Emerging technologies to study glial cells
Development, physiological functions, and pathologies of the brain depend on tight interactions between neurons and different types of glial cells, such as astrocytes, microglia, oligodendrocytes, and oligodendrocyte precursor cells. Assessing the relative contribution of different glial cell types...
Gespeichert in:
Veröffentlicht in: | Glia 2020-09, Vol.68 (9), p.1692-1728 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1728 |
---|---|
container_issue | 9 |
container_start_page | 1692 |
container_title | Glia |
container_volume | 68 |
creator | Hirbec, Hélène Déglon, Nicole Foo, Lynette C. Goshen, Inbal Grutzendler, Jaime Hangen, Emilie Kreisel, Tirzah Linck, Nathalie Muffat, Julien Regio, Sara Rion, Sybille Escartin, Carole |
description | Development, physiological functions, and pathologies of the brain depend on tight interactions between neurons and different types of glial cells, such as astrocytes, microglia, oligodendrocytes, and oligodendrocyte precursor cells. Assessing the relative contribution of different glial cell types is required for the full understanding of brain function and dysfunction. Over the recent years, several technological breakthroughs were achieved, allowing “glio‐scientists” to address new challenging biological questions. These technical developments make it possible to study the roles of specific cell types with medium or high‐content workflows and perform fine analysis of their mutual interactions in a preserved environment. This review illustrates the potency of several cutting‐edge experimental approaches (advanced cell cultures, induced pluripotent stem cell (iPSC)‐derived human glial cells, viral vectors, in situ glia imaging, opto‐ and chemogenetic approaches, and high‐content molecular analysis) to unravel the role of glial cells in specific brain functions or diseases. It also illustrates the translation of some techniques to the clinics, to monitor glial cells in patients, through specific brain imaging methods. The advantages, pitfalls, and future developments are discussed for each technique, and selected examples are provided to illustrate how specific “gliobiological” questions can now be tackled.
Many technologies are emerging to study glial cells, from molecules to behaviors.
Glial cell complexity and plasticity require cell‐specific, high‐content, and sensitive methods to study them.
Multiple techniques can be combined to provide refined insight into glial cell (patho)physiology. |
doi_str_mv | 10.1002/glia.23780 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02448198v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2423100661</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4930-3128f607c23babd60f111ad542f55e98e364dc50680d6a19704dfdb7faf798d83</originalsourceid><addsrcrecordid>eNp9kM9LwzAUgIMobk4v_gFS8KKDzrwkTZPjGHMbFLzoOaRN2nX0hzarsv_e1s4dPHgKL3x8vPchdAt4BhiTp6zI9YzQUOAzNAYshQ9A-TkaYyGZD0zCCF05t8MYuiG8RCMKMhAgxBhNl6VtsrzKvL1NtlVd1FlunbevPbdvzcHr3YWX2KJw1-gi1YWzN8d3gt6el6-LtR-9rDaLeeQnTFLsUyAi5ThMCI11bDhOAUCbgJE0CKwUlnJmkgBzgQ3XIEPMTGriMNVpKIURdIIeB-9WF-q9yUvdHFStc7WeR6r_w4QxAVJ8Qsc-DOx7U3-01u1Vmbt-W13ZunWKUEZowLkMOvT-D7qr26bqLlGkg7qSnPfC6UAlTe1cY9PTBoBVX1v1RdRP7Q6-OyrbuLTmhP7m7QAYgK-8sId_VGoVbeaD9Bs9x4aF</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2423100661</pqid></control><display><type>article</type><title>Emerging technologies to study glial cells</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Hirbec, Hélène ; Déglon, Nicole ; Foo, Lynette C. ; Goshen, Inbal ; Grutzendler, Jaime ; Hangen, Emilie ; Kreisel, Tirzah ; Linck, Nathalie ; Muffat, Julien ; Regio, Sara ; Rion, Sybille ; Escartin, Carole</creator><creatorcontrib>Hirbec, Hélène ; Déglon, Nicole ; Foo, Lynette C. ; Goshen, Inbal ; Grutzendler, Jaime ; Hangen, Emilie ; Kreisel, Tirzah ; Linck, Nathalie ; Muffat, Julien ; Regio, Sara ; Rion, Sybille ; Escartin, Carole</creatorcontrib><description>Development, physiological functions, and pathologies of the brain depend on tight interactions between neurons and different types of glial cells, such as astrocytes, microglia, oligodendrocytes, and oligodendrocyte precursor cells. Assessing the relative contribution of different glial cell types is required for the full understanding of brain function and dysfunction. Over the recent years, several technological breakthroughs were achieved, allowing “glio‐scientists” to address new challenging biological questions. These technical developments make it possible to study the roles of specific cell types with medium or high‐content workflows and perform fine analysis of their mutual interactions in a preserved environment. This review illustrates the potency of several cutting‐edge experimental approaches (advanced cell cultures, induced pluripotent stem cell (iPSC)‐derived human glial cells, viral vectors, in situ glia imaging, opto‐ and chemogenetic approaches, and high‐content molecular analysis) to unravel the role of glial cells in specific brain functions or diseases. It also illustrates the translation of some techniques to the clinics, to monitor glial cells in patients, through specific brain imaging methods. The advantages, pitfalls, and future developments are discussed for each technique, and selected examples are provided to illustrate how specific “gliobiological” questions can now be tackled.
Many technologies are emerging to study glial cells, from molecules to behaviors.
Glial cell complexity and plasticity require cell‐specific, high‐content, and sensitive methods to study them.
Multiple techniques can be combined to provide refined insight into glial cell (patho)physiology.</description><identifier>ISSN: 0894-1491</identifier><identifier>EISSN: 1098-1136</identifier><identifier>DOI: 10.1002/glia.23780</identifier><identifier>PMID: 31958188</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Astrocytes ; Biotechnology ; Brain ; Cognitive science ; Glial cells ; Glial stem cells ; Life Sciences ; Medical imaging ; Microglia ; Neuroimaging ; Neuronal-glial interactions ; Neuroscience ; New technology ; Oligodendrocytes ; Pluripotency ; Questions ; Stem cells</subject><ispartof>Glia, 2020-09, Vol.68 (9), p.1692-1728</ispartof><rights>2020 Wiley Periodicals, Inc.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4930-3128f607c23babd60f111ad542f55e98e364dc50680d6a19704dfdb7faf798d83</citedby><cites>FETCH-LOGICAL-c4930-3128f607c23babd60f111ad542f55e98e364dc50680d6a19704dfdb7faf798d83</cites><orcidid>0000-0002-6644-7214 ; 0000-0001-7578-2615 ; 0000-0001-6757-156X ; 0000-0003-3613-4118 ; 0000-0002-5593-5255 ; 0000-0002-0777-6739 ; 0000-0003-1889-7023 ; 0000-0003-4475-9476 ; 0000-0002-5000-243X ; 0000-0001-6351-8374</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fglia.23780$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fglia.23780$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31958188$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02448198$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Hirbec, Hélène</creatorcontrib><creatorcontrib>Déglon, Nicole</creatorcontrib><creatorcontrib>Foo, Lynette C.</creatorcontrib><creatorcontrib>Goshen, Inbal</creatorcontrib><creatorcontrib>Grutzendler, Jaime</creatorcontrib><creatorcontrib>Hangen, Emilie</creatorcontrib><creatorcontrib>Kreisel, Tirzah</creatorcontrib><creatorcontrib>Linck, Nathalie</creatorcontrib><creatorcontrib>Muffat, Julien</creatorcontrib><creatorcontrib>Regio, Sara</creatorcontrib><creatorcontrib>Rion, Sybille</creatorcontrib><creatorcontrib>Escartin, Carole</creatorcontrib><title>Emerging technologies to study glial cells</title><title>Glia</title><addtitle>Glia</addtitle><description>Development, physiological functions, and pathologies of the brain depend on tight interactions between neurons and different types of glial cells, such as astrocytes, microglia, oligodendrocytes, and oligodendrocyte precursor cells. Assessing the relative contribution of different glial cell types is required for the full understanding of brain function and dysfunction. Over the recent years, several technological breakthroughs were achieved, allowing “glio‐scientists” to address new challenging biological questions. These technical developments make it possible to study the roles of specific cell types with medium or high‐content workflows and perform fine analysis of their mutual interactions in a preserved environment. This review illustrates the potency of several cutting‐edge experimental approaches (advanced cell cultures, induced pluripotent stem cell (iPSC)‐derived human glial cells, viral vectors, in situ glia imaging, opto‐ and chemogenetic approaches, and high‐content molecular analysis) to unravel the role of glial cells in specific brain functions or diseases. It also illustrates the translation of some techniques to the clinics, to monitor glial cells in patients, through specific brain imaging methods. The advantages, pitfalls, and future developments are discussed for each technique, and selected examples are provided to illustrate how specific “gliobiological” questions can now be tackled.
Many technologies are emerging to study glial cells, from molecules to behaviors.
Glial cell complexity and plasticity require cell‐specific, high‐content, and sensitive methods to study them.
Multiple techniques can be combined to provide refined insight into glial cell (patho)physiology.</description><subject>Astrocytes</subject><subject>Biotechnology</subject><subject>Brain</subject><subject>Cognitive science</subject><subject>Glial cells</subject><subject>Glial stem cells</subject><subject>Life Sciences</subject><subject>Medical imaging</subject><subject>Microglia</subject><subject>Neuroimaging</subject><subject>Neuronal-glial interactions</subject><subject>Neuroscience</subject><subject>New technology</subject><subject>Oligodendrocytes</subject><subject>Pluripotency</subject><subject>Questions</subject><subject>Stem cells</subject><issn>0894-1491</issn><issn>1098-1136</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kM9LwzAUgIMobk4v_gFS8KKDzrwkTZPjGHMbFLzoOaRN2nX0hzarsv_e1s4dPHgKL3x8vPchdAt4BhiTp6zI9YzQUOAzNAYshQ9A-TkaYyGZD0zCCF05t8MYuiG8RCMKMhAgxBhNl6VtsrzKvL1NtlVd1FlunbevPbdvzcHr3YWX2KJw1-gi1YWzN8d3gt6el6-LtR-9rDaLeeQnTFLsUyAi5ThMCI11bDhOAUCbgJE0CKwUlnJmkgBzgQ3XIEPMTGriMNVpKIURdIIeB-9WF-q9yUvdHFStc7WeR6r_w4QxAVJ8Qsc-DOx7U3-01u1Vmbt-W13ZunWKUEZowLkMOvT-D7qr26bqLlGkg7qSnPfC6UAlTe1cY9PTBoBVX1v1RdRP7Q6-OyrbuLTmhP7m7QAYgK-8sId_VGoVbeaD9Bs9x4aF</recordid><startdate>202009</startdate><enddate>202009</enddate><creator>Hirbec, Hélène</creator><creator>Déglon, Nicole</creator><creator>Foo, Lynette C.</creator><creator>Goshen, Inbal</creator><creator>Grutzendler, Jaime</creator><creator>Hangen, Emilie</creator><creator>Kreisel, Tirzah</creator><creator>Linck, Nathalie</creator><creator>Muffat, Julien</creator><creator>Regio, Sara</creator><creator>Rion, Sybille</creator><creator>Escartin, Carole</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7T7</scope><scope>7TK</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-6644-7214</orcidid><orcidid>https://orcid.org/0000-0001-7578-2615</orcidid><orcidid>https://orcid.org/0000-0001-6757-156X</orcidid><orcidid>https://orcid.org/0000-0003-3613-4118</orcidid><orcidid>https://orcid.org/0000-0002-5593-5255</orcidid><orcidid>https://orcid.org/0000-0002-0777-6739</orcidid><orcidid>https://orcid.org/0000-0003-1889-7023</orcidid><orcidid>https://orcid.org/0000-0003-4475-9476</orcidid><orcidid>https://orcid.org/0000-0002-5000-243X</orcidid><orcidid>https://orcid.org/0000-0001-6351-8374</orcidid></search><sort><creationdate>202009</creationdate><title>Emerging technologies to study glial cells</title><author>Hirbec, Hélène ; Déglon, Nicole ; Foo, Lynette C. ; Goshen, Inbal ; Grutzendler, Jaime ; Hangen, Emilie ; Kreisel, Tirzah ; Linck, Nathalie ; Muffat, Julien ; Regio, Sara ; Rion, Sybille ; Escartin, Carole</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4930-3128f607c23babd60f111ad542f55e98e364dc50680d6a19704dfdb7faf798d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Astrocytes</topic><topic>Biotechnology</topic><topic>Brain</topic><topic>Cognitive science</topic><topic>Glial cells</topic><topic>Glial stem cells</topic><topic>Life Sciences</topic><topic>Medical imaging</topic><topic>Microglia</topic><topic>Neuroimaging</topic><topic>Neuronal-glial interactions</topic><topic>Neuroscience</topic><topic>New technology</topic><topic>Oligodendrocytes</topic><topic>Pluripotency</topic><topic>Questions</topic><topic>Stem cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hirbec, Hélène</creatorcontrib><creatorcontrib>Déglon, Nicole</creatorcontrib><creatorcontrib>Foo, Lynette C.</creatorcontrib><creatorcontrib>Goshen, Inbal</creatorcontrib><creatorcontrib>Grutzendler, Jaime</creatorcontrib><creatorcontrib>Hangen, Emilie</creatorcontrib><creatorcontrib>Kreisel, Tirzah</creatorcontrib><creatorcontrib>Linck, Nathalie</creatorcontrib><creatorcontrib>Muffat, Julien</creatorcontrib><creatorcontrib>Regio, Sara</creatorcontrib><creatorcontrib>Rion, Sybille</creatorcontrib><creatorcontrib>Escartin, Carole</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Glia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hirbec, Hélène</au><au>Déglon, Nicole</au><au>Foo, Lynette C.</au><au>Goshen, Inbal</au><au>Grutzendler, Jaime</au><au>Hangen, Emilie</au><au>Kreisel, Tirzah</au><au>Linck, Nathalie</au><au>Muffat, Julien</au><au>Regio, Sara</au><au>Rion, Sybille</au><au>Escartin, Carole</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Emerging technologies to study glial cells</atitle><jtitle>Glia</jtitle><addtitle>Glia</addtitle><date>2020-09</date><risdate>2020</risdate><volume>68</volume><issue>9</issue><spage>1692</spage><epage>1728</epage><pages>1692-1728</pages><issn>0894-1491</issn><eissn>1098-1136</eissn><abstract>Development, physiological functions, and pathologies of the brain depend on tight interactions between neurons and different types of glial cells, such as astrocytes, microglia, oligodendrocytes, and oligodendrocyte precursor cells. Assessing the relative contribution of different glial cell types is required for the full understanding of brain function and dysfunction. Over the recent years, several technological breakthroughs were achieved, allowing “glio‐scientists” to address new challenging biological questions. These technical developments make it possible to study the roles of specific cell types with medium or high‐content workflows and perform fine analysis of their mutual interactions in a preserved environment. This review illustrates the potency of several cutting‐edge experimental approaches (advanced cell cultures, induced pluripotent stem cell (iPSC)‐derived human glial cells, viral vectors, in situ glia imaging, opto‐ and chemogenetic approaches, and high‐content molecular analysis) to unravel the role of glial cells in specific brain functions or diseases. It also illustrates the translation of some techniques to the clinics, to monitor glial cells in patients, through specific brain imaging methods. The advantages, pitfalls, and future developments are discussed for each technique, and selected examples are provided to illustrate how specific “gliobiological” questions can now be tackled.
Many technologies are emerging to study glial cells, from molecules to behaviors.
Glial cell complexity and plasticity require cell‐specific, high‐content, and sensitive methods to study them.
Multiple techniques can be combined to provide refined insight into glial cell (patho)physiology.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><pmid>31958188</pmid><doi>10.1002/glia.23780</doi><tpages>37</tpages><orcidid>https://orcid.org/0000-0002-6644-7214</orcidid><orcidid>https://orcid.org/0000-0001-7578-2615</orcidid><orcidid>https://orcid.org/0000-0001-6757-156X</orcidid><orcidid>https://orcid.org/0000-0003-3613-4118</orcidid><orcidid>https://orcid.org/0000-0002-5593-5255</orcidid><orcidid>https://orcid.org/0000-0002-0777-6739</orcidid><orcidid>https://orcid.org/0000-0003-1889-7023</orcidid><orcidid>https://orcid.org/0000-0003-4475-9476</orcidid><orcidid>https://orcid.org/0000-0002-5000-243X</orcidid><orcidid>https://orcid.org/0000-0001-6351-8374</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0894-1491 |
ispartof | Glia, 2020-09, Vol.68 (9), p.1692-1728 |
issn | 0894-1491 1098-1136 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02448198v1 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Astrocytes Biotechnology Brain Cognitive science Glial cells Glial stem cells Life Sciences Medical imaging Microglia Neuroimaging Neuronal-glial interactions Neuroscience New technology Oligodendrocytes Pluripotency Questions Stem cells |
title | Emerging technologies to study glial cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T15%3A14%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Emerging%20technologies%20to%20study%20glial%20cells&rft.jtitle=Glia&rft.au=Hirbec,%20H%C3%A9l%C3%A8ne&rft.date=2020-09&rft.volume=68&rft.issue=9&rft.spage=1692&rft.epage=1728&rft.pages=1692-1728&rft.issn=0894-1491&rft.eissn=1098-1136&rft_id=info:doi/10.1002/glia.23780&rft_dat=%3Cproquest_hal_p%3E2423100661%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2423100661&rft_id=info:pmid/31958188&rfr_iscdi=true |