A Registration Method for Model Order Reduction: Data Compression and Geometry Reduction
We propose a general---i.e., independent of the underlying equation---registration method for parameterized model order reduction. Given the spatial domain $\Omega \subset \mathbb{R}^d$ and the manifold $\mathcal{M}_{u}= \{ u_{\mu} : \mu \in \mathcal{P} \}$ associated with the parameter domain $\mat...
Gespeichert in:
Veröffentlicht in: | SIAM journal on scientific computing 2020-01, Vol.42 (2), p.A997-A1027 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | A1027 |
---|---|
container_issue | 2 |
container_start_page | A997 |
container_title | SIAM journal on scientific computing |
container_volume | 42 |
creator | Taddei, Tommaso |
description | We propose a general---i.e., independent of the underlying equation---registration method for parameterized model order reduction. Given the spatial domain $\Omega \subset \mathbb{R}^d$ and the manifold $\mathcal{M}_{u}= \{ u_{\mu} : \mu \in \mathcal{P} \}$ associated with the parameter domain $\mathcal{P} \subset \mathbb{R}^P$ and the parametric field $\mu \mapsto u_{\mu} \in L^2(\Omega)$, the algorithm takes as input a set of snapshots $\{ u^k \}_{k=1}^{n_{\rm train}} \subset \mathcal{M}_{u}$ and returns a parameter-dependent bijective mapping ${\Phi}: \Omega \times \mathcal{P} \to \mathbb{R}^d$: the mapping is designed to make the mapped manifold $\{ u_{\mu} \circ {\Phi}_{\mu}: \, \mu \in \mathcal{P} \}$ more suited for linear compression methods. We apply the registration procedure, in combination with a linear compression method, to devise low-dimensional representations of solution manifolds with slowly decaying Kolmogorov $N$-widths; we also consider the application to problems in parameterized geometries. We present a theoretical result to show the mathematical rigor of the registration procedure. We further present numerical results for several two-dimensional problems, to empirically demonstrate the effectivity of our proposal. |
doi_str_mv | 10.1137/19M1271270 |
format | Article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02430234v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_02430234v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c306t-6258dc401ab40efc2fb1f33765cdce06eb0d06b8d4dde7096b7f4f217541b4f03</originalsourceid><addsrcrecordid>eNpFkF9LwzAUxYMoOKcvfoK8KlTvTdJk9W1M3YSWgSj4VtL8cZVtGUkV9u1tmTg4cA-H37kPh5BrhDtEru6xqJCpXnBCRghFniks1OngpcgmTOXn5CKlLwCUomAj8jGlr-6zTV3UXRu2tHLdKljqQ6RVsG5Nl9G62DP22wzAA33UnaazsNlFl9JQ0VtL5y5sXBf3R_CSnHm9Tu7q747J-_PT22yRlcv5y2xaZoaD7DLJ8ok1AlA3Apw3zDfoOVcyN9Y4kK4BC7KZWGGtU1DIRnnhGapcYCM88DG5Ofxd6XW9i-1Gx30ddFsvpmU9ZMAEB8bFD_bs7YE1MaQUnf8vINTDfvVxP_4LCOZh0g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Registration Method for Model Order Reduction: Data Compression and Geometry Reduction</title><source>SIAM Journals Online</source><creator>Taddei, Tommaso</creator><creatorcontrib>Taddei, Tommaso</creatorcontrib><description>We propose a general---i.e., independent of the underlying equation---registration method for parameterized model order reduction. Given the spatial domain $\Omega \subset \mathbb{R}^d$ and the manifold $\mathcal{M}_{u}= \{ u_{\mu} : \mu \in \mathcal{P} \}$ associated with the parameter domain $\mathcal{P} \subset \mathbb{R}^P$ and the parametric field $\mu \mapsto u_{\mu} \in L^2(\Omega)$, the algorithm takes as input a set of snapshots $\{ u^k \}_{k=1}^{n_{\rm train}} \subset \mathcal{M}_{u}$ and returns a parameter-dependent bijective mapping ${\Phi}: \Omega \times \mathcal{P} \to \mathbb{R}^d$: the mapping is designed to make the mapped manifold $\{ u_{\mu} \circ {\Phi}_{\mu}: \, \mu \in \mathcal{P} \}$ more suited for linear compression methods. We apply the registration procedure, in combination with a linear compression method, to devise low-dimensional representations of solution manifolds with slowly decaying Kolmogorov $N$-widths; we also consider the application to problems in parameterized geometries. We present a theoretical result to show the mathematical rigor of the registration procedure. We further present numerical results for several two-dimensional problems, to empirically demonstrate the effectivity of our proposal.</description><identifier>ISSN: 1064-8275</identifier><identifier>EISSN: 1095-7197</identifier><identifier>DOI: 10.1137/19M1271270</identifier><language>eng</language><publisher>Society for Industrial and Applied Mathematics</publisher><subject>Mathematics ; Numerical Analysis</subject><ispartof>SIAM journal on scientific computing, 2020-01, Vol.42 (2), p.A997-A1027</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c306t-6258dc401ab40efc2fb1f33765cdce06eb0d06b8d4dde7096b7f4f217541b4f03</citedby><cites>FETCH-LOGICAL-c306t-6258dc401ab40efc2fb1f33765cdce06eb0d06b8d4dde7096b7f4f217541b4f03</cites><orcidid>0000-0002-3134-3730</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,3170,27903,27904</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02430234$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Taddei, Tommaso</creatorcontrib><title>A Registration Method for Model Order Reduction: Data Compression and Geometry Reduction</title><title>SIAM journal on scientific computing</title><description>We propose a general---i.e., independent of the underlying equation---registration method for parameterized model order reduction. Given the spatial domain $\Omega \subset \mathbb{R}^d$ and the manifold $\mathcal{M}_{u}= \{ u_{\mu} : \mu \in \mathcal{P} \}$ associated with the parameter domain $\mathcal{P} \subset \mathbb{R}^P$ and the parametric field $\mu \mapsto u_{\mu} \in L^2(\Omega)$, the algorithm takes as input a set of snapshots $\{ u^k \}_{k=1}^{n_{\rm train}} \subset \mathcal{M}_{u}$ and returns a parameter-dependent bijective mapping ${\Phi}: \Omega \times \mathcal{P} \to \mathbb{R}^d$: the mapping is designed to make the mapped manifold $\{ u_{\mu} \circ {\Phi}_{\mu}: \, \mu \in \mathcal{P} \}$ more suited for linear compression methods. We apply the registration procedure, in combination with a linear compression method, to devise low-dimensional representations of solution manifolds with slowly decaying Kolmogorov $N$-widths; we also consider the application to problems in parameterized geometries. We present a theoretical result to show the mathematical rigor of the registration procedure. We further present numerical results for several two-dimensional problems, to empirically demonstrate the effectivity of our proposal.</description><subject>Mathematics</subject><subject>Numerical Analysis</subject><issn>1064-8275</issn><issn>1095-7197</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpFkF9LwzAUxYMoOKcvfoK8KlTvTdJk9W1M3YSWgSj4VtL8cZVtGUkV9u1tmTg4cA-H37kPh5BrhDtEru6xqJCpXnBCRghFniks1OngpcgmTOXn5CKlLwCUomAj8jGlr-6zTV3UXRu2tHLdKljqQ6RVsG5Nl9G62DP22wzAA33UnaazsNlFl9JQ0VtL5y5sXBf3R_CSnHm9Tu7q747J-_PT22yRlcv5y2xaZoaD7DLJ8ok1AlA3Apw3zDfoOVcyN9Y4kK4BC7KZWGGtU1DIRnnhGapcYCM88DG5Ofxd6XW9i-1Gx30ddFsvpmU9ZMAEB8bFD_bs7YE1MaQUnf8vINTDfvVxP_4LCOZh0g</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Taddei, Tommaso</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-3134-3730</orcidid></search><sort><creationdate>20200101</creationdate><title>A Registration Method for Model Order Reduction: Data Compression and Geometry Reduction</title><author>Taddei, Tommaso</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c306t-6258dc401ab40efc2fb1f33765cdce06eb0d06b8d4dde7096b7f4f217541b4f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Mathematics</topic><topic>Numerical Analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Taddei, Tommaso</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>SIAM journal on scientific computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Taddei, Tommaso</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Registration Method for Model Order Reduction: Data Compression and Geometry Reduction</atitle><jtitle>SIAM journal on scientific computing</jtitle><date>2020-01-01</date><risdate>2020</risdate><volume>42</volume><issue>2</issue><spage>A997</spage><epage>A1027</epage><pages>A997-A1027</pages><issn>1064-8275</issn><eissn>1095-7197</eissn><abstract>We propose a general---i.e., independent of the underlying equation---registration method for parameterized model order reduction. Given the spatial domain $\Omega \subset \mathbb{R}^d$ and the manifold $\mathcal{M}_{u}= \{ u_{\mu} : \mu \in \mathcal{P} \}$ associated with the parameter domain $\mathcal{P} \subset \mathbb{R}^P$ and the parametric field $\mu \mapsto u_{\mu} \in L^2(\Omega)$, the algorithm takes as input a set of snapshots $\{ u^k \}_{k=1}^{n_{\rm train}} \subset \mathcal{M}_{u}$ and returns a parameter-dependent bijective mapping ${\Phi}: \Omega \times \mathcal{P} \to \mathbb{R}^d$: the mapping is designed to make the mapped manifold $\{ u_{\mu} \circ {\Phi}_{\mu}: \, \mu \in \mathcal{P} \}$ more suited for linear compression methods. We apply the registration procedure, in combination with a linear compression method, to devise low-dimensional representations of solution manifolds with slowly decaying Kolmogorov $N$-widths; we also consider the application to problems in parameterized geometries. We present a theoretical result to show the mathematical rigor of the registration procedure. We further present numerical results for several two-dimensional problems, to empirically demonstrate the effectivity of our proposal.</abstract><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/19M1271270</doi><orcidid>https://orcid.org/0000-0002-3134-3730</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1064-8275 |
ispartof | SIAM journal on scientific computing, 2020-01, Vol.42 (2), p.A997-A1027 |
issn | 1064-8275 1095-7197 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02430234v1 |
source | SIAM Journals Online |
subjects | Mathematics Numerical Analysis |
title | A Registration Method for Model Order Reduction: Data Compression and Geometry Reduction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T18%3A42%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Registration%20Method%20for%20Model%20Order%20Reduction:%20Data%20Compression%20and%20Geometry%20Reduction&rft.jtitle=SIAM%20journal%20on%20scientific%20computing&rft.au=Taddei,%20Tommaso&rft.date=2020-01-01&rft.volume=42&rft.issue=2&rft.spage=A997&rft.epage=A1027&rft.pages=A997-A1027&rft.issn=1064-8275&rft.eissn=1095-7197&rft_id=info:doi/10.1137/19M1271270&rft_dat=%3Chal_cross%3Eoai_HAL_hal_02430234v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |