The impact of transposable elements on the structure, evolution and function of the rice genome
Transposable elements (TEs) are ubiquitous in plants and are the primary genomic component of the majority of taxa. Knowledge of their impact on the structure, function and evolution of plant genomes is therefore a priority in the field of genomics. Rice, as one of the most prevalent crops for food...
Gespeichert in:
Veröffentlicht in: | The New phytologist 2020-04, Vol.226 (1), p.44-49 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 49 |
---|---|
container_issue | 1 |
container_start_page | 44 |
container_title | The New phytologist |
container_volume | 226 |
creator | Akakpo, Roland Carpentier, Marie-Christine Hsing, Yue Ie Panaud, Olivier |
description | Transposable elements (TEs) are ubiquitous in plants and are the primary genomic component of the majority of taxa. Knowledge of their impact on the structure, function and evolution of plant genomes is therefore a priority in the field of genomics. Rice, as one of the most prevalent crops for food security worldwide, has been subjected to intense research efforts over recent decades. Consequently, a considerable amount of genomic resources has been generated and made freely available to the scientific community. These can be exploited both to improve our understanding of some basic aspects of genome biology of this species and to develop new concepts for crop improvement. In this review, we describe the current knowledge on how TEs have shaped rice chromosomes and propose a new strategy based on a genome-wide association study (GWAS) to address the important question of their functional impact on this crop. |
doi_str_mv | 10.1111/nph.16356 |
format | Article |
fullrecord | <record><control><sourceid>jstor_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02434127v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26914515</jstor_id><sourcerecordid>26914515</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4446-c4e25323a5d1e702cf9c8144c5dee9fbc591daa0af278becb471f920b9f635853</originalsourceid><addsrcrecordid>eNp1kU9rFDEYh4Modls9-AGUgBeFbpt_k0yOpVi3sLQeKngLmcwbd5aZyZhkKv32ZrvtIoI5JCR53idv-CH0jpIzWsb5OG3OqOSVfIEWVEi9rClXL9GCEFYvpZA_jtBxSltCiK4ke42OOFVacc0XyNxtAHfDZF3GweMc7ZimkGzTA4YeBhhzwmHEuWApx9nlOcIphvvQz7krF3ZssZ9H97jZGQoYOwf4J4xhgDfolbd9grdP6wn6fvXl7nK1XN9-vb68WC-dEEKWGVjFGbdVS0ER5rx2NRXCVS2A9o2rNG2tJdYzVTfgGqGo14w02pd_1xU_QZ_33o3tzRS7wcYHE2xnVhdrszsjTHBBmbqnhf20Z6cYfs2Qshm65KDv7QhhToZxRqVkUu20H_9Bt2GOY_lJoaSmStbkr8ddDClF8IcOKDG7hExJyDwmVNgPT8a5GaA9kM-RFOB8D_zuenj4v8ncfFs9K9_vK7Yph3ioYKU_UdGK_wE5TaNB</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2369176805</pqid></control><display><type>article</type><title>The impact of transposable elements on the structure, evolution and function of the rice genome</title><source>Wiley-Blackwell Journals</source><source>MEDLINE</source><source>Wiley Online Library Journals</source><source>JSTOR</source><source>EZB Electronic Journals Library</source><creator>Akakpo, Roland ; Carpentier, Marie-Christine ; Hsing, Yue Ie ; Panaud, Olivier</creator><creatorcontrib>Akakpo, Roland ; Carpentier, Marie-Christine ; Hsing, Yue Ie ; Panaud, Olivier</creatorcontrib><description>Transposable elements (TEs) are ubiquitous in plants and are the primary genomic component of the majority of taxa. Knowledge of their impact on the structure, function and evolution of plant genomes is therefore a priority in the field of genomics. Rice, as one of the most prevalent crops for food security worldwide, has been subjected to intense research efforts over recent decades. Consequently, a considerable amount of genomic resources has been generated and made freely available to the scientific community. These can be exploited both to improve our understanding of some basic aspects of genome biology of this species and to develop new concepts for crop improvement. In this review, we describe the current knowledge on how TEs have shaped rice chromosomes and propose a new strategy based on a genome-wide association study (GWAS) to address the important question of their functional impact on this crop.</description><identifier>ISSN: 0028-646X</identifier><identifier>EISSN: 1469-8137</identifier><identifier>DOI: 10.1111/nph.16356</identifier><identifier>PMID: 31797393</identifier><language>eng</language><publisher>England: Wiley</publisher><subject>Biology ; Chromosomes ; Crop improvement ; DNA Transposable Elements - genetics ; Evolution ; Evolution, Molecular ; Food security ; functional genomics ; Genome, Plant - genetics ; Genome-wide association studies ; Genome-Wide Association Study ; Genomes ; Genomics ; Life Sciences ; model crop species ; Oryza - genetics ; Rice ; Structure-function relationships ; Tansley insight ; transposable elements (TEs)</subject><ispartof>The New phytologist, 2020-04, Vol.226 (1), p.44-49</ispartof><rights>2019 The Authors © 2019 New Phytologist Trust</rights><rights>2019 The Authors. New Phytologist © 2019 New Phytologist Trust</rights><rights>2019 The Authors. New Phytologist © 2019 New Phytologist Trust.</rights><rights>Copyright © 2020 New Phytologist Trust</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4446-c4e25323a5d1e702cf9c8144c5dee9fbc591daa0af278becb471f920b9f635853</citedby><cites>FETCH-LOGICAL-c4446-c4e25323a5d1e702cf9c8144c5dee9fbc591daa0af278becb471f920b9f635853</cites><orcidid>0000-0002-9292-503X ; 0000-0002-4795-9054</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26914515$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26914515$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,881,1411,1427,27901,27902,45550,45551,46384,46808,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31797393$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://univ-perp.hal.science/hal-02434127$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Akakpo, Roland</creatorcontrib><creatorcontrib>Carpentier, Marie-Christine</creatorcontrib><creatorcontrib>Hsing, Yue Ie</creatorcontrib><creatorcontrib>Panaud, Olivier</creatorcontrib><title>The impact of transposable elements on the structure, evolution and function of the rice genome</title><title>The New phytologist</title><addtitle>New Phytol</addtitle><description>Transposable elements (TEs) are ubiquitous in plants and are the primary genomic component of the majority of taxa. Knowledge of their impact on the structure, function and evolution of plant genomes is therefore a priority in the field of genomics. Rice, as one of the most prevalent crops for food security worldwide, has been subjected to intense research efforts over recent decades. Consequently, a considerable amount of genomic resources has been generated and made freely available to the scientific community. These can be exploited both to improve our understanding of some basic aspects of genome biology of this species and to develop new concepts for crop improvement. In this review, we describe the current knowledge on how TEs have shaped rice chromosomes and propose a new strategy based on a genome-wide association study (GWAS) to address the important question of their functional impact on this crop.</description><subject>Biology</subject><subject>Chromosomes</subject><subject>Crop improvement</subject><subject>DNA Transposable Elements - genetics</subject><subject>Evolution</subject><subject>Evolution, Molecular</subject><subject>Food security</subject><subject>functional genomics</subject><subject>Genome, Plant - genetics</subject><subject>Genome-wide association studies</subject><subject>Genome-Wide Association Study</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Life Sciences</subject><subject>model crop species</subject><subject>Oryza - genetics</subject><subject>Rice</subject><subject>Structure-function relationships</subject><subject>Tansley insight</subject><subject>transposable elements (TEs)</subject><issn>0028-646X</issn><issn>1469-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kU9rFDEYh4Modls9-AGUgBeFbpt_k0yOpVi3sLQeKngLmcwbd5aZyZhkKv32ZrvtIoI5JCR53idv-CH0jpIzWsb5OG3OqOSVfIEWVEi9rClXL9GCEFYvpZA_jtBxSltCiK4ke42OOFVacc0XyNxtAHfDZF3GweMc7ZimkGzTA4YeBhhzwmHEuWApx9nlOcIphvvQz7krF3ZssZ9H97jZGQoYOwf4J4xhgDfolbd9grdP6wn6fvXl7nK1XN9-vb68WC-dEEKWGVjFGbdVS0ER5rx2NRXCVS2A9o2rNG2tJdYzVTfgGqGo14w02pd_1xU_QZ_33o3tzRS7wcYHE2xnVhdrszsjTHBBmbqnhf20Z6cYfs2Qshm65KDv7QhhToZxRqVkUu20H_9Bt2GOY_lJoaSmStbkr8ddDClF8IcOKDG7hExJyDwmVNgPT8a5GaA9kM-RFOB8D_zuenj4v8ncfFs9K9_vK7Yph3ioYKU_UdGK_wE5TaNB</recordid><startdate>202004</startdate><enddate>202004</enddate><creator>Akakpo, Roland</creator><creator>Carpentier, Marie-Christine</creator><creator>Hsing, Yue Ie</creator><creator>Panaud, Olivier</creator><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-9292-503X</orcidid><orcidid>https://orcid.org/0000-0002-4795-9054</orcidid></search><sort><creationdate>202004</creationdate><title>The impact of transposable elements on the structure, evolution and function of the rice genome</title><author>Akakpo, Roland ; Carpentier, Marie-Christine ; Hsing, Yue Ie ; Panaud, Olivier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4446-c4e25323a5d1e702cf9c8144c5dee9fbc591daa0af278becb471f920b9f635853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biology</topic><topic>Chromosomes</topic><topic>Crop improvement</topic><topic>DNA Transposable Elements - genetics</topic><topic>Evolution</topic><topic>Evolution, Molecular</topic><topic>Food security</topic><topic>functional genomics</topic><topic>Genome, Plant - genetics</topic><topic>Genome-wide association studies</topic><topic>Genome-Wide Association Study</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Life Sciences</topic><topic>model crop species</topic><topic>Oryza - genetics</topic><topic>Rice</topic><topic>Structure-function relationships</topic><topic>Tansley insight</topic><topic>transposable elements (TEs)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Akakpo, Roland</creatorcontrib><creatorcontrib>Carpentier, Marie-Christine</creatorcontrib><creatorcontrib>Hsing, Yue Ie</creatorcontrib><creatorcontrib>Panaud, Olivier</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>The New phytologist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Akakpo, Roland</au><au>Carpentier, Marie-Christine</au><au>Hsing, Yue Ie</au><au>Panaud, Olivier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The impact of transposable elements on the structure, evolution and function of the rice genome</atitle><jtitle>The New phytologist</jtitle><addtitle>New Phytol</addtitle><date>2020-04</date><risdate>2020</risdate><volume>226</volume><issue>1</issue><spage>44</spage><epage>49</epage><pages>44-49</pages><issn>0028-646X</issn><eissn>1469-8137</eissn><abstract>Transposable elements (TEs) are ubiquitous in plants and are the primary genomic component of the majority of taxa. Knowledge of their impact on the structure, function and evolution of plant genomes is therefore a priority in the field of genomics. Rice, as one of the most prevalent crops for food security worldwide, has been subjected to intense research efforts over recent decades. Consequently, a considerable amount of genomic resources has been generated and made freely available to the scientific community. These can be exploited both to improve our understanding of some basic aspects of genome biology of this species and to develop new concepts for crop improvement. In this review, we describe the current knowledge on how TEs have shaped rice chromosomes and propose a new strategy based on a genome-wide association study (GWAS) to address the important question of their functional impact on this crop.</abstract><cop>England</cop><pub>Wiley</pub><pmid>31797393</pmid><doi>10.1111/nph.16356</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-9292-503X</orcidid><orcidid>https://orcid.org/0000-0002-4795-9054</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-646X |
ispartof | The New phytologist, 2020-04, Vol.226 (1), p.44-49 |
issn | 0028-646X 1469-8137 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02434127v1 |
source | Wiley-Blackwell Journals; MEDLINE; Wiley Online Library Journals; JSTOR; EZB Electronic Journals Library |
subjects | Biology Chromosomes Crop improvement DNA Transposable Elements - genetics Evolution Evolution, Molecular Food security functional genomics Genome, Plant - genetics Genome-wide association studies Genome-Wide Association Study Genomes Genomics Life Sciences model crop species Oryza - genetics Rice Structure-function relationships Tansley insight transposable elements (TEs) |
title | The impact of transposable elements on the structure, evolution and function of the rice genome |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T14%3A54%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20impact%20of%20transposable%20elements%20on%20the%20structure,%20evolution%20and%20function%20of%20the%20rice%20genome&rft.jtitle=The%20New%20phytologist&rft.au=Akakpo,%20Roland&rft.date=2020-04&rft.volume=226&rft.issue=1&rft.spage=44&rft.epage=49&rft.pages=44-49&rft.issn=0028-646X&rft.eissn=1469-8137&rft_id=info:doi/10.1111/nph.16356&rft_dat=%3Cjstor_hal_p%3E26914515%3C/jstor_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2369176805&rft_id=info:pmid/31797393&rft_jstor_id=26914515&rfr_iscdi=true |