Emerging technologies to study glial cells

Development, physiological functions, and pathologies of the brain depend on tight interactions between neurons and different types of glial cells, such as astrocytes, microglia, oligodendrocytes, and oligodendrocyte precursor cells. Assessing the relative contribution of different glial cell types...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Glia 2020-09, Vol.68 (9), p.1692-1728
Hauptverfasser: Hirbec, Hélène, Déglon, Nicole, Foo, Lynette C., Goshen, Inbal, Grutzendler, Jaime, Hangen, Emilie, Kreisel, Tirzah, Linck, Nathalie, Muffat, Julien, Regio, Sara, Rion, Sybille, Escartin, Carole
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1728
container_issue 9
container_start_page 1692
container_title Glia
container_volume 68
creator Hirbec, Hélène
Déglon, Nicole
Foo, Lynette C.
Goshen, Inbal
Grutzendler, Jaime
Hangen, Emilie
Kreisel, Tirzah
Linck, Nathalie
Muffat, Julien
Regio, Sara
Rion, Sybille
Escartin, Carole
description Development, physiological functions, and pathologies of the brain depend on tight interactions between neurons and different types of glial cells, such as astrocytes, microglia, oligodendrocytes, and oligodendrocyte precursor cells. Assessing the relative contribution of different glial cell types is required for the full understanding of brain function and dysfunction. Over the recent years, several technological breakthroughs were achieved, allowing “glio‐scientists” to address new challenging biological questions. These technical developments make it possible to study the roles of specific cell types with medium or high‐content workflows and perform fine analysis of their mutual interactions in a preserved environment. This review illustrates the potency of several cutting‐edge experimental approaches (advanced cell cultures, induced pluripotent stem cell (iPSC)‐derived human glial cells, viral vectors, in situ glia imaging, opto‐ and chemogenetic approaches, and high‐content molecular analysis) to unravel the role of glial cells in specific brain functions or diseases. It also illustrates the translation of some techniques to the clinics, to monitor glial cells in patients, through specific brain imaging methods. The advantages, pitfalls, and future developments are discussed for each technique, and selected examples are provided to illustrate how specific “gliobiological” questions can now be tackled. Many technologies are emerging to study glial cells, from molecules to behaviors. Glial cell complexity and plasticity require cell‐specific, high‐content, and sensitive methods to study them. Multiple techniques can be combined to provide refined insight into glial cell (patho)physiology.
doi_str_mv 10.1002/glia.23780
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02448198v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2423100661</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4930-3128f607c23babd60f111ad542f55e98e364dc50680d6a19704dfdb7faf798d83</originalsourceid><addsrcrecordid>eNp9kM9LwzAUgIMobk4v_gFS8KKDzrwkTZPjGHMbFLzoOaRN2nX0hzarsv_e1s4dPHgKL3x8vPchdAt4BhiTp6zI9YzQUOAzNAYshQ9A-TkaYyGZD0zCCF05t8MYuiG8RCMKMhAgxBhNl6VtsrzKvL1NtlVd1FlunbevPbdvzcHr3YWX2KJw1-gi1YWzN8d3gt6el6-LtR-9rDaLeeQnTFLsUyAi5ThMCI11bDhOAUCbgJE0CKwUlnJmkgBzgQ3XIEPMTGriMNVpKIURdIIeB-9WF-q9yUvdHFStc7WeR6r_w4QxAVJ8Qsc-DOx7U3-01u1Vmbt-W13ZunWKUEZowLkMOvT-D7qr26bqLlGkg7qSnPfC6UAlTe1cY9PTBoBVX1v1RdRP7Q6-OyrbuLTmhP7m7QAYgK-8sId_VGoVbeaD9Bs9x4aF</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2423100661</pqid></control><display><type>article</type><title>Emerging technologies to study glial cells</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Hirbec, Hélène ; Déglon, Nicole ; Foo, Lynette C. ; Goshen, Inbal ; Grutzendler, Jaime ; Hangen, Emilie ; Kreisel, Tirzah ; Linck, Nathalie ; Muffat, Julien ; Regio, Sara ; Rion, Sybille ; Escartin, Carole</creator><creatorcontrib>Hirbec, Hélène ; Déglon, Nicole ; Foo, Lynette C. ; Goshen, Inbal ; Grutzendler, Jaime ; Hangen, Emilie ; Kreisel, Tirzah ; Linck, Nathalie ; Muffat, Julien ; Regio, Sara ; Rion, Sybille ; Escartin, Carole</creatorcontrib><description>Development, physiological functions, and pathologies of the brain depend on tight interactions between neurons and different types of glial cells, such as astrocytes, microglia, oligodendrocytes, and oligodendrocyte precursor cells. Assessing the relative contribution of different glial cell types is required for the full understanding of brain function and dysfunction. Over the recent years, several technological breakthroughs were achieved, allowing “glio‐scientists” to address new challenging biological questions. These technical developments make it possible to study the roles of specific cell types with medium or high‐content workflows and perform fine analysis of their mutual interactions in a preserved environment. This review illustrates the potency of several cutting‐edge experimental approaches (advanced cell cultures, induced pluripotent stem cell (iPSC)‐derived human glial cells, viral vectors, in situ glia imaging, opto‐ and chemogenetic approaches, and high‐content molecular analysis) to unravel the role of glial cells in specific brain functions or diseases. It also illustrates the translation of some techniques to the clinics, to monitor glial cells in patients, through specific brain imaging methods. The advantages, pitfalls, and future developments are discussed for each technique, and selected examples are provided to illustrate how specific “gliobiological” questions can now be tackled. Many technologies are emerging to study glial cells, from molecules to behaviors. Glial cell complexity and plasticity require cell‐specific, high‐content, and sensitive methods to study them. Multiple techniques can be combined to provide refined insight into glial cell (patho)physiology.</description><identifier>ISSN: 0894-1491</identifier><identifier>EISSN: 1098-1136</identifier><identifier>DOI: 10.1002/glia.23780</identifier><identifier>PMID: 31958188</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Astrocytes ; Biotechnology ; Brain ; Cognitive science ; Glial cells ; Glial stem cells ; Life Sciences ; Medical imaging ; Microglia ; Neuroimaging ; Neuronal-glial interactions ; Neuroscience ; New technology ; Oligodendrocytes ; Pluripotency ; Questions ; Stem cells</subject><ispartof>Glia, 2020-09, Vol.68 (9), p.1692-1728</ispartof><rights>2020 Wiley Periodicals, Inc.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4930-3128f607c23babd60f111ad542f55e98e364dc50680d6a19704dfdb7faf798d83</citedby><cites>FETCH-LOGICAL-c4930-3128f607c23babd60f111ad542f55e98e364dc50680d6a19704dfdb7faf798d83</cites><orcidid>0000-0002-6644-7214 ; 0000-0001-7578-2615 ; 0000-0001-6757-156X ; 0000-0003-3613-4118 ; 0000-0002-5593-5255 ; 0000-0002-0777-6739 ; 0000-0003-1889-7023 ; 0000-0003-4475-9476 ; 0000-0002-5000-243X ; 0000-0001-6351-8374</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fglia.23780$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fglia.23780$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31958188$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02448198$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Hirbec, Hélène</creatorcontrib><creatorcontrib>Déglon, Nicole</creatorcontrib><creatorcontrib>Foo, Lynette C.</creatorcontrib><creatorcontrib>Goshen, Inbal</creatorcontrib><creatorcontrib>Grutzendler, Jaime</creatorcontrib><creatorcontrib>Hangen, Emilie</creatorcontrib><creatorcontrib>Kreisel, Tirzah</creatorcontrib><creatorcontrib>Linck, Nathalie</creatorcontrib><creatorcontrib>Muffat, Julien</creatorcontrib><creatorcontrib>Regio, Sara</creatorcontrib><creatorcontrib>Rion, Sybille</creatorcontrib><creatorcontrib>Escartin, Carole</creatorcontrib><title>Emerging technologies to study glial cells</title><title>Glia</title><addtitle>Glia</addtitle><description>Development, physiological functions, and pathologies of the brain depend on tight interactions between neurons and different types of glial cells, such as astrocytes, microglia, oligodendrocytes, and oligodendrocyte precursor cells. Assessing the relative contribution of different glial cell types is required for the full understanding of brain function and dysfunction. Over the recent years, several technological breakthroughs were achieved, allowing “glio‐scientists” to address new challenging biological questions. These technical developments make it possible to study the roles of specific cell types with medium or high‐content workflows and perform fine analysis of their mutual interactions in a preserved environment. This review illustrates the potency of several cutting‐edge experimental approaches (advanced cell cultures, induced pluripotent stem cell (iPSC)‐derived human glial cells, viral vectors, in situ glia imaging, opto‐ and chemogenetic approaches, and high‐content molecular analysis) to unravel the role of glial cells in specific brain functions or diseases. It also illustrates the translation of some techniques to the clinics, to monitor glial cells in patients, through specific brain imaging methods. The advantages, pitfalls, and future developments are discussed for each technique, and selected examples are provided to illustrate how specific “gliobiological” questions can now be tackled. Many technologies are emerging to study glial cells, from molecules to behaviors. Glial cell complexity and plasticity require cell‐specific, high‐content, and sensitive methods to study them. Multiple techniques can be combined to provide refined insight into glial cell (patho)physiology.</description><subject>Astrocytes</subject><subject>Biotechnology</subject><subject>Brain</subject><subject>Cognitive science</subject><subject>Glial cells</subject><subject>Glial stem cells</subject><subject>Life Sciences</subject><subject>Medical imaging</subject><subject>Microglia</subject><subject>Neuroimaging</subject><subject>Neuronal-glial interactions</subject><subject>Neuroscience</subject><subject>New technology</subject><subject>Oligodendrocytes</subject><subject>Pluripotency</subject><subject>Questions</subject><subject>Stem cells</subject><issn>0894-1491</issn><issn>1098-1136</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kM9LwzAUgIMobk4v_gFS8KKDzrwkTZPjGHMbFLzoOaRN2nX0hzarsv_e1s4dPHgKL3x8vPchdAt4BhiTp6zI9YzQUOAzNAYshQ9A-TkaYyGZD0zCCF05t8MYuiG8RCMKMhAgxBhNl6VtsrzKvL1NtlVd1FlunbevPbdvzcHr3YWX2KJw1-gi1YWzN8d3gt6el6-LtR-9rDaLeeQnTFLsUyAi5ThMCI11bDhOAUCbgJE0CKwUlnJmkgBzgQ3XIEPMTGriMNVpKIURdIIeB-9WF-q9yUvdHFStc7WeR6r_w4QxAVJ8Qsc-DOx7U3-01u1Vmbt-W13ZunWKUEZowLkMOvT-D7qr26bqLlGkg7qSnPfC6UAlTe1cY9PTBoBVX1v1RdRP7Q6-OyrbuLTmhP7m7QAYgK-8sId_VGoVbeaD9Bs9x4aF</recordid><startdate>202009</startdate><enddate>202009</enddate><creator>Hirbec, Hélène</creator><creator>Déglon, Nicole</creator><creator>Foo, Lynette C.</creator><creator>Goshen, Inbal</creator><creator>Grutzendler, Jaime</creator><creator>Hangen, Emilie</creator><creator>Kreisel, Tirzah</creator><creator>Linck, Nathalie</creator><creator>Muffat, Julien</creator><creator>Regio, Sara</creator><creator>Rion, Sybille</creator><creator>Escartin, Carole</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7T7</scope><scope>7TK</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-6644-7214</orcidid><orcidid>https://orcid.org/0000-0001-7578-2615</orcidid><orcidid>https://orcid.org/0000-0001-6757-156X</orcidid><orcidid>https://orcid.org/0000-0003-3613-4118</orcidid><orcidid>https://orcid.org/0000-0002-5593-5255</orcidid><orcidid>https://orcid.org/0000-0002-0777-6739</orcidid><orcidid>https://orcid.org/0000-0003-1889-7023</orcidid><orcidid>https://orcid.org/0000-0003-4475-9476</orcidid><orcidid>https://orcid.org/0000-0002-5000-243X</orcidid><orcidid>https://orcid.org/0000-0001-6351-8374</orcidid></search><sort><creationdate>202009</creationdate><title>Emerging technologies to study glial cells</title><author>Hirbec, Hélène ; Déglon, Nicole ; Foo, Lynette C. ; Goshen, Inbal ; Grutzendler, Jaime ; Hangen, Emilie ; Kreisel, Tirzah ; Linck, Nathalie ; Muffat, Julien ; Regio, Sara ; Rion, Sybille ; Escartin, Carole</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4930-3128f607c23babd60f111ad542f55e98e364dc50680d6a19704dfdb7faf798d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Astrocytes</topic><topic>Biotechnology</topic><topic>Brain</topic><topic>Cognitive science</topic><topic>Glial cells</topic><topic>Glial stem cells</topic><topic>Life Sciences</topic><topic>Medical imaging</topic><topic>Microglia</topic><topic>Neuroimaging</topic><topic>Neuronal-glial interactions</topic><topic>Neuroscience</topic><topic>New technology</topic><topic>Oligodendrocytes</topic><topic>Pluripotency</topic><topic>Questions</topic><topic>Stem cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hirbec, Hélène</creatorcontrib><creatorcontrib>Déglon, Nicole</creatorcontrib><creatorcontrib>Foo, Lynette C.</creatorcontrib><creatorcontrib>Goshen, Inbal</creatorcontrib><creatorcontrib>Grutzendler, Jaime</creatorcontrib><creatorcontrib>Hangen, Emilie</creatorcontrib><creatorcontrib>Kreisel, Tirzah</creatorcontrib><creatorcontrib>Linck, Nathalie</creatorcontrib><creatorcontrib>Muffat, Julien</creatorcontrib><creatorcontrib>Regio, Sara</creatorcontrib><creatorcontrib>Rion, Sybille</creatorcontrib><creatorcontrib>Escartin, Carole</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Glia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hirbec, Hélène</au><au>Déglon, Nicole</au><au>Foo, Lynette C.</au><au>Goshen, Inbal</au><au>Grutzendler, Jaime</au><au>Hangen, Emilie</au><au>Kreisel, Tirzah</au><au>Linck, Nathalie</au><au>Muffat, Julien</au><au>Regio, Sara</au><au>Rion, Sybille</au><au>Escartin, Carole</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Emerging technologies to study glial cells</atitle><jtitle>Glia</jtitle><addtitle>Glia</addtitle><date>2020-09</date><risdate>2020</risdate><volume>68</volume><issue>9</issue><spage>1692</spage><epage>1728</epage><pages>1692-1728</pages><issn>0894-1491</issn><eissn>1098-1136</eissn><abstract>Development, physiological functions, and pathologies of the brain depend on tight interactions between neurons and different types of glial cells, such as astrocytes, microglia, oligodendrocytes, and oligodendrocyte precursor cells. Assessing the relative contribution of different glial cell types is required for the full understanding of brain function and dysfunction. Over the recent years, several technological breakthroughs were achieved, allowing “glio‐scientists” to address new challenging biological questions. These technical developments make it possible to study the roles of specific cell types with medium or high‐content workflows and perform fine analysis of their mutual interactions in a preserved environment. This review illustrates the potency of several cutting‐edge experimental approaches (advanced cell cultures, induced pluripotent stem cell (iPSC)‐derived human glial cells, viral vectors, in situ glia imaging, opto‐ and chemogenetic approaches, and high‐content molecular analysis) to unravel the role of glial cells in specific brain functions or diseases. It also illustrates the translation of some techniques to the clinics, to monitor glial cells in patients, through specific brain imaging methods. The advantages, pitfalls, and future developments are discussed for each technique, and selected examples are provided to illustrate how specific “gliobiological” questions can now be tackled. Many technologies are emerging to study glial cells, from molecules to behaviors. Glial cell complexity and plasticity require cell‐specific, high‐content, and sensitive methods to study them. Multiple techniques can be combined to provide refined insight into glial cell (patho)physiology.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>31958188</pmid><doi>10.1002/glia.23780</doi><tpages>37</tpages><orcidid>https://orcid.org/0000-0002-6644-7214</orcidid><orcidid>https://orcid.org/0000-0001-7578-2615</orcidid><orcidid>https://orcid.org/0000-0001-6757-156X</orcidid><orcidid>https://orcid.org/0000-0003-3613-4118</orcidid><orcidid>https://orcid.org/0000-0002-5593-5255</orcidid><orcidid>https://orcid.org/0000-0002-0777-6739</orcidid><orcidid>https://orcid.org/0000-0003-1889-7023</orcidid><orcidid>https://orcid.org/0000-0003-4475-9476</orcidid><orcidid>https://orcid.org/0000-0002-5000-243X</orcidid><orcidid>https://orcid.org/0000-0001-6351-8374</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0894-1491
ispartof Glia, 2020-09, Vol.68 (9), p.1692-1728
issn 0894-1491
1098-1136
language eng
recordid cdi_hal_primary_oai_HAL_hal_02448198v1
source Wiley Online Library Journals Frontfile Complete
subjects Astrocytes
Biotechnology
Brain
Cognitive science
Glial cells
Glial stem cells
Life Sciences
Medical imaging
Microglia
Neuroimaging
Neuronal-glial interactions
Neuroscience
New technology
Oligodendrocytes
Pluripotency
Questions
Stem cells
title Emerging technologies to study glial cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T15%3A14%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Emerging%20technologies%20to%20study%20glial%20cells&rft.jtitle=Glia&rft.au=Hirbec,%20H%C3%A9l%C3%A8ne&rft.date=2020-09&rft.volume=68&rft.issue=9&rft.spage=1692&rft.epage=1728&rft.pages=1692-1728&rft.issn=0894-1491&rft.eissn=1098-1136&rft_id=info:doi/10.1002/glia.23780&rft_dat=%3Cproquest_hal_p%3E2423100661%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2423100661&rft_id=info:pmid/31958188&rfr_iscdi=true