 163379
Hauptverfasser: Acerbi, F., Branca, A., Brizzolari, C., Brunetti, G., Carturan, S., Catanesi, M.G., Cecchini, S., Cindolo, F., Collazuol, G., Dal Corso, F., De Rosa, G., Delogu, C., Falcone, A., Gola, A., Jollet, C., Kliček, B., Kudenko, Y., Laveder, M., Longhin, A., Ludovici, L., Lutsenko, E., Magaletti, L., Mandrioli, G., Marchi, T., Margotti, A., Mascagna, V., Meregaglia, A., Mezzetto, M., Nessi, M., Pari, M., Parozzi, E., Pasqualini, L., Paternoster, G., Patrizii, L., Piemonte, C., Pozzato, M., Prest, M., Pupilli, F., Radicioni, E., Riccio, C., Ruggeri, A.C., Scian, C., Sirri, G., Stipčevic, M., Tenti, M., Terranova, F., Torti, M., Vallazza, E., Vesco, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 163379
container_title Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment
container_volume 956
creator Acerbi, F.
Branca, A.
Brizzolari, C.
Brunetti, G.
Carturan, S.
Catanesi, M.G.
Cecchini, S.
Cindolo, F.
Collazuol, G.
Dal Corso, F.
De Rosa, G.
Delogu, C.
Falcone, A.
Gola, A.
Jollet, C.
Kliček, B.
Kudenko, Y.
Laveder, M.
Longhin, A.
Ludovici, L.
Lutsenko, E.
Magaletti, L.
Mandrioli, G.
Marchi, T.
Margotti, A.
Mascagna, V.
Meregaglia, A.
Mezzetto, M.
Nessi, M.
Pari, M.
Parozzi, E.
Pasqualini, L.
Paternoster, G.
Patrizii, L.
Piemonte, C.
Pozzato, M.
Prest, M.
Pupilli, F.
Radicioni, E.
Riccio, C.
Ruggeri, A.C.
Scian, C.
Sirri, G.
Stipčevic, M.
Tenti, M.
Terranova, F.
Torti, M.
Vallazza, E.
Vesco, M.
description We present the first application of polysiloxane-based scintillators as active medium in a shashlik sampling calorimeter. These results were obtained from a testbeam campaign of a ∼6×6×45 cm3 (13 X0 depth) prototype. A Wavelength Shifting fiber array of 36 elements runs perpendicularly to the stack of iron (15 mm) and polysiloxane scintillator (15 mm) tiles with a density of about one over cm2. Unlike shashlik calorimeters based on plastic organic scintillators, here fibers are optically matched with the scintillator without any intermediate air gap. The prototype features a compact light readout based on Silicon Photo-Multipliers embedded in the bulk of the detector. The detector was tested with electrons, pions and muons with energies ranging from 1 to 7 GeV at the CERN-PS. This solution offers a highly radiation hard detector to instrument the decay region of a neutrino beam, providing an event-by-event measurement of high-angle decay products associated with neutrino production (ENUBET, Enhanced NeUtrino BEams from kaon Tagging, ERC project). The results in terms of light yield, uniformity and energy resolution, are compared to a similar calorimeter built with ordinary plastic scintillators.
doi_str_mv 10.1016/j.nima.2019.163379
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02458744v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0168900219316183</els_id><sourcerecordid>oai_HAL_hal_02458744v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-47555b922c579a28626115144ba4ebc4e787347eba35f04a7513eebd873ca6dd3</originalsourceid><addsrcrecordid>eNp9kMFKxDAQhoMouK6-gKdePbQmadK04mVZ1BUW9KDnME2nbNZsI0lZ9O1NqXh0LgPD_80wHyHXjBaMsup2Xwz2AAWnrClYVZaqOSELViueN1JVp2SRQnXeUMrPyUWMe5qqUfWC3L169x2t818wYN5CxC6Lxg6jdQ5GH2LW-5DFHcSdsx-ZAeeDPeCIIV6Ssx5cxKvfviTvjw9v602-fXl6Xq-2uRFMjLlQUsq24dxI1QCvK14xJpkQLQhsjUBVq1IobKGUPRWgJCsR2y5NDVRdVy7Jzbx3B05_pusQvrUHqzerrZ5mlAtZKyGOLGX5nDXBxxiw_wMY1ZMpvdeTKT2Z0rOpBN3PEKYvjhaDTgZwMNjZgGbUnbf_4T-1WHFi</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Polysiloxane-based scintillators for shashlik calorimeters</title><source>Elsevier ScienceDirect Journals</source><creator>Acerbi, F. ; Branca, A. ; Brizzolari, C. ; Brunetti, G. ; Carturan, S. ; Catanesi, M.G. ; Cecchini, S. ; Cindolo, F. ; Collazuol, G. ; Dal Corso, F. ; De Rosa, G. ; Delogu, C. ; Falcone, A. ; Gola, A. ; Jollet, C. ; Kliček, B. ; Kudenko, Y. ; Laveder, M. ; Longhin, A. ; Ludovici, L. ; Lutsenko, E. ; Magaletti, L. ; Mandrioli, G. ; Marchi, T. ; Margotti, A. ; Mascagna, V. ; Meregaglia, A. ; Mezzetto, M. ; Nessi, M. ; Pari, M. ; Parozzi, E. ; Pasqualini, L. ; Paternoster, G. ; Patrizii, L. ; Piemonte, C. ; Pozzato, M. ; Prest, M. ; Pupilli, F. ; Radicioni, E. ; Riccio, C. ; Ruggeri, A.C. ; Scian, C. ; Sirri, G. ; Stipčevic, M. ; Tenti, M. ; Terranova, F. ; Torti, M. ; Vallazza, E. ; Vesco, M.</creator><creatorcontrib>Acerbi, F. ; Branca, A. ; Brizzolari, C. ; Brunetti, G. ; Carturan, S. ; Catanesi, M.G. ; Cecchini, S. ; Cindolo, F. ; Collazuol, G. ; Dal Corso, F. ; De Rosa, G. ; Delogu, C. ; Falcone, A. ; Gola, A. ; Jollet, C. ; Kliček, B. ; Kudenko, Y. ; Laveder, M. ; Longhin, A. ; Ludovici, L. ; Lutsenko, E. ; Magaletti, L. ; Mandrioli, G. ; Marchi, T. ; Margotti, A. ; Mascagna, V. ; Meregaglia, A. ; Mezzetto, M. ; Nessi, M. ; Pari, M. ; Parozzi, E. ; Pasqualini, L. ; Paternoster, G. ; Patrizii, L. ; Piemonte, C. ; Pozzato, M. ; Prest, M. ; Pupilli, F. ; Radicioni, E. ; Riccio, C. ; Ruggeri, A.C. ; Scian, C. ; Sirri, G. ; Stipčevic, M. ; Tenti, M. ; Terranova, F. ; Torti, M. ; Vallazza, E. ; Vesco, M.</creatorcontrib><description>We present the first application of polysiloxane-based scintillators as active medium in a shashlik sampling calorimeter. These results were obtained from a testbeam campaign of a ∼6×6×45 cm3 (13 X0 depth) prototype. A Wavelength Shifting fiber array of 36 elements runs perpendicularly to the stack of iron (15 mm) and polysiloxane scintillator (15 mm) tiles with a density of about one over cm2. Unlike shashlik calorimeters based on plastic organic scintillators, here fibers are optically matched with the scintillator without any intermediate air gap. The prototype features a compact light readout based on Silicon Photo-Multipliers embedded in the bulk of the detector. The detector was tested with electrons, pions and muons with energies ranging from 1 to 7 GeV at the CERN-PS. This solution offers a highly radiation hard detector to instrument the decay region of a neutrino beam, providing an event-by-event measurement of high-angle decay products associated with neutrino production (ENUBET, Enhanced NeUtrino BEams from kaon Tagging, ERC project). The results in terms of light yield, uniformity and energy resolution, are compared to a similar calorimeter built with ordinary plastic scintillators.</description><identifier>ISSN: 0168-9002</identifier><identifier>EISSN: 1872-9576</identifier><identifier>DOI: 10.1016/j.nima.2019.163379</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Instrumentation and Detectors ; Physics ; Polysiloxane ; Scintillator ; Shashlik calorimeter ; Silicon photoMultipliers</subject><ispartof>Nuclear instruments &amp; methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment, 2020-03, Vol.956, p.163379, Article 163379</ispartof><rights>2020 The Authors</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c414t-47555b922c579a28626115144ba4ebc4e787347eba35f04a7513eebd873ca6dd3</citedby><cites>FETCH-LOGICAL-c414t-47555b922c579a28626115144ba4ebc4e787347eba35f04a7513eebd873ca6dd3</cites><orcidid>0000-0003-4195-8613</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.nima.2019.163379$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,777,781,882,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02458744$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Acerbi, F.</creatorcontrib><creatorcontrib>Branca, A.</creatorcontrib><creatorcontrib>Brizzolari, C.</creatorcontrib><creatorcontrib>Brunetti, G.</creatorcontrib><creatorcontrib>Carturan, S.</creatorcontrib><creatorcontrib>Catanesi, M.G.</creatorcontrib><creatorcontrib>Cecchini, S.</creatorcontrib><creatorcontrib>Cindolo, F.</creatorcontrib><creatorcontrib>Collazuol, G.</creatorcontrib><creatorcontrib>Dal Corso, F.</creatorcontrib><creatorcontrib>De Rosa, G.</creatorcontrib><creatorcontrib>Delogu, C.</creatorcontrib><creatorcontrib>Falcone, A.</creatorcontrib><creatorcontrib>Gola, A.</creatorcontrib><creatorcontrib>Jollet, C.</creatorcontrib><creatorcontrib>Kliček, B.</creatorcontrib><creatorcontrib>Kudenko, Y.</creatorcontrib><creatorcontrib>Laveder, M.</creatorcontrib><creatorcontrib>Longhin, A.</creatorcontrib><creatorcontrib>Ludovici, L.</creatorcontrib><creatorcontrib>Lutsenko, E.</creatorcontrib><creatorcontrib>Magaletti, L.</creatorcontrib><creatorcontrib>Mandrioli, G.</creatorcontrib><creatorcontrib>Marchi, T.</creatorcontrib><creatorcontrib>Margotti, A.</creatorcontrib><creatorcontrib>Mascagna, V.</creatorcontrib><creatorcontrib>Meregaglia, A.</creatorcontrib><creatorcontrib>Mezzetto, M.</creatorcontrib><creatorcontrib>Nessi, M.</creatorcontrib><creatorcontrib>Pari, M.</creatorcontrib><creatorcontrib>Parozzi, E.</creatorcontrib><creatorcontrib>Pasqualini, L.</creatorcontrib><creatorcontrib>Paternoster, G.</creatorcontrib><creatorcontrib>Patrizii, L.</creatorcontrib><creatorcontrib>Piemonte, C.</creatorcontrib><creatorcontrib>Pozzato, M.</creatorcontrib><creatorcontrib>Prest, M.</creatorcontrib><creatorcontrib>Pupilli, F.</creatorcontrib><creatorcontrib>Radicioni, E.</creatorcontrib><creatorcontrib>Riccio, C.</creatorcontrib><creatorcontrib>Ruggeri, A.C.</creatorcontrib><creatorcontrib>Scian, C.</creatorcontrib><creatorcontrib>Sirri, G.</creatorcontrib><creatorcontrib>Stipčevic, M.</creatorcontrib><creatorcontrib>Tenti, M.</creatorcontrib><creatorcontrib>Terranova, F.</creatorcontrib><creatorcontrib>Torti, M.</creatorcontrib><creatorcontrib>Vallazza, E.</creatorcontrib><creatorcontrib>Vesco, M.</creatorcontrib><title>Polysiloxane-based scintillators for shashlik calorimeters</title><title>Nuclear instruments &amp; methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment</title><description>We present the first application of polysiloxane-based scintillators as active medium in a shashlik sampling calorimeter. These results were obtained from a testbeam campaign of a ∼6×6×45 cm3 (13 X0 depth) prototype. A Wavelength Shifting fiber array of 36 elements runs perpendicularly to the stack of iron (15 mm) and polysiloxane scintillator (15 mm) tiles with a density of about one over cm2. Unlike shashlik calorimeters based on plastic organic scintillators, here fibers are optically matched with the scintillator without any intermediate air gap. The prototype features a compact light readout based on Silicon Photo-Multipliers embedded in the bulk of the detector. The detector was tested with electrons, pions and muons with energies ranging from 1 to 7 GeV at the CERN-PS. This solution offers a highly radiation hard detector to instrument the decay region of a neutrino beam, providing an event-by-event measurement of high-angle decay products associated with neutrino production (ENUBET, Enhanced NeUtrino BEams from kaon Tagging, ERC project). The results in terms of light yield, uniformity and energy resolution, are compared to a similar calorimeter built with ordinary plastic scintillators.</description><subject>Instrumentation and Detectors</subject><subject>Physics</subject><subject>Polysiloxane</subject><subject>Scintillator</subject><subject>Shashlik calorimeter</subject><subject>Silicon photoMultipliers</subject><issn>0168-9002</issn><issn>1872-9576</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKxDAQhoMouK6-gKdePbQmadK04mVZ1BUW9KDnME2nbNZsI0lZ9O1NqXh0LgPD_80wHyHXjBaMsup2Xwz2AAWnrClYVZaqOSELViueN1JVp2SRQnXeUMrPyUWMe5qqUfWC3L169x2t818wYN5CxC6Lxg6jdQ5GH2LW-5DFHcSdsx-ZAeeDPeCIIV6Ssx5cxKvfviTvjw9v602-fXl6Xq-2uRFMjLlQUsq24dxI1QCvK14xJpkQLQhsjUBVq1IobKGUPRWgJCsR2y5NDVRdVy7Jzbx3B05_pusQvrUHqzerrZ5mlAtZKyGOLGX5nDXBxxiw_wMY1ZMpvdeTKT2Z0rOpBN3PEKYvjhaDTgZwMNjZgGbUnbf_4T-1WHFi</recordid><startdate>20200311</startdate><enddate>20200311</enddate><creator>Acerbi, F.</creator><creator>Branca, A.</creator><creator>Brizzolari, C.</creator><creator>Brunetti, G.</creator><creator>Carturan, S.</creator><creator>Catanesi, M.G.</creator><creator>Cecchini, S.</creator><creator>Cindolo, F.</creator><creator>Collazuol, G.</creator><creator>Dal Corso, F.</creator><creator>De Rosa, G.</creator><creator>Delogu, C.</creator><creator>Falcone, A.</creator><creator>Gola, A.</creator><creator>Jollet, C.</creator><creator>Kliček, B.</creator><creator>Kudenko, Y.</creator><creator>Laveder, M.</creator><creator>Longhin, A.</creator><creator>Ludovici, L.</creator><creator>Lutsenko, E.</creator><creator>Magaletti, L.</creator><creator>Mandrioli, G.</creator><creator>Marchi, T.</creator><creator>Margotti, A.</creator><creator>Mascagna, V.</creator><creator>Meregaglia, A.</creator><creator>Mezzetto, M.</creator><creator>Nessi, M.</creator><creator>Pari, M.</creator><creator>Parozzi, E.</creator><creator>Pasqualini, L.</creator><creator>Paternoster, G.</creator><creator>Patrizii, L.</creator><creator>Piemonte, C.</creator><creator>Pozzato, M.</creator><creator>Prest, M.</creator><creator>Pupilli, F.</creator><creator>Radicioni, E.</creator><creator>Riccio, C.</creator><creator>Ruggeri, A.C.</creator><creator>Scian, C.</creator><creator>Sirri, G.</creator><creator>Stipčevic, M.</creator><creator>Tenti, M.</creator><creator>Terranova, F.</creator><creator>Torti, M.</creator><creator>Vallazza, E.</creator><creator>Vesco, M.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-4195-8613</orcidid></search><sort><creationdate>20200311</creationdate><title>Polysiloxane-based scintillators for shashlik calorimeters</title><author>Acerbi, F. ; Branca, A. ; Brizzolari, C. ; Brunetti, G. ; Carturan, S. ; Catanesi, M.G. ; Cecchini, S. ; Cindolo, F. ; Collazuol, G. ; Dal Corso, F. ; De Rosa, G. ; Delogu, C. ; Falcone, A. ; Gola, A. ; Jollet, C. ; Kliček, B. ; Kudenko, Y. ; Laveder, M. ; Longhin, A. ; Ludovici, L. ; Lutsenko, E. ; Magaletti, L. ; Mandrioli, G. ; Marchi, T. ; Margotti, A. ; Mascagna, V. ; Meregaglia, A. ; Mezzetto, M. ; Nessi, M. ; Pari, M. ; Parozzi, E. ; Pasqualini, L. ; Paternoster, G. ; Patrizii, L. ; Piemonte, C. ; Pozzato, M. ; Prest, M. ; Pupilli, F. ; Radicioni, E. ; Riccio, C. ; Ruggeri, A.C. ; Scian, C. ; Sirri, G. ; Stipčevic, M. ; Tenti, M. ; Terranova, F. ; Torti, M. ; Vallazza, E. ; Vesco, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-47555b922c579a28626115144ba4ebc4e787347eba35f04a7513eebd873ca6dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Instrumentation and Detectors</topic><topic>Physics</topic><topic>Polysiloxane</topic><topic>Scintillator</topic><topic>Shashlik calorimeter</topic><topic>Silicon photoMultipliers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Acerbi, F.</creatorcontrib><creatorcontrib>Branca, A.</creatorcontrib><creatorcontrib>Brizzolari, C.</creatorcontrib><creatorcontrib>Brunetti, G.</creatorcontrib><creatorcontrib>Carturan, S.</creatorcontrib><creatorcontrib>Catanesi, M.G.</creatorcontrib><creatorcontrib>Cecchini, S.</creatorcontrib><creatorcontrib>Cindolo, F.</creatorcontrib><creatorcontrib>Collazuol, G.</creatorcontrib><creatorcontrib>Dal Corso, F.</creatorcontrib><creatorcontrib>De Rosa, G.</creatorcontrib><creatorcontrib>Delogu, C.</creatorcontrib><creatorcontrib>Falcone, A.</creatorcontrib><creatorcontrib>Gola, A.</creatorcontrib><creatorcontrib>Jollet, C.</creatorcontrib><creatorcontrib>Kliček, B.</creatorcontrib><creatorcontrib>Kudenko, Y.</creatorcontrib><creatorcontrib>Laveder, M.</creatorcontrib><creatorcontrib>Longhin, A.</creatorcontrib><creatorcontrib>Ludovici, L.</creatorcontrib><creatorcontrib>Lutsenko, E.</creatorcontrib><creatorcontrib>Magaletti, L.</creatorcontrib><creatorcontrib>Mandrioli, G.</creatorcontrib><creatorcontrib>Marchi, T.</creatorcontrib><creatorcontrib>Margotti, A.</creatorcontrib><creatorcontrib>Mascagna, V.</creatorcontrib><creatorcontrib>Meregaglia, A.</creatorcontrib><creatorcontrib>Mezzetto, M.</creatorcontrib><creatorcontrib>Nessi, M.</creatorcontrib><creatorcontrib>Pari, M.</creatorcontrib><creatorcontrib>Parozzi, E.</creatorcontrib><creatorcontrib>Pasqualini, L.</creatorcontrib><creatorcontrib>Paternoster, G.</creatorcontrib><creatorcontrib>Patrizii, L.</creatorcontrib><creatorcontrib>Piemonte, C.</creatorcontrib><creatorcontrib>Pozzato, M.</creatorcontrib><creatorcontrib>Prest, M.</creatorcontrib><creatorcontrib>Pupilli, F.</creatorcontrib><creatorcontrib>Radicioni, E.</creatorcontrib><creatorcontrib>Riccio, C.</creatorcontrib><creatorcontrib>Ruggeri, A.C.</creatorcontrib><creatorcontrib>Scian, C.</creatorcontrib><creatorcontrib>Sirri, G.</creatorcontrib><creatorcontrib>Stipčevic, M.</creatorcontrib><creatorcontrib>Tenti, M.</creatorcontrib><creatorcontrib>Terranova, F.</creatorcontrib><creatorcontrib>Torti, M.</creatorcontrib><creatorcontrib>Vallazza, E.</creatorcontrib><creatorcontrib>Vesco, M.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Nuclear instruments &amp; methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Acerbi, F.</au><au>Branca, A.</au><au>Brizzolari, C.</au><au>Brunetti, G.</au><au>Carturan, S.</au><au>Catanesi, M.G.</au><au>Cecchini, S.</au><au>Cindolo, F.</au><au>Collazuol, G.</au><au>Dal Corso, F.</au><au>De Rosa, G.</au><au>Delogu, C.</au><au>Falcone, A.</au><au>Gola, A.</au><au>Jollet, C.</au><au>Kliček, B.</au><au>Kudenko, Y.</au><au>Laveder, M.</au><au>Longhin, A.</au><au>Ludovici, L.</au><au>Lutsenko, E.</au><au>Magaletti, L.</au><au>Mandrioli, G.</au><au>Marchi, T.</au><au>Margotti, A.</au><au>Mascagna, V.</au><au>Meregaglia, A.</au><au>Mezzetto, M.</au><au>Nessi, M.</au><au>Pari, M.</au><au>Parozzi, E.</au><au>Pasqualini, L.</au><au>Paternoster, G.</au><au>Patrizii, L.</au><au>Piemonte, C.</au><au>Pozzato, M.</au><au>Prest, M.</au><au>Pupilli, F.</au><au>Radicioni, E.</au><au>Riccio, C.</au><au>Ruggeri, A.C.</au><au>Scian, C.</au><au>Sirri, G.</au><au>Stipčevic, M.</au><au>Tenti, M.</au><au>Terranova, F.</au><au>Torti, M.</au><au>Vallazza, E.</au><au>Vesco, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polysiloxane-based scintillators for shashlik calorimeters</atitle><jtitle>Nuclear instruments &amp; methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment</jtitle><date>2020-03-11</date><risdate>2020</risdate><volume>956</volume><spage>163379</spage><pages>163379-</pages><artnum>163379</artnum><issn>0168-9002</issn><eissn>1872-9576</eissn><abstract>We present the first application of polysiloxane-based scintillators as active medium in a shashlik sampling calorimeter. These results were obtained from a testbeam campaign of a ∼6×6×45 cm3 (13 X0 depth) prototype. A Wavelength Shifting fiber array of 36 elements runs perpendicularly to the stack of iron (15 mm) and polysiloxane scintillator (15 mm) tiles with a density of about one over cm2. Unlike shashlik calorimeters based on plastic organic scintillators, here fibers are optically matched with the scintillator without any intermediate air gap. The prototype features a compact light readout based on Silicon Photo-Multipliers embedded in the bulk of the detector. The detector was tested with electrons, pions and muons with energies ranging from 1 to 7 GeV at the CERN-PS. This solution offers a highly radiation hard detector to instrument the decay region of a neutrino beam, providing an event-by-event measurement of high-angle decay products associated with neutrino production (ENUBET, Enhanced NeUtrino BEams from kaon Tagging, ERC project). The results in terms of light yield, uniformity and energy resolution, are compared to a similar calorimeter built with ordinary plastic scintillators.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.nima.2019.163379</doi><orcidid>https://orcid.org/0000-0003-4195-8613</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0168-9002
ispartof Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment, 2020-03, Vol.956, p.163379, Article 163379
issn 0168-9002
1872-9576
language eng
recordid cdi_hal_primary_oai_HAL_hal_02458744v1
source Elsevier ScienceDirect Journals
subjects Instrumentation and Detectors
Physics
Polysiloxane
Scintillator
Shashlik calorimeter
Silicon photoMultipliers
title Polysiloxane-based scintillators for shashlik calorimeters
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T06%3A35%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polysiloxane-based%20scintillators%20for%20shashlik%20calorimeters&rft.jtitle=Nuclear%20instruments%20&%20methods%20in%20physics%20research.%20Section%20A,%20Accelerators,%20spectrometers,%20detectors%20and%20associated%20equipment&rft.au=Acerbi,%20F.&rft.date=2020-03-11&rft.volume=956&rft.spage=163379&rft.pages=163379-&rft.artnum=163379&rft.issn=0168-9002&rft.eissn=1872-9576&rft_id=info:doi/10.1016/j.nima.2019.163379&rft_dat=%3Chal_cross%3Eoai_HAL_hal_02458744v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0168900219316183&rfr_iscdi=true