On the analytical and numerical simulation of an oscillating drop in zero-gravity

•2D and 3D analytical solutions for surface oscillations of a drop including coupled effects of surface tension and viscosity, for finite viscous and potential forces.•Numerical framework for solving the unsteady Navier–Stokes equations for an incompressible two-fluid system separated by an interfac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & fluids 2020-01, Vol.197, p.104362, Article 104362
Hauptverfasser: Aalilija, A., Gandin, Ch.-A., Hachem, E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 104362
container_title Computers & fluids
container_volume 197
creator Aalilija, A.
Gandin, Ch.-A.
Hachem, E.
description •2D and 3D analytical solutions for surface oscillations of a drop including coupled effects of surface tension and viscosity, for finite viscous and potential forces.•Numerical framework for solving the unsteady Navier–Stokes equations for an incompressible two-fluid system separated by an interface described by the level set method.•Quantitative comparison of the analytical and numerical solutions for a system made of pure iron surrounded by air. The oscillation of a levitated drop is a widely used technique for the measurement of the surface tension and viscosity of liquids. Analyses are mainly based on theories developed in the nineteenth century for surface tension driven oscillations of a spherical, force-free, liquid drop. However, a complete analysis with both analytical and numerical approaches to study the damped oscillations of a viscous liquid drop remains challenging. We first propose in this work an extension of the theory that includes the coupled effects of surface tension and viscosity. The analytical solution permits derivation of both properties simultaneously, which is of interest for fluid with unknown viscosity. Then, the robustness of an Eulerian framework to simulate the fluid flow is discussed. Simulations of different oscillations modes for a liquid iron droplet immersed in a low-density gas and comparisons with the derived theory are detailed and presented.
doi_str_mv 10.1016/j.compfluid.2019.104362
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02428686v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045793019303214</els_id><sourcerecordid>2352070419</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-a611d68e78dc21f353f3df850ac3f220bfb933647600873f492d111e3a0b65923</originalsourceid><addsrcrecordid>eNqFkFtLAzEQhYMoWC-_wQWffNg6uWyy-1hErVAQQZ9Dmkubst3UZLdQf72pK776NDNnzhyYD6EbDFMMmN9vpjpsd64dvJkSwE1WGeXkBE1wLZoSBBOnaALAqlI0FM7RRUobyDMlbILeXruiX9tCdao99F6rNrem6IatjT9T8tuhVb0PXRFc3hUhad8elW5VmBh2he-KLxtDuYpq7_vDFTpzqk32-rdeoo-nx_eHebl4fX55mC1KzQjvS8UxNry2ojaaYEcr6qhxdQVKU0cILN2yoZQzwQFqQR1riMEYW6pgyauG0Et0N-auVSt30W9VPMigvJzPFvKoAWGk5jXf4-y9Hb27GD4Hm3q5CUPMLydJaEVAAMNNdonRpWNIKVr3F4tBHlnLjfxjLY-s5cg6X87GS5sf3nsbZYZkO22Nj1b30gT_b8Y3q8yKfg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2352070419</pqid></control><display><type>article</type><title>On the analytical and numerical simulation of an oscillating drop in zero-gravity</title><source>Access via ScienceDirect (Elsevier)</source><creator>Aalilija, A. ; Gandin, Ch.-A. ; Hachem, E.</creator><creatorcontrib>Aalilija, A. ; Gandin, Ch.-A. ; Hachem, E.</creatorcontrib><description>•2D and 3D analytical solutions for surface oscillations of a drop including coupled effects of surface tension and viscosity, for finite viscous and potential forces.•Numerical framework for solving the unsteady Navier–Stokes equations for an incompressible two-fluid system separated by an interface described by the level set method.•Quantitative comparison of the analytical and numerical solutions for a system made of pure iron surrounded by air. The oscillation of a levitated drop is a widely used technique for the measurement of the surface tension and viscosity of liquids. Analyses are mainly based on theories developed in the nineteenth century for surface tension driven oscillations of a spherical, force-free, liquid drop. However, a complete analysis with both analytical and numerical approaches to study the damped oscillations of a viscous liquid drop remains challenging. We first propose in this work an extension of the theory that includes the coupled effects of surface tension and viscosity. The analytical solution permits derivation of both properties simultaneously, which is of interest for fluid with unknown viscosity. Then, the robustness of an Eulerian framework to simulate the fluid flow is discussed. Simulations of different oscillations modes for a liquid iron droplet immersed in a low-density gas and comparisons with the derived theory are detailed and presented.</description><identifier>ISSN: 0045-7930</identifier><identifier>EISSN: 1879-0747</identifier><identifier>DOI: 10.1016/j.compfluid.2019.104362</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Computational fluid dynamics ; Computer simulation ; Drops (liquids) ; Exact solutions ; Fluid flow ; Fluid mechanics ; Level-set method ; Mathematical analysis ; Mechanics ; Numerical simulation ; Oscillating drop method ; Oscillations ; Physics ; Rarefied gases ; Robustness (mathematics) ; Surface tension ; Viscosity ; Weightlessness</subject><ispartof>Computers &amp; fluids, 2020-01, Vol.197, p.104362, Article 104362</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jan 30, 2020</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-a611d68e78dc21f353f3df850ac3f220bfb933647600873f492d111e3a0b65923</citedby><cites>FETCH-LOGICAL-c426t-a611d68e78dc21f353f3df850ac3f220bfb933647600873f492d111e3a0b65923</cites><orcidid>0000-0002-6270-5407 ; 0000-0002-2202-6397</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.compfluid.2019.104362$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02428686$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Aalilija, A.</creatorcontrib><creatorcontrib>Gandin, Ch.-A.</creatorcontrib><creatorcontrib>Hachem, E.</creatorcontrib><title>On the analytical and numerical simulation of an oscillating drop in zero-gravity</title><title>Computers &amp; fluids</title><description>•2D and 3D analytical solutions for surface oscillations of a drop including coupled effects of surface tension and viscosity, for finite viscous and potential forces.•Numerical framework for solving the unsteady Navier–Stokes equations for an incompressible two-fluid system separated by an interface described by the level set method.•Quantitative comparison of the analytical and numerical solutions for a system made of pure iron surrounded by air. The oscillation of a levitated drop is a widely used technique for the measurement of the surface tension and viscosity of liquids. Analyses are mainly based on theories developed in the nineteenth century for surface tension driven oscillations of a spherical, force-free, liquid drop. However, a complete analysis with both analytical and numerical approaches to study the damped oscillations of a viscous liquid drop remains challenging. We first propose in this work an extension of the theory that includes the coupled effects of surface tension and viscosity. The analytical solution permits derivation of both properties simultaneously, which is of interest for fluid with unknown viscosity. Then, the robustness of an Eulerian framework to simulate the fluid flow is discussed. Simulations of different oscillations modes for a liquid iron droplet immersed in a low-density gas and comparisons with the derived theory are detailed and presented.</description><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Drops (liquids)</subject><subject>Exact solutions</subject><subject>Fluid flow</subject><subject>Fluid mechanics</subject><subject>Level-set method</subject><subject>Mathematical analysis</subject><subject>Mechanics</subject><subject>Numerical simulation</subject><subject>Oscillating drop method</subject><subject>Oscillations</subject><subject>Physics</subject><subject>Rarefied gases</subject><subject>Robustness (mathematics)</subject><subject>Surface tension</subject><subject>Viscosity</subject><subject>Weightlessness</subject><issn>0045-7930</issn><issn>1879-0747</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkFtLAzEQhYMoWC-_wQWffNg6uWyy-1hErVAQQZ9Dmkubst3UZLdQf72pK776NDNnzhyYD6EbDFMMmN9vpjpsd64dvJkSwE1WGeXkBE1wLZoSBBOnaALAqlI0FM7RRUobyDMlbILeXruiX9tCdao99F6rNrem6IatjT9T8tuhVb0PXRFc3hUhad8elW5VmBh2he-KLxtDuYpq7_vDFTpzqk32-rdeoo-nx_eHebl4fX55mC1KzQjvS8UxNry2ojaaYEcr6qhxdQVKU0cILN2yoZQzwQFqQR1riMEYW6pgyauG0Et0N-auVSt30W9VPMigvJzPFvKoAWGk5jXf4-y9Hb27GD4Hm3q5CUPMLydJaEVAAMNNdonRpWNIKVr3F4tBHlnLjfxjLY-s5cg6X87GS5sf3nsbZYZkO22Nj1b30gT_b8Y3q8yKfg</recordid><startdate>20200130</startdate><enddate>20200130</enddate><creator>Aalilija, A.</creator><creator>Gandin, Ch.-A.</creator><creator>Hachem, E.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-6270-5407</orcidid><orcidid>https://orcid.org/0000-0002-2202-6397</orcidid></search><sort><creationdate>20200130</creationdate><title>On the analytical and numerical simulation of an oscillating drop in zero-gravity</title><author>Aalilija, A. ; Gandin, Ch.-A. ; Hachem, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-a611d68e78dc21f353f3df850ac3f220bfb933647600873f492d111e3a0b65923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Drops (liquids)</topic><topic>Exact solutions</topic><topic>Fluid flow</topic><topic>Fluid mechanics</topic><topic>Level-set method</topic><topic>Mathematical analysis</topic><topic>Mechanics</topic><topic>Numerical simulation</topic><topic>Oscillating drop method</topic><topic>Oscillations</topic><topic>Physics</topic><topic>Rarefied gases</topic><topic>Robustness (mathematics)</topic><topic>Surface tension</topic><topic>Viscosity</topic><topic>Weightlessness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aalilija, A.</creatorcontrib><creatorcontrib>Gandin, Ch.-A.</creatorcontrib><creatorcontrib>Hachem, E.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Computers &amp; fluids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aalilija, A.</au><au>Gandin, Ch.-A.</au><au>Hachem, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the analytical and numerical simulation of an oscillating drop in zero-gravity</atitle><jtitle>Computers &amp; fluids</jtitle><date>2020-01-30</date><risdate>2020</risdate><volume>197</volume><spage>104362</spage><pages>104362-</pages><artnum>104362</artnum><issn>0045-7930</issn><eissn>1879-0747</eissn><abstract>•2D and 3D analytical solutions for surface oscillations of a drop including coupled effects of surface tension and viscosity, for finite viscous and potential forces.•Numerical framework for solving the unsteady Navier–Stokes equations for an incompressible two-fluid system separated by an interface described by the level set method.•Quantitative comparison of the analytical and numerical solutions for a system made of pure iron surrounded by air. The oscillation of a levitated drop is a widely used technique for the measurement of the surface tension and viscosity of liquids. Analyses are mainly based on theories developed in the nineteenth century for surface tension driven oscillations of a spherical, force-free, liquid drop. However, a complete analysis with both analytical and numerical approaches to study the damped oscillations of a viscous liquid drop remains challenging. We first propose in this work an extension of the theory that includes the coupled effects of surface tension and viscosity. The analytical solution permits derivation of both properties simultaneously, which is of interest for fluid with unknown viscosity. Then, the robustness of an Eulerian framework to simulate the fluid flow is discussed. Simulations of different oscillations modes for a liquid iron droplet immersed in a low-density gas and comparisons with the derived theory are detailed and presented.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compfluid.2019.104362</doi><orcidid>https://orcid.org/0000-0002-6270-5407</orcidid><orcidid>https://orcid.org/0000-0002-2202-6397</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0045-7930
ispartof Computers & fluids, 2020-01, Vol.197, p.104362, Article 104362
issn 0045-7930
1879-0747
language eng
recordid cdi_hal_primary_oai_HAL_hal_02428686v1
source Access via ScienceDirect (Elsevier)
subjects Computational fluid dynamics
Computer simulation
Drops (liquids)
Exact solutions
Fluid flow
Fluid mechanics
Level-set method
Mathematical analysis
Mechanics
Numerical simulation
Oscillating drop method
Oscillations
Physics
Rarefied gases
Robustness (mathematics)
Surface tension
Viscosity
Weightlessness
title On the analytical and numerical simulation of an oscillating drop in zero-gravity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T07%3A48%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20analytical%20and%20numerical%20simulation%20of%20an%20oscillating%20drop%20in%20zero-gravity&rft.jtitle=Computers%20&%20fluids&rft.au=Aalilija,%20A.&rft.date=2020-01-30&rft.volume=197&rft.spage=104362&rft.pages=104362-&rft.artnum=104362&rft.issn=0045-7930&rft.eissn=1879-0747&rft_id=info:doi/10.1016/j.compfluid.2019.104362&rft_dat=%3Cproquest_hal_p%3E2352070419%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2352070419&rft_id=info:pmid/&rft_els_id=S0045793019303214&rfr_iscdi=true