Transport properties evolution of cement model system under degradation - Incorporation of a pore-scale approach into reactive transport modelling

This paper describes a multi-scale approach for the modelling of the degradation of model cement pastes using reactive transport. It specifically aims at incorporating chemistry-transport feedback results from a pore-scale approach into a continuum description. Starting from a numerical representati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics and chemistry of the earth. Parts A/B/C 2017-06, Vol.99, p.95-109
Hauptverfasser: Seigneur, N., L’Hôpital, E., Dauzères, A., Sammaljärvi, J., Voutilainen, M., Labeau, P.E., Dubus, A., Detilleux, V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 109
container_issue
container_start_page 95
container_title Physics and chemistry of the earth. Parts A/B/C
container_volume 99
creator Seigneur, N.
L’Hôpital, E.
Dauzères, A.
Sammaljärvi, J.
Voutilainen, M.
Labeau, P.E.
Dubus, A.
Detilleux, V.
description This paper describes a multi-scale approach for the modelling of the degradation of model cement pastes using reactive transport. It specifically aims at incorporating chemistry-transport feedback results from a pore-scale approach into a continuum description. Starting from a numerical representative elementary volume of the model cement paste, which was built according to extensive experimental dedicated chacarterizations, this paper provides three separate descriptions of two different degradations: leaching and carbonation. First, 2D pore-scale simulations are performed and predict degradation depths in very good agreement with experiments. Second, 3D pore scale descriptions of how the microstructre evolves provides accurate description of the evolution of transport properties through degradation. Finally, those latter results are incorporated as a feedback law between porosity and effective diffusion coefficient into a 1D continuum approach of reactive transport. This paper provides pore-scale explanations of why reactive transport modelling has encountered mitigated success when applied to cementitious materials, especially during carbonation or degradations consisting of precipitation reactions. In addition to that, different degradation modellings are in very good agreement with experimental observations. •Results are based on accurate and dedicated experimental results without fitting parameters.•Modellings of leaching were in good agreement with experimental results.•3D modelling of carbonation brings key understanding of carbonation impact.•2D modellings of carbonation are in good agreement with experiments.•The exogeneous crust formation was explained based on microstructural features.
doi_str_mv 10.1016/j.pce.2017.05.007
format Article
fullrecord <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02456232v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1474706516302406</els_id><sourcerecordid>S1474706516302406</sourcerecordid><originalsourceid>FETCH-LOGICAL-a354t-4dce9a1da476a3e2132ed82c60b189878ae037f1945847b9e315762d75eeb0f53</originalsourceid><addsrcrecordid>eNp9kctOwzAQRSMEElD4AHbeskiwYztOxApVvKRKbMramtoTcJXGke1W4jf4YlwKLFnNQ_fc0egWxRWjFaOsuVlXk8GqpkxVVFaUqqPijLWKl5J1_Dj3QolS0UaeFucxrmkWMiHOis9lgDFOPiQyBT9hSA4jwZ0ftsn5kfieGNzgmMjGWxxI_IgJN2Q7WgzE4lsAC9_CkjyPxofsBL8gkDxhGQ0MSGDK_mDeiRuTJwHBJLdDkv7Of_sPbny7KE56GCJe_tRZ8fpwv5w_lYuXx-f53aIELkUqhTXYAbMgVAMca8ZrtG1tGrpibdeqFpBy1bNOyFaoVYecSdXUVknEFe0lnxXXB993GPQU3AbCh_bg9NPdQu93tBayqXm9Y1nLDloTfIwB-z-AUb0PQK91DkDvA9BU6hxAZm4PDOYndg6DjsbhaNC6gCZp690_9Bfti5FI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Transport properties evolution of cement model system under degradation - Incorporation of a pore-scale approach into reactive transport modelling</title><source>Elsevier ScienceDirect Journals</source><creator>Seigneur, N. ; L’Hôpital, E. ; Dauzères, A. ; Sammaljärvi, J. ; Voutilainen, M. ; Labeau, P.E. ; Dubus, A. ; Detilleux, V.</creator><creatorcontrib>Seigneur, N. ; L’Hôpital, E. ; Dauzères, A. ; Sammaljärvi, J. ; Voutilainen, M. ; Labeau, P.E. ; Dubus, A. ; Detilleux, V.</creatorcontrib><description>This paper describes a multi-scale approach for the modelling of the degradation of model cement pastes using reactive transport. It specifically aims at incorporating chemistry-transport feedback results from a pore-scale approach into a continuum description. Starting from a numerical representative elementary volume of the model cement paste, which was built according to extensive experimental dedicated chacarterizations, this paper provides three separate descriptions of two different degradations: leaching and carbonation. First, 2D pore-scale simulations are performed and predict degradation depths in very good agreement with experiments. Second, 3D pore scale descriptions of how the microstructre evolves provides accurate description of the evolution of transport properties through degradation. Finally, those latter results are incorporated as a feedback law between porosity and effective diffusion coefficient into a 1D continuum approach of reactive transport. This paper provides pore-scale explanations of why reactive transport modelling has encountered mitigated success when applied to cementitious materials, especially during carbonation or degradations consisting of precipitation reactions. In addition to that, different degradation modellings are in very good agreement with experimental observations. •Results are based on accurate and dedicated experimental results without fitting parameters.•Modellings of leaching were in good agreement with experimental results.•3D modelling of carbonation brings key understanding of carbonation impact.•2D modellings of carbonation are in good agreement with experiments.•The exogeneous crust formation was explained based on microstructural features.</description><identifier>ISSN: 1474-7065</identifier><identifier>EISSN: 1873-5193</identifier><identifier>DOI: 10.1016/j.pce.2017.05.007</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Analytical chemistry ; Archie's law ; Chemical Sciences ; Computer Science ; Diffusion ; Engineering Sciences ; Environment and Society ; Environmental Sciences ; Materials ; Microstructure ; Model cement paste ; Modeling and Simulation ; Numerical Analysis ; Numerical modelling ; Physics ; Reactive fluid environment ; Reactive transport modelling</subject><ispartof>Physics and chemistry of the earth. Parts A/B/C, 2017-06, Vol.99, p.95-109</ispartof><rights>2017 Elsevier Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a354t-4dce9a1da476a3e2132ed82c60b189878ae037f1945847b9e315762d75eeb0f53</citedby><cites>FETCH-LOGICAL-a354t-4dce9a1da476a3e2132ed82c60b189878ae037f1945847b9e315762d75eeb0f53</cites><orcidid>0000-0002-1855-2722 ; 0000-0001-7385-5745 ; 0009-0007-6913-2924</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1474706516302406$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://minesparis-psl.hal.science/hal-02456232$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Seigneur, N.</creatorcontrib><creatorcontrib>L’Hôpital, E.</creatorcontrib><creatorcontrib>Dauzères, A.</creatorcontrib><creatorcontrib>Sammaljärvi, J.</creatorcontrib><creatorcontrib>Voutilainen, M.</creatorcontrib><creatorcontrib>Labeau, P.E.</creatorcontrib><creatorcontrib>Dubus, A.</creatorcontrib><creatorcontrib>Detilleux, V.</creatorcontrib><title>Transport properties evolution of cement model system under degradation - Incorporation of a pore-scale approach into reactive transport modelling</title><title>Physics and chemistry of the earth. Parts A/B/C</title><description>This paper describes a multi-scale approach for the modelling of the degradation of model cement pastes using reactive transport. It specifically aims at incorporating chemistry-transport feedback results from a pore-scale approach into a continuum description. Starting from a numerical representative elementary volume of the model cement paste, which was built according to extensive experimental dedicated chacarterizations, this paper provides three separate descriptions of two different degradations: leaching and carbonation. First, 2D pore-scale simulations are performed and predict degradation depths in very good agreement with experiments. Second, 3D pore scale descriptions of how the microstructre evolves provides accurate description of the evolution of transport properties through degradation. Finally, those latter results are incorporated as a feedback law between porosity and effective diffusion coefficient into a 1D continuum approach of reactive transport. This paper provides pore-scale explanations of why reactive transport modelling has encountered mitigated success when applied to cementitious materials, especially during carbonation or degradations consisting of precipitation reactions. In addition to that, different degradation modellings are in very good agreement with experimental observations. •Results are based on accurate and dedicated experimental results without fitting parameters.•Modellings of leaching were in good agreement with experimental results.•3D modelling of carbonation brings key understanding of carbonation impact.•2D modellings of carbonation are in good agreement with experiments.•The exogeneous crust formation was explained based on microstructural features.</description><subject>Analytical chemistry</subject><subject>Archie's law</subject><subject>Chemical Sciences</subject><subject>Computer Science</subject><subject>Diffusion</subject><subject>Engineering Sciences</subject><subject>Environment and Society</subject><subject>Environmental Sciences</subject><subject>Materials</subject><subject>Microstructure</subject><subject>Model cement paste</subject><subject>Modeling and Simulation</subject><subject>Numerical Analysis</subject><subject>Numerical modelling</subject><subject>Physics</subject><subject>Reactive fluid environment</subject><subject>Reactive transport modelling</subject><issn>1474-7065</issn><issn>1873-5193</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kctOwzAQRSMEElD4AHbeskiwYztOxApVvKRKbMramtoTcJXGke1W4jf4YlwKLFnNQ_fc0egWxRWjFaOsuVlXk8GqpkxVVFaUqqPijLWKl5J1_Dj3QolS0UaeFucxrmkWMiHOis9lgDFOPiQyBT9hSA4jwZ0ftsn5kfieGNzgmMjGWxxI_IgJN2Q7WgzE4lsAC9_CkjyPxofsBL8gkDxhGQ0MSGDK_mDeiRuTJwHBJLdDkv7Of_sPbny7KE56GCJe_tRZ8fpwv5w_lYuXx-f53aIELkUqhTXYAbMgVAMca8ZrtG1tGrpibdeqFpBy1bNOyFaoVYecSdXUVknEFe0lnxXXB993GPQU3AbCh_bg9NPdQu93tBayqXm9Y1nLDloTfIwB-z-AUb0PQK91DkDvA9BU6hxAZm4PDOYndg6DjsbhaNC6gCZp690_9Bfti5FI</recordid><startdate>20170601</startdate><enddate>20170601</enddate><creator>Seigneur, N.</creator><creator>L’Hôpital, E.</creator><creator>Dauzères, A.</creator><creator>Sammaljärvi, J.</creator><creator>Voutilainen, M.</creator><creator>Labeau, P.E.</creator><creator>Dubus, A.</creator><creator>Detilleux, V.</creator><general>Elsevier Ltd</general><general>Elsevier [2002-....]</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-1855-2722</orcidid><orcidid>https://orcid.org/0000-0001-7385-5745</orcidid><orcidid>https://orcid.org/0009-0007-6913-2924</orcidid></search><sort><creationdate>20170601</creationdate><title>Transport properties evolution of cement model system under degradation - Incorporation of a pore-scale approach into reactive transport modelling</title><author>Seigneur, N. ; L’Hôpital, E. ; Dauzères, A. ; Sammaljärvi, J. ; Voutilainen, M. ; Labeau, P.E. ; Dubus, A. ; Detilleux, V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a354t-4dce9a1da476a3e2132ed82c60b189878ae037f1945847b9e315762d75eeb0f53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Analytical chemistry</topic><topic>Archie's law</topic><topic>Chemical Sciences</topic><topic>Computer Science</topic><topic>Diffusion</topic><topic>Engineering Sciences</topic><topic>Environment and Society</topic><topic>Environmental Sciences</topic><topic>Materials</topic><topic>Microstructure</topic><topic>Model cement paste</topic><topic>Modeling and Simulation</topic><topic>Numerical Analysis</topic><topic>Numerical modelling</topic><topic>Physics</topic><topic>Reactive fluid environment</topic><topic>Reactive transport modelling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Seigneur, N.</creatorcontrib><creatorcontrib>L’Hôpital, E.</creatorcontrib><creatorcontrib>Dauzères, A.</creatorcontrib><creatorcontrib>Sammaljärvi, J.</creatorcontrib><creatorcontrib>Voutilainen, M.</creatorcontrib><creatorcontrib>Labeau, P.E.</creatorcontrib><creatorcontrib>Dubus, A.</creatorcontrib><creatorcontrib>Detilleux, V.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Physics and chemistry of the earth. Parts A/B/C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Seigneur, N.</au><au>L’Hôpital, E.</au><au>Dauzères, A.</au><au>Sammaljärvi, J.</au><au>Voutilainen, M.</au><au>Labeau, P.E.</au><au>Dubus, A.</au><au>Detilleux, V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transport properties evolution of cement model system under degradation - Incorporation of a pore-scale approach into reactive transport modelling</atitle><jtitle>Physics and chemistry of the earth. Parts A/B/C</jtitle><date>2017-06-01</date><risdate>2017</risdate><volume>99</volume><spage>95</spage><epage>109</epage><pages>95-109</pages><issn>1474-7065</issn><eissn>1873-5193</eissn><abstract>This paper describes a multi-scale approach for the modelling of the degradation of model cement pastes using reactive transport. It specifically aims at incorporating chemistry-transport feedback results from a pore-scale approach into a continuum description. Starting from a numerical representative elementary volume of the model cement paste, which was built according to extensive experimental dedicated chacarterizations, this paper provides three separate descriptions of two different degradations: leaching and carbonation. First, 2D pore-scale simulations are performed and predict degradation depths in very good agreement with experiments. Second, 3D pore scale descriptions of how the microstructre evolves provides accurate description of the evolution of transport properties through degradation. Finally, those latter results are incorporated as a feedback law between porosity and effective diffusion coefficient into a 1D continuum approach of reactive transport. This paper provides pore-scale explanations of why reactive transport modelling has encountered mitigated success when applied to cementitious materials, especially during carbonation or degradations consisting of precipitation reactions. In addition to that, different degradation modellings are in very good agreement with experimental observations. •Results are based on accurate and dedicated experimental results without fitting parameters.•Modellings of leaching were in good agreement with experimental results.•3D modelling of carbonation brings key understanding of carbonation impact.•2D modellings of carbonation are in good agreement with experiments.•The exogeneous crust formation was explained based on microstructural features.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.pce.2017.05.007</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-1855-2722</orcidid><orcidid>https://orcid.org/0000-0001-7385-5745</orcidid><orcidid>https://orcid.org/0009-0007-6913-2924</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1474-7065
ispartof Physics and chemistry of the earth. Parts A/B/C, 2017-06, Vol.99, p.95-109
issn 1474-7065
1873-5193
language eng
recordid cdi_hal_primary_oai_HAL_hal_02456232v1
source Elsevier ScienceDirect Journals
subjects Analytical chemistry
Archie's law
Chemical Sciences
Computer Science
Diffusion
Engineering Sciences
Environment and Society
Environmental Sciences
Materials
Microstructure
Model cement paste
Modeling and Simulation
Numerical Analysis
Numerical modelling
Physics
Reactive fluid environment
Reactive transport modelling
title Transport properties evolution of cement model system under degradation - Incorporation of a pore-scale approach into reactive transport modelling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T08%3A14%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transport%20properties%20evolution%20of%20cement%20model%20system%20under%20degradation%20-%20Incorporation%20of%20a%20pore-scale%20approach%20into%20reactive%20transport%20modelling&rft.jtitle=Physics%20and%20chemistry%20of%20the%20earth.%20Parts%20A/B/C&rft.au=Seigneur,%20N.&rft.date=2017-06-01&rft.volume=99&rft.spage=95&rft.epage=109&rft.pages=95-109&rft.issn=1474-7065&rft.eissn=1873-5193&rft_id=info:doi/10.1016/j.pce.2017.05.007&rft_dat=%3Celsevier_hal_p%3ES1474706516302406%3C/elsevier_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S1474706516302406&rfr_iscdi=true