Small-scale high-throughput sequencing–based identification of new therapeutic tools in cystic fibrosis
Purpose: Although 97–99% of CFTR mutations have been identified, great efforts must be made to detect yet-unidentified mutations. Methods: We developed a small-scale next-generation sequencing approach for reliably and quickly scanning the entire gene, including noncoding regions, to identify new mu...
Gespeichert in:
Veröffentlicht in: | Genetics in medicine 2015-10, Vol.17 (10), p.796-806 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 806 |
---|---|
container_issue | 10 |
container_start_page | 796 |
container_title | Genetics in medicine |
container_volume | 17 |
creator | Bonini, Jennifer Varilh, Jessica Raynal, Caroline Thèze, Corinne Beyne, Emmanuelle Audrezet, Marie-Pierre Ferec, Claude Bienvenu, Thierry Girodon, Emmanuelle Tuffery-Giraud, Sylvie Des Georges, Marie Claustres, Mireille Taulan-Cadars, Magali |
description | Purpose:
Although 97–99% of
CFTR
mutations have been identified, great efforts must be made to detect yet-unidentified mutations.
Methods:
We developed a small-scale next-generation sequencing approach for reliably and quickly scanning the entire gene, including noncoding regions, to identify new mutations. We applied this approach to 18 samples from patients suffering from cystic fibrosis (CF) in whom only one mutation had hitherto been identified.
Results:
Using an in-house bioinformatics pipeline, we could rapidly identify a second disease-causing
CFTR
mutation for 16 of 18 samples. Of them, c.1680-883A>G was found in three unrelated CF patients. Analysis of minigenes and patients’ transcripts showed that this mutation results in aberrantly spliced transcripts because of the inclusion of a pseudoexon. It is located only three base pairs from the c.1680-886A>G mutation (1811+1.6kbA>G), the fourth most frequent mutation in southwestern Europe. We next tested the effect of antisense oligonucleotides targeting splice sites on these two mutations on pseudoexon skipping. Oligonucleotide transfection resulted in the restoration of the full-length, in-frame
CFTR
transcript, demonstrating the effect of antisense oligonucleotide-induced pseudoexon skipping in CF.
Conclusion:
Our data confirm the importance of analyzing noncoding regions to find unidentified mutations, which is essential to designing targeted therapeutic approaches.
Genet Med
17
10, 796–806. |
doi_str_mv | 10.1038/gim.2014.194 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02434833v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4265484561</sourcerecordid><originalsourceid>FETCH-LOGICAL-c495t-8439eb3f45aff8350a91caf6be5c8cab56db465f739c9455b2cc95fb8372886b3</originalsourceid><addsrcrecordid>eNptkU9rHCEchqW0NGmaW85ByCWFzlZHndFjCGlTWOih7VnU1RnDjG7UScgt36HfsJ-kLpuEUnry38P78-UB4ASjFUaEfxr8vGoRpiss6CtwiBlBDSJd97rukeAN6RA6AO9yvkEI96RFb8FBy1gnKEWHwH-f1TQ12ajJwtEPY1PGFJdh3C4FZnu72GB8GH4__tIq2w30GxuKd96o4mOA0cFg72EZbVJbuxRvYIlxytAHaB7y7uy8TjH7_B68cWrK9vhpPQI_P1_9uLxu1t--fL28WDeGClYaTomwmjjKlHOcMKQENsp12jLDjdKs22jaMdcTYQRlTLfGCOY0J33LeafJEfiwzx3VJLfJzyo9yKi8vL5Yy90daimhnJA7XNnzPbtNsVbNRc4-GztNKti4ZIl7LETPMBUVPfsHvYlLCrWJxJzSHjPGUaU-7ilTO-dk3csPMJI7XbLqkjtdsuqq-OlT6KJnu3mBn_1UoNkDuT6Fwaa_pv4v8A9cqKDS</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1844715580</pqid></control><display><type>article</type><title>Small-scale high-throughput sequencing–based identification of new therapeutic tools in cystic fibrosis</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Bonini, Jennifer ; Varilh, Jessica ; Raynal, Caroline ; Thèze, Corinne ; Beyne, Emmanuelle ; Audrezet, Marie-Pierre ; Ferec, Claude ; Bienvenu, Thierry ; Girodon, Emmanuelle ; Tuffery-Giraud, Sylvie ; Des Georges, Marie ; Claustres, Mireille ; Taulan-Cadars, Magali</creator><creatorcontrib>Bonini, Jennifer ; Varilh, Jessica ; Raynal, Caroline ; Thèze, Corinne ; Beyne, Emmanuelle ; Audrezet, Marie-Pierre ; Ferec, Claude ; Bienvenu, Thierry ; Girodon, Emmanuelle ; Tuffery-Giraud, Sylvie ; Des Georges, Marie ; Claustres, Mireille ; Taulan-Cadars, Magali</creatorcontrib><description>Purpose:
Although 97–99% of
CFTR
mutations have been identified, great efforts must be made to detect yet-unidentified mutations.
Methods:
We developed a small-scale next-generation sequencing approach for reliably and quickly scanning the entire gene, including noncoding regions, to identify new mutations. We applied this approach to 18 samples from patients suffering from cystic fibrosis (CF) in whom only one mutation had hitherto been identified.
Results:
Using an in-house bioinformatics pipeline, we could rapidly identify a second disease-causing
CFTR
mutation for 16 of 18 samples. Of them, c.1680-883A>G was found in three unrelated CF patients. Analysis of minigenes and patients’ transcripts showed that this mutation results in aberrantly spliced transcripts because of the inclusion of a pseudoexon. It is located only three base pairs from the c.1680-886A>G mutation (1811+1.6kbA>G), the fourth most frequent mutation in southwestern Europe. We next tested the effect of antisense oligonucleotides targeting splice sites on these two mutations on pseudoexon skipping. Oligonucleotide transfection resulted in the restoration of the full-length, in-frame
CFTR
transcript, demonstrating the effect of antisense oligonucleotide-induced pseudoexon skipping in CF.
Conclusion:
Our data confirm the importance of analyzing noncoding regions to find unidentified mutations, which is essential to designing targeted therapeutic approaches.
Genet Med
17
10, 796–806.</description><identifier>ISSN: 1098-3600</identifier><identifier>EISSN: 1530-0366</identifier><identifier>DOI: 10.1038/gim.2014.194</identifier><identifier>PMID: 25569440</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/114/2163 ; 631/1647/514/2254 ; 692/420/2489/144 ; 692/699/1785 ; Alternative Splicing ; Base Sequence ; Biomedicine ; Cell Line ; Chromosome Mapping ; Chromosomes, Human, Pair 7 ; Computational Biology - methods ; Cystic Fibrosis - genetics ; Cystic Fibrosis - therapy ; Cystic Fibrosis Transmembrane Conductance Regulator - chemistry ; Cystic Fibrosis Transmembrane Conductance Regulator - genetics ; Exons ; Gene Expression ; Gene Order ; Genes, Reporter ; Genetic Loci ; High-Throughput Nucleotide Sequencing ; Human Genetics ; Humans ; Introns ; Laboratory Medicine ; Life Sciences ; Male ; Molecular Sequence Data ; Mutation ; original-research-article ; Position-Specific Scoring Matrices ; Sequence Alignment ; Targeted Gene Repair</subject><ispartof>Genetics in medicine, 2015-10, Vol.17 (10), p.796-806</ispartof><rights>American College of Medical Genetics and Genomics 2015</rights><rights>Copyright Nature Publishing Group Oct 2015</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c495t-8439eb3f45aff8350a91caf6be5c8cab56db465f739c9455b2cc95fb8372886b3</citedby><cites>FETCH-LOGICAL-c495t-8439eb3f45aff8350a91caf6be5c8cab56db465f739c9455b2cc95fb8372886b3</cites><orcidid>0000-0001-9369-7780 ; 0000-0003-0059-9394 ; 0000-0003-0161-9473 ; 0000-0002-5953-2728 ; 0000-0001-7913-4682 ; 0000-0002-2325-0710</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25569440$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.umontpellier.fr/hal-02434833$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bonini, Jennifer</creatorcontrib><creatorcontrib>Varilh, Jessica</creatorcontrib><creatorcontrib>Raynal, Caroline</creatorcontrib><creatorcontrib>Thèze, Corinne</creatorcontrib><creatorcontrib>Beyne, Emmanuelle</creatorcontrib><creatorcontrib>Audrezet, Marie-Pierre</creatorcontrib><creatorcontrib>Ferec, Claude</creatorcontrib><creatorcontrib>Bienvenu, Thierry</creatorcontrib><creatorcontrib>Girodon, Emmanuelle</creatorcontrib><creatorcontrib>Tuffery-Giraud, Sylvie</creatorcontrib><creatorcontrib>Des Georges, Marie</creatorcontrib><creatorcontrib>Claustres, Mireille</creatorcontrib><creatorcontrib>Taulan-Cadars, Magali</creatorcontrib><title>Small-scale high-throughput sequencing–based identification of new therapeutic tools in cystic fibrosis</title><title>Genetics in medicine</title><addtitle>Genet Med</addtitle><addtitle>Genet Med</addtitle><description>Purpose:
Although 97–99% of
CFTR
mutations have been identified, great efforts must be made to detect yet-unidentified mutations.
Methods:
We developed a small-scale next-generation sequencing approach for reliably and quickly scanning the entire gene, including noncoding regions, to identify new mutations. We applied this approach to 18 samples from patients suffering from cystic fibrosis (CF) in whom only one mutation had hitherto been identified.
Results:
Using an in-house bioinformatics pipeline, we could rapidly identify a second disease-causing
CFTR
mutation for 16 of 18 samples. Of them, c.1680-883A>G was found in three unrelated CF patients. Analysis of minigenes and patients’ transcripts showed that this mutation results in aberrantly spliced transcripts because of the inclusion of a pseudoexon. It is located only three base pairs from the c.1680-886A>G mutation (1811+1.6kbA>G), the fourth most frequent mutation in southwestern Europe. We next tested the effect of antisense oligonucleotides targeting splice sites on these two mutations on pseudoexon skipping. Oligonucleotide transfection resulted in the restoration of the full-length, in-frame
CFTR
transcript, demonstrating the effect of antisense oligonucleotide-induced pseudoexon skipping in CF.
Conclusion:
Our data confirm the importance of analyzing noncoding regions to find unidentified mutations, which is essential to designing targeted therapeutic approaches.
Genet Med
17
10, 796–806.</description><subject>631/114/2163</subject><subject>631/1647/514/2254</subject><subject>692/420/2489/144</subject><subject>692/699/1785</subject><subject>Alternative Splicing</subject><subject>Base Sequence</subject><subject>Biomedicine</subject><subject>Cell Line</subject><subject>Chromosome Mapping</subject><subject>Chromosomes, Human, Pair 7</subject><subject>Computational Biology - methods</subject><subject>Cystic Fibrosis - genetics</subject><subject>Cystic Fibrosis - therapy</subject><subject>Cystic Fibrosis Transmembrane Conductance Regulator - chemistry</subject><subject>Cystic Fibrosis Transmembrane Conductance Regulator - genetics</subject><subject>Exons</subject><subject>Gene Expression</subject><subject>Gene Order</subject><subject>Genes, Reporter</subject><subject>Genetic Loci</subject><subject>High-Throughput Nucleotide Sequencing</subject><subject>Human Genetics</subject><subject>Humans</subject><subject>Introns</subject><subject>Laboratory Medicine</subject><subject>Life Sciences</subject><subject>Male</subject><subject>Molecular Sequence Data</subject><subject>Mutation</subject><subject>original-research-article</subject><subject>Position-Specific Scoring Matrices</subject><subject>Sequence Alignment</subject><subject>Targeted Gene Repair</subject><issn>1098-3600</issn><issn>1530-0366</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNptkU9rHCEchqW0NGmaW85ByCWFzlZHndFjCGlTWOih7VnU1RnDjG7UScgt36HfsJ-kLpuEUnry38P78-UB4ASjFUaEfxr8vGoRpiss6CtwiBlBDSJd97rukeAN6RA6AO9yvkEI96RFb8FBy1gnKEWHwH-f1TQ12ajJwtEPY1PGFJdh3C4FZnu72GB8GH4__tIq2w30GxuKd96o4mOA0cFg72EZbVJbuxRvYIlxytAHaB7y7uy8TjH7_B68cWrK9vhpPQI_P1_9uLxu1t--fL28WDeGClYaTomwmjjKlHOcMKQENsp12jLDjdKs22jaMdcTYQRlTLfGCOY0J33LeafJEfiwzx3VJLfJzyo9yKi8vL5Yy90daimhnJA7XNnzPbtNsVbNRc4-GztNKti4ZIl7LETPMBUVPfsHvYlLCrWJxJzSHjPGUaU-7ilTO-dk3csPMJI7XbLqkjtdsuqq-OlT6KJnu3mBn_1UoNkDuT6Fwaa_pv4v8A9cqKDS</recordid><startdate>20151001</startdate><enddate>20151001</enddate><creator>Bonini, Jennifer</creator><creator>Varilh, Jessica</creator><creator>Raynal, Caroline</creator><creator>Thèze, Corinne</creator><creator>Beyne, Emmanuelle</creator><creator>Audrezet, Marie-Pierre</creator><creator>Ferec, Claude</creator><creator>Bienvenu, Thierry</creator><creator>Girodon, Emmanuelle</creator><creator>Tuffery-Giraud, Sylvie</creator><creator>Des Georges, Marie</creator><creator>Claustres, Mireille</creator><creator>Taulan-Cadars, Magali</creator><general>Nature Publishing Group US</general><general>Elsevier Limited</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-9369-7780</orcidid><orcidid>https://orcid.org/0000-0003-0059-9394</orcidid><orcidid>https://orcid.org/0000-0003-0161-9473</orcidid><orcidid>https://orcid.org/0000-0002-5953-2728</orcidid><orcidid>https://orcid.org/0000-0001-7913-4682</orcidid><orcidid>https://orcid.org/0000-0002-2325-0710</orcidid></search><sort><creationdate>20151001</creationdate><title>Small-scale high-throughput sequencing–based identification of new therapeutic tools in cystic fibrosis</title><author>Bonini, Jennifer ; Varilh, Jessica ; Raynal, Caroline ; Thèze, Corinne ; Beyne, Emmanuelle ; Audrezet, Marie-Pierre ; Ferec, Claude ; Bienvenu, Thierry ; Girodon, Emmanuelle ; Tuffery-Giraud, Sylvie ; Des Georges, Marie ; Claustres, Mireille ; Taulan-Cadars, Magali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c495t-8439eb3f45aff8350a91caf6be5c8cab56db465f739c9455b2cc95fb8372886b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>631/114/2163</topic><topic>631/1647/514/2254</topic><topic>692/420/2489/144</topic><topic>692/699/1785</topic><topic>Alternative Splicing</topic><topic>Base Sequence</topic><topic>Biomedicine</topic><topic>Cell Line</topic><topic>Chromosome Mapping</topic><topic>Chromosomes, Human, Pair 7</topic><topic>Computational Biology - methods</topic><topic>Cystic Fibrosis - genetics</topic><topic>Cystic Fibrosis - therapy</topic><topic>Cystic Fibrosis Transmembrane Conductance Regulator - chemistry</topic><topic>Cystic Fibrosis Transmembrane Conductance Regulator - genetics</topic><topic>Exons</topic><topic>Gene Expression</topic><topic>Gene Order</topic><topic>Genes, Reporter</topic><topic>Genetic Loci</topic><topic>High-Throughput Nucleotide Sequencing</topic><topic>Human Genetics</topic><topic>Humans</topic><topic>Introns</topic><topic>Laboratory Medicine</topic><topic>Life Sciences</topic><topic>Male</topic><topic>Molecular Sequence Data</topic><topic>Mutation</topic><topic>original-research-article</topic><topic>Position-Specific Scoring Matrices</topic><topic>Sequence Alignment</topic><topic>Targeted Gene Repair</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bonini, Jennifer</creatorcontrib><creatorcontrib>Varilh, Jessica</creatorcontrib><creatorcontrib>Raynal, Caroline</creatorcontrib><creatorcontrib>Thèze, Corinne</creatorcontrib><creatorcontrib>Beyne, Emmanuelle</creatorcontrib><creatorcontrib>Audrezet, Marie-Pierre</creatorcontrib><creatorcontrib>Ferec, Claude</creatorcontrib><creatorcontrib>Bienvenu, Thierry</creatorcontrib><creatorcontrib>Girodon, Emmanuelle</creatorcontrib><creatorcontrib>Tuffery-Giraud, Sylvie</creatorcontrib><creatorcontrib>Des Georges, Marie</creatorcontrib><creatorcontrib>Claustres, Mireille</creatorcontrib><creatorcontrib>Taulan-Cadars, Magali</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Genetics in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bonini, Jennifer</au><au>Varilh, Jessica</au><au>Raynal, Caroline</au><au>Thèze, Corinne</au><au>Beyne, Emmanuelle</au><au>Audrezet, Marie-Pierre</au><au>Ferec, Claude</au><au>Bienvenu, Thierry</au><au>Girodon, Emmanuelle</au><au>Tuffery-Giraud, Sylvie</au><au>Des Georges, Marie</au><au>Claustres, Mireille</au><au>Taulan-Cadars, Magali</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Small-scale high-throughput sequencing–based identification of new therapeutic tools in cystic fibrosis</atitle><jtitle>Genetics in medicine</jtitle><stitle>Genet Med</stitle><addtitle>Genet Med</addtitle><date>2015-10-01</date><risdate>2015</risdate><volume>17</volume><issue>10</issue><spage>796</spage><epage>806</epage><pages>796-806</pages><issn>1098-3600</issn><eissn>1530-0366</eissn><abstract>Purpose:
Although 97–99% of
CFTR
mutations have been identified, great efforts must be made to detect yet-unidentified mutations.
Methods:
We developed a small-scale next-generation sequencing approach for reliably and quickly scanning the entire gene, including noncoding regions, to identify new mutations. We applied this approach to 18 samples from patients suffering from cystic fibrosis (CF) in whom only one mutation had hitherto been identified.
Results:
Using an in-house bioinformatics pipeline, we could rapidly identify a second disease-causing
CFTR
mutation for 16 of 18 samples. Of them, c.1680-883A>G was found in three unrelated CF patients. Analysis of minigenes and patients’ transcripts showed that this mutation results in aberrantly spliced transcripts because of the inclusion of a pseudoexon. It is located only three base pairs from the c.1680-886A>G mutation (1811+1.6kbA>G), the fourth most frequent mutation in southwestern Europe. We next tested the effect of antisense oligonucleotides targeting splice sites on these two mutations on pseudoexon skipping. Oligonucleotide transfection resulted in the restoration of the full-length, in-frame
CFTR
transcript, demonstrating the effect of antisense oligonucleotide-induced pseudoexon skipping in CF.
Conclusion:
Our data confirm the importance of analyzing noncoding regions to find unidentified mutations, which is essential to designing targeted therapeutic approaches.
Genet Med
17
10, 796–806.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>25569440</pmid><doi>10.1038/gim.2014.194</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-9369-7780</orcidid><orcidid>https://orcid.org/0000-0003-0059-9394</orcidid><orcidid>https://orcid.org/0000-0003-0161-9473</orcidid><orcidid>https://orcid.org/0000-0002-5953-2728</orcidid><orcidid>https://orcid.org/0000-0001-7913-4682</orcidid><orcidid>https://orcid.org/0000-0002-2325-0710</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1098-3600 |
ispartof | Genetics in medicine, 2015-10, Vol.17 (10), p.796-806 |
issn | 1098-3600 1530-0366 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02434833v1 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | 631/114/2163 631/1647/514/2254 692/420/2489/144 692/699/1785 Alternative Splicing Base Sequence Biomedicine Cell Line Chromosome Mapping Chromosomes, Human, Pair 7 Computational Biology - methods Cystic Fibrosis - genetics Cystic Fibrosis - therapy Cystic Fibrosis Transmembrane Conductance Regulator - chemistry Cystic Fibrosis Transmembrane Conductance Regulator - genetics Exons Gene Expression Gene Order Genes, Reporter Genetic Loci High-Throughput Nucleotide Sequencing Human Genetics Humans Introns Laboratory Medicine Life Sciences Male Molecular Sequence Data Mutation original-research-article Position-Specific Scoring Matrices Sequence Alignment Targeted Gene Repair |
title | Small-scale high-throughput sequencing–based identification of new therapeutic tools in cystic fibrosis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T05%3A55%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Small-scale%20high-throughput%20sequencing%E2%80%93based%20identification%20of%20new%20therapeutic%20tools%20in%20cystic%20fibrosis&rft.jtitle=Genetics%20in%20medicine&rft.au=Bonini,%20Jennifer&rft.date=2015-10-01&rft.volume=17&rft.issue=10&rft.spage=796&rft.epage=806&rft.pages=796-806&rft.issn=1098-3600&rft.eissn=1530-0366&rft_id=info:doi/10.1038/gim.2014.194&rft_dat=%3Cproquest_hal_p%3E4265484561%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1844715580&rft_id=info:pmid/25569440&rfr_iscdi=true |