Small-scale high-throughput sequencing–based identification of new therapeutic tools in cystic fibrosis

Purpose: Although 97–99% of CFTR mutations have been identified, great efforts must be made to detect yet-unidentified mutations. Methods: We developed a small-scale next-generation sequencing approach for reliably and quickly scanning the entire gene, including noncoding regions, to identify new mu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genetics in medicine 2015-10, Vol.17 (10), p.796-806
Hauptverfasser: Bonini, Jennifer, Varilh, Jessica, Raynal, Caroline, Thèze, Corinne, Beyne, Emmanuelle, Audrezet, Marie-Pierre, Ferec, Claude, Bienvenu, Thierry, Girodon, Emmanuelle, Tuffery-Giraud, Sylvie, Des Georges, Marie, Claustres, Mireille, Taulan-Cadars, Magali
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 806
container_issue 10
container_start_page 796
container_title Genetics in medicine
container_volume 17
creator Bonini, Jennifer
Varilh, Jessica
Raynal, Caroline
Thèze, Corinne
Beyne, Emmanuelle
Audrezet, Marie-Pierre
Ferec, Claude
Bienvenu, Thierry
Girodon, Emmanuelle
Tuffery-Giraud, Sylvie
Des Georges, Marie
Claustres, Mireille
Taulan-Cadars, Magali
description Purpose: Although 97–99% of CFTR mutations have been identified, great efforts must be made to detect yet-unidentified mutations. Methods: We developed a small-scale next-generation sequencing approach for reliably and quickly scanning the entire gene, including noncoding regions, to identify new mutations. We applied this approach to 18 samples from patients suffering from cystic fibrosis (CF) in whom only one mutation had hitherto been identified. Results: Using an in-house bioinformatics pipeline, we could rapidly identify a second disease-causing CFTR mutation for 16 of 18 samples. Of them, c.1680-883A>G was found in three unrelated CF patients. Analysis of minigenes and patients’ transcripts showed that this mutation results in aberrantly spliced transcripts because of the inclusion of a pseudoexon. It is located only three base pairs from the c.1680-886A>G mutation (1811+1.6kbA>G), the fourth most frequent mutation in southwestern Europe. We next tested the effect of antisense oligonucleotides targeting splice sites on these two mutations on pseudoexon skipping. Oligonucleotide transfection resulted in the restoration of the full-length, in-frame CFTR transcript, demonstrating the effect of antisense oligonucleotide-induced pseudoexon skipping in CF. Conclusion: Our data confirm the importance of analyzing noncoding regions to find unidentified mutations, which is essential to designing targeted therapeutic approaches. Genet Med 17 10, 796–806.
doi_str_mv 10.1038/gim.2014.194
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02434833v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4265484561</sourcerecordid><originalsourceid>FETCH-LOGICAL-c495t-8439eb3f45aff8350a91caf6be5c8cab56db465f739c9455b2cc95fb8372886b3</originalsourceid><addsrcrecordid>eNptkU9rHCEchqW0NGmaW85ByCWFzlZHndFjCGlTWOih7VnU1RnDjG7UScgt36HfsJ-kLpuEUnry38P78-UB4ASjFUaEfxr8vGoRpiss6CtwiBlBDSJd97rukeAN6RA6AO9yvkEI96RFb8FBy1gnKEWHwH-f1TQ12ajJwtEPY1PGFJdh3C4FZnu72GB8GH4__tIq2w30GxuKd96o4mOA0cFg72EZbVJbuxRvYIlxytAHaB7y7uy8TjH7_B68cWrK9vhpPQI_P1_9uLxu1t--fL28WDeGClYaTomwmjjKlHOcMKQENsp12jLDjdKs22jaMdcTYQRlTLfGCOY0J33LeafJEfiwzx3VJLfJzyo9yKi8vL5Yy90daimhnJA7XNnzPbtNsVbNRc4-GztNKti4ZIl7LETPMBUVPfsHvYlLCrWJxJzSHjPGUaU-7ilTO-dk3csPMJI7XbLqkjtdsuqq-OlT6KJnu3mBn_1UoNkDuT6Fwaa_pv4v8A9cqKDS</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1844715580</pqid></control><display><type>article</type><title>Small-scale high-throughput sequencing–based identification of new therapeutic tools in cystic fibrosis</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Bonini, Jennifer ; Varilh, Jessica ; Raynal, Caroline ; Thèze, Corinne ; Beyne, Emmanuelle ; Audrezet, Marie-Pierre ; Ferec, Claude ; Bienvenu, Thierry ; Girodon, Emmanuelle ; Tuffery-Giraud, Sylvie ; Des Georges, Marie ; Claustres, Mireille ; Taulan-Cadars, Magali</creator><creatorcontrib>Bonini, Jennifer ; Varilh, Jessica ; Raynal, Caroline ; Thèze, Corinne ; Beyne, Emmanuelle ; Audrezet, Marie-Pierre ; Ferec, Claude ; Bienvenu, Thierry ; Girodon, Emmanuelle ; Tuffery-Giraud, Sylvie ; Des Georges, Marie ; Claustres, Mireille ; Taulan-Cadars, Magali</creatorcontrib><description>Purpose: Although 97–99% of CFTR mutations have been identified, great efforts must be made to detect yet-unidentified mutations. Methods: We developed a small-scale next-generation sequencing approach for reliably and quickly scanning the entire gene, including noncoding regions, to identify new mutations. We applied this approach to 18 samples from patients suffering from cystic fibrosis (CF) in whom only one mutation had hitherto been identified. Results: Using an in-house bioinformatics pipeline, we could rapidly identify a second disease-causing CFTR mutation for 16 of 18 samples. Of them, c.1680-883A&gt;G was found in three unrelated CF patients. Analysis of minigenes and patients’ transcripts showed that this mutation results in aberrantly spliced transcripts because of the inclusion of a pseudoexon. It is located only three base pairs from the c.1680-886A&gt;G mutation (1811+1.6kbA&gt;G), the fourth most frequent mutation in southwestern Europe. We next tested the effect of antisense oligonucleotides targeting splice sites on these two mutations on pseudoexon skipping. Oligonucleotide transfection resulted in the restoration of the full-length, in-frame CFTR transcript, demonstrating the effect of antisense oligonucleotide-induced pseudoexon skipping in CF. Conclusion: Our data confirm the importance of analyzing noncoding regions to find unidentified mutations, which is essential to designing targeted therapeutic approaches. Genet Med 17 10, 796–806.</description><identifier>ISSN: 1098-3600</identifier><identifier>EISSN: 1530-0366</identifier><identifier>DOI: 10.1038/gim.2014.194</identifier><identifier>PMID: 25569440</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/114/2163 ; 631/1647/514/2254 ; 692/420/2489/144 ; 692/699/1785 ; Alternative Splicing ; Base Sequence ; Biomedicine ; Cell Line ; Chromosome Mapping ; Chromosomes, Human, Pair 7 ; Computational Biology - methods ; Cystic Fibrosis - genetics ; Cystic Fibrosis - therapy ; Cystic Fibrosis Transmembrane Conductance Regulator - chemistry ; Cystic Fibrosis Transmembrane Conductance Regulator - genetics ; Exons ; Gene Expression ; Gene Order ; Genes, Reporter ; Genetic Loci ; High-Throughput Nucleotide Sequencing ; Human Genetics ; Humans ; Introns ; Laboratory Medicine ; Life Sciences ; Male ; Molecular Sequence Data ; Mutation ; original-research-article ; Position-Specific Scoring Matrices ; Sequence Alignment ; Targeted Gene Repair</subject><ispartof>Genetics in medicine, 2015-10, Vol.17 (10), p.796-806</ispartof><rights>American College of Medical Genetics and Genomics 2015</rights><rights>Copyright Nature Publishing Group Oct 2015</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c495t-8439eb3f45aff8350a91caf6be5c8cab56db465f739c9455b2cc95fb8372886b3</citedby><cites>FETCH-LOGICAL-c495t-8439eb3f45aff8350a91caf6be5c8cab56db465f739c9455b2cc95fb8372886b3</cites><orcidid>0000-0001-9369-7780 ; 0000-0003-0059-9394 ; 0000-0003-0161-9473 ; 0000-0002-5953-2728 ; 0000-0001-7913-4682 ; 0000-0002-2325-0710</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25569440$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.umontpellier.fr/hal-02434833$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bonini, Jennifer</creatorcontrib><creatorcontrib>Varilh, Jessica</creatorcontrib><creatorcontrib>Raynal, Caroline</creatorcontrib><creatorcontrib>Thèze, Corinne</creatorcontrib><creatorcontrib>Beyne, Emmanuelle</creatorcontrib><creatorcontrib>Audrezet, Marie-Pierre</creatorcontrib><creatorcontrib>Ferec, Claude</creatorcontrib><creatorcontrib>Bienvenu, Thierry</creatorcontrib><creatorcontrib>Girodon, Emmanuelle</creatorcontrib><creatorcontrib>Tuffery-Giraud, Sylvie</creatorcontrib><creatorcontrib>Des Georges, Marie</creatorcontrib><creatorcontrib>Claustres, Mireille</creatorcontrib><creatorcontrib>Taulan-Cadars, Magali</creatorcontrib><title>Small-scale high-throughput sequencing–based identification of new therapeutic tools in cystic fibrosis</title><title>Genetics in medicine</title><addtitle>Genet Med</addtitle><addtitle>Genet Med</addtitle><description>Purpose: Although 97–99% of CFTR mutations have been identified, great efforts must be made to detect yet-unidentified mutations. Methods: We developed a small-scale next-generation sequencing approach for reliably and quickly scanning the entire gene, including noncoding regions, to identify new mutations. We applied this approach to 18 samples from patients suffering from cystic fibrosis (CF) in whom only one mutation had hitherto been identified. Results: Using an in-house bioinformatics pipeline, we could rapidly identify a second disease-causing CFTR mutation for 16 of 18 samples. Of them, c.1680-883A&gt;G was found in three unrelated CF patients. Analysis of minigenes and patients’ transcripts showed that this mutation results in aberrantly spliced transcripts because of the inclusion of a pseudoexon. It is located only three base pairs from the c.1680-886A&gt;G mutation (1811+1.6kbA&gt;G), the fourth most frequent mutation in southwestern Europe. We next tested the effect of antisense oligonucleotides targeting splice sites on these two mutations on pseudoexon skipping. Oligonucleotide transfection resulted in the restoration of the full-length, in-frame CFTR transcript, demonstrating the effect of antisense oligonucleotide-induced pseudoexon skipping in CF. Conclusion: Our data confirm the importance of analyzing noncoding regions to find unidentified mutations, which is essential to designing targeted therapeutic approaches. Genet Med 17 10, 796–806.</description><subject>631/114/2163</subject><subject>631/1647/514/2254</subject><subject>692/420/2489/144</subject><subject>692/699/1785</subject><subject>Alternative Splicing</subject><subject>Base Sequence</subject><subject>Biomedicine</subject><subject>Cell Line</subject><subject>Chromosome Mapping</subject><subject>Chromosomes, Human, Pair 7</subject><subject>Computational Biology - methods</subject><subject>Cystic Fibrosis - genetics</subject><subject>Cystic Fibrosis - therapy</subject><subject>Cystic Fibrosis Transmembrane Conductance Regulator - chemistry</subject><subject>Cystic Fibrosis Transmembrane Conductance Regulator - genetics</subject><subject>Exons</subject><subject>Gene Expression</subject><subject>Gene Order</subject><subject>Genes, Reporter</subject><subject>Genetic Loci</subject><subject>High-Throughput Nucleotide Sequencing</subject><subject>Human Genetics</subject><subject>Humans</subject><subject>Introns</subject><subject>Laboratory Medicine</subject><subject>Life Sciences</subject><subject>Male</subject><subject>Molecular Sequence Data</subject><subject>Mutation</subject><subject>original-research-article</subject><subject>Position-Specific Scoring Matrices</subject><subject>Sequence Alignment</subject><subject>Targeted Gene Repair</subject><issn>1098-3600</issn><issn>1530-0366</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNptkU9rHCEchqW0NGmaW85ByCWFzlZHndFjCGlTWOih7VnU1RnDjG7UScgt36HfsJ-kLpuEUnry38P78-UB4ASjFUaEfxr8vGoRpiss6CtwiBlBDSJd97rukeAN6RA6AO9yvkEI96RFb8FBy1gnKEWHwH-f1TQ12ajJwtEPY1PGFJdh3C4FZnu72GB8GH4__tIq2w30GxuKd96o4mOA0cFg72EZbVJbuxRvYIlxytAHaB7y7uy8TjH7_B68cWrK9vhpPQI_P1_9uLxu1t--fL28WDeGClYaTomwmjjKlHOcMKQENsp12jLDjdKs22jaMdcTYQRlTLfGCOY0J33LeafJEfiwzx3VJLfJzyo9yKi8vL5Yy90daimhnJA7XNnzPbtNsVbNRc4-GztNKti4ZIl7LETPMBUVPfsHvYlLCrWJxJzSHjPGUaU-7ilTO-dk3csPMJI7XbLqkjtdsuqq-OlT6KJnu3mBn_1UoNkDuT6Fwaa_pv4v8A9cqKDS</recordid><startdate>20151001</startdate><enddate>20151001</enddate><creator>Bonini, Jennifer</creator><creator>Varilh, Jessica</creator><creator>Raynal, Caroline</creator><creator>Thèze, Corinne</creator><creator>Beyne, Emmanuelle</creator><creator>Audrezet, Marie-Pierre</creator><creator>Ferec, Claude</creator><creator>Bienvenu, Thierry</creator><creator>Girodon, Emmanuelle</creator><creator>Tuffery-Giraud, Sylvie</creator><creator>Des Georges, Marie</creator><creator>Claustres, Mireille</creator><creator>Taulan-Cadars, Magali</creator><general>Nature Publishing Group US</general><general>Elsevier Limited</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-9369-7780</orcidid><orcidid>https://orcid.org/0000-0003-0059-9394</orcidid><orcidid>https://orcid.org/0000-0003-0161-9473</orcidid><orcidid>https://orcid.org/0000-0002-5953-2728</orcidid><orcidid>https://orcid.org/0000-0001-7913-4682</orcidid><orcidid>https://orcid.org/0000-0002-2325-0710</orcidid></search><sort><creationdate>20151001</creationdate><title>Small-scale high-throughput sequencing–based identification of new therapeutic tools in cystic fibrosis</title><author>Bonini, Jennifer ; Varilh, Jessica ; Raynal, Caroline ; Thèze, Corinne ; Beyne, Emmanuelle ; Audrezet, Marie-Pierre ; Ferec, Claude ; Bienvenu, Thierry ; Girodon, Emmanuelle ; Tuffery-Giraud, Sylvie ; Des Georges, Marie ; Claustres, Mireille ; Taulan-Cadars, Magali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c495t-8439eb3f45aff8350a91caf6be5c8cab56db465f739c9455b2cc95fb8372886b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>631/114/2163</topic><topic>631/1647/514/2254</topic><topic>692/420/2489/144</topic><topic>692/699/1785</topic><topic>Alternative Splicing</topic><topic>Base Sequence</topic><topic>Biomedicine</topic><topic>Cell Line</topic><topic>Chromosome Mapping</topic><topic>Chromosomes, Human, Pair 7</topic><topic>Computational Biology - methods</topic><topic>Cystic Fibrosis - genetics</topic><topic>Cystic Fibrosis - therapy</topic><topic>Cystic Fibrosis Transmembrane Conductance Regulator - chemistry</topic><topic>Cystic Fibrosis Transmembrane Conductance Regulator - genetics</topic><topic>Exons</topic><topic>Gene Expression</topic><topic>Gene Order</topic><topic>Genes, Reporter</topic><topic>Genetic Loci</topic><topic>High-Throughput Nucleotide Sequencing</topic><topic>Human Genetics</topic><topic>Humans</topic><topic>Introns</topic><topic>Laboratory Medicine</topic><topic>Life Sciences</topic><topic>Male</topic><topic>Molecular Sequence Data</topic><topic>Mutation</topic><topic>original-research-article</topic><topic>Position-Specific Scoring Matrices</topic><topic>Sequence Alignment</topic><topic>Targeted Gene Repair</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bonini, Jennifer</creatorcontrib><creatorcontrib>Varilh, Jessica</creatorcontrib><creatorcontrib>Raynal, Caroline</creatorcontrib><creatorcontrib>Thèze, Corinne</creatorcontrib><creatorcontrib>Beyne, Emmanuelle</creatorcontrib><creatorcontrib>Audrezet, Marie-Pierre</creatorcontrib><creatorcontrib>Ferec, Claude</creatorcontrib><creatorcontrib>Bienvenu, Thierry</creatorcontrib><creatorcontrib>Girodon, Emmanuelle</creatorcontrib><creatorcontrib>Tuffery-Giraud, Sylvie</creatorcontrib><creatorcontrib>Des Georges, Marie</creatorcontrib><creatorcontrib>Claustres, Mireille</creatorcontrib><creatorcontrib>Taulan-Cadars, Magali</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Genetics in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bonini, Jennifer</au><au>Varilh, Jessica</au><au>Raynal, Caroline</au><au>Thèze, Corinne</au><au>Beyne, Emmanuelle</au><au>Audrezet, Marie-Pierre</au><au>Ferec, Claude</au><au>Bienvenu, Thierry</au><au>Girodon, Emmanuelle</au><au>Tuffery-Giraud, Sylvie</au><au>Des Georges, Marie</au><au>Claustres, Mireille</au><au>Taulan-Cadars, Magali</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Small-scale high-throughput sequencing–based identification of new therapeutic tools in cystic fibrosis</atitle><jtitle>Genetics in medicine</jtitle><stitle>Genet Med</stitle><addtitle>Genet Med</addtitle><date>2015-10-01</date><risdate>2015</risdate><volume>17</volume><issue>10</issue><spage>796</spage><epage>806</epage><pages>796-806</pages><issn>1098-3600</issn><eissn>1530-0366</eissn><abstract>Purpose: Although 97–99% of CFTR mutations have been identified, great efforts must be made to detect yet-unidentified mutations. Methods: We developed a small-scale next-generation sequencing approach for reliably and quickly scanning the entire gene, including noncoding regions, to identify new mutations. We applied this approach to 18 samples from patients suffering from cystic fibrosis (CF) in whom only one mutation had hitherto been identified. Results: Using an in-house bioinformatics pipeline, we could rapidly identify a second disease-causing CFTR mutation for 16 of 18 samples. Of them, c.1680-883A&gt;G was found in three unrelated CF patients. Analysis of minigenes and patients’ transcripts showed that this mutation results in aberrantly spliced transcripts because of the inclusion of a pseudoexon. It is located only three base pairs from the c.1680-886A&gt;G mutation (1811+1.6kbA&gt;G), the fourth most frequent mutation in southwestern Europe. We next tested the effect of antisense oligonucleotides targeting splice sites on these two mutations on pseudoexon skipping. Oligonucleotide transfection resulted in the restoration of the full-length, in-frame CFTR transcript, demonstrating the effect of antisense oligonucleotide-induced pseudoexon skipping in CF. Conclusion: Our data confirm the importance of analyzing noncoding regions to find unidentified mutations, which is essential to designing targeted therapeutic approaches. Genet Med 17 10, 796–806.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>25569440</pmid><doi>10.1038/gim.2014.194</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-9369-7780</orcidid><orcidid>https://orcid.org/0000-0003-0059-9394</orcidid><orcidid>https://orcid.org/0000-0003-0161-9473</orcidid><orcidid>https://orcid.org/0000-0002-5953-2728</orcidid><orcidid>https://orcid.org/0000-0001-7913-4682</orcidid><orcidid>https://orcid.org/0000-0002-2325-0710</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1098-3600
ispartof Genetics in medicine, 2015-10, Vol.17 (10), p.796-806
issn 1098-3600
1530-0366
language eng
recordid cdi_hal_primary_oai_HAL_hal_02434833v1
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects 631/114/2163
631/1647/514/2254
692/420/2489/144
692/699/1785
Alternative Splicing
Base Sequence
Biomedicine
Cell Line
Chromosome Mapping
Chromosomes, Human, Pair 7
Computational Biology - methods
Cystic Fibrosis - genetics
Cystic Fibrosis - therapy
Cystic Fibrosis Transmembrane Conductance Regulator - chemistry
Cystic Fibrosis Transmembrane Conductance Regulator - genetics
Exons
Gene Expression
Gene Order
Genes, Reporter
Genetic Loci
High-Throughput Nucleotide Sequencing
Human Genetics
Humans
Introns
Laboratory Medicine
Life Sciences
Male
Molecular Sequence Data
Mutation
original-research-article
Position-Specific Scoring Matrices
Sequence Alignment
Targeted Gene Repair
title Small-scale high-throughput sequencing–based identification of new therapeutic tools in cystic fibrosis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T05%3A55%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Small-scale%20high-throughput%20sequencing%E2%80%93based%20identification%20of%20new%20therapeutic%20tools%20in%20cystic%20fibrosis&rft.jtitle=Genetics%20in%20medicine&rft.au=Bonini,%20Jennifer&rft.date=2015-10-01&rft.volume=17&rft.issue=10&rft.spage=796&rft.epage=806&rft.pages=796-806&rft.issn=1098-3600&rft.eissn=1530-0366&rft_id=info:doi/10.1038/gim.2014.194&rft_dat=%3Cproquest_hal_p%3E4265484561%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1844715580&rft_id=info:pmid/25569440&rfr_iscdi=true