Influence of monomer reactivity on radiation grafting of phosphorus flame retardants on flax fabrics
Flax fabrics were modified by radiation grafting method to improve their flame retardancy. Several phosphonated monomers with different carbon-carbon double bond reactivity were grafted. According to 1H NMR carried out on irradiated monomers solubilized in water, the reactivity is the highest for (a...
Gespeichert in:
Veröffentlicht in: | Polymer degradation and stability 2019-08, Vol.166, p.86-98 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 98 |
---|---|
container_issue | |
container_start_page | 86 |
container_title | Polymer degradation and stability |
container_volume | 166 |
creator | Hajj, Raymond Otazaghine, Belkacem Sonnier, Rodolphe El Hage, Roland Rouif, Sophie Nakhl, Michel Lopez-Cuesta, José-Marie |
description | Flax fabrics were modified by radiation grafting method to improve their flame retardancy. Several phosphonated monomers with different carbon-carbon double bond reactivity were grafted. According to 1H NMR carried out on irradiated monomers solubilized in water, the reactivity is the highest for (acryloyloxy)methyl phosphonic acid (hPAAPC1), and the lowest for allyl phosphonic acid (APA). Nevertheless, grafting yield on flax, assessed by X-ray fluorescence and scanning electron microscopy showed a different tendency. Especially (methacryloyloxy)methyl phosphonic acid (hPMAPC1) and vinyl phosphonic acid (VPA) appear to be highly grafted. In all cases, diffusion of the molecules into the flax elementary fibers bulk was observed. The choice of the solvent in washing step after the irradiation step showed to be effective to control the final phosphorus content in flax fabrics. The effect of phosphorus grafting on thermal properties and fire behavior was studied using thermogravimetric analysis, pyrolysis combustion flow calorimetry and a preliminary fire test. According to the latter, self-extinguishing and non-flammable fabrics were obtained for phosphorus content of 0.5 wt% and 1.2 wt% respectively. Correlations with flammability at microscale were pointed out. Additional cone calorimeter tests highlight the influence of flame retardant treatment on flammability under forced flaming conditions.
•Phosphorus FR molecules were radiation grafted onto flax fabrics.•Reactivity of these FR molecules under radiation was assessed.•Two competitive phenomena occurred: grafting and homopolymerization.•Flame retardancy was improved and depended mainly on phosphorus content. |
doi_str_mv | 10.1016/j.polymdegradstab.2019.05.025 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02425052v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0141391019301831</els_id><sourcerecordid>2279794075</sourcerecordid><originalsourceid>FETCH-LOGICAL-c487t-42b13b39023e8c6c829e0b11a477cff284889b38daa65af77cc5d427a63cb5b63</originalsourceid><addsrcrecordid>eNqNUctKAzEUDaJgffzDgLhwMWOe81i4ENG2UHCj63Ank9SUmUlN0mL_3gwVF64MhFwO55x7bw5CtwQXBJPyflNsXX8YOr320IUIbUExaQosCkzFCZqRumI5ZZScohkmnOSsIfgcXYSwwelwQWaoW46m3-lR6cyZbHCjG7TPvAYV7d7GQ-bGLLlbiDZVqZGJdlxP3O2HC-n6XchMD4NOogi-gzGGSZSwr8xA660KV-jMQB_09c97id5fnt-eFvnqdb58elzlitdVzDltCWtZgynTtSpVTRuNW0KAV5Uyhta8rpuW1R1AKcAkUImO0wpKplrRluwS3R19P6CXW28H8AfpwMrF40pOGKacCizoniTuzZG79e5zp0OUG7fzYxpPUlo1VcNxJRLr4chS3oXgtfm1JVhOIciN_BOCnEKQWKRmk35-1Ou09t5qL4Oy02931msVZefsP52-AX4rmsA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2279794075</pqid></control><display><type>article</type><title>Influence of monomer reactivity on radiation grafting of phosphorus flame retardants on flax fabrics</title><source>Access via ScienceDirect (Elsevier)</source><creator>Hajj, Raymond ; Otazaghine, Belkacem ; Sonnier, Rodolphe ; El Hage, Roland ; Rouif, Sophie ; Nakhl, Michel ; Lopez-Cuesta, José-Marie</creator><creatorcontrib>Hajj, Raymond ; Otazaghine, Belkacem ; Sonnier, Rodolphe ; El Hage, Roland ; Rouif, Sophie ; Nakhl, Michel ; Lopez-Cuesta, José-Marie</creatorcontrib><description>Flax fabrics were modified by radiation grafting method to improve their flame retardancy. Several phosphonated monomers with different carbon-carbon double bond reactivity were grafted. According to 1H NMR carried out on irradiated monomers solubilized in water, the reactivity is the highest for (acryloyloxy)methyl phosphonic acid (hPAAPC1), and the lowest for allyl phosphonic acid (APA). Nevertheless, grafting yield on flax, assessed by X-ray fluorescence and scanning electron microscopy showed a different tendency. Especially (methacryloyloxy)methyl phosphonic acid (hPMAPC1) and vinyl phosphonic acid (VPA) appear to be highly grafted. In all cases, diffusion of the molecules into the flax elementary fibers bulk was observed. The choice of the solvent in washing step after the irradiation step showed to be effective to control the final phosphorus content in flax fabrics. The effect of phosphorus grafting on thermal properties and fire behavior was studied using thermogravimetric analysis, pyrolysis combustion flow calorimetry and a preliminary fire test. According to the latter, self-extinguishing and non-flammable fabrics were obtained for phosphorus content of 0.5 wt% and 1.2 wt% respectively. Correlations with flammability at microscale were pointed out. Additional cone calorimeter tests highlight the influence of flame retardant treatment on flammability under forced flaming conditions.
•Phosphorus FR molecules were radiation grafted onto flax fabrics.•Reactivity of these FR molecules under radiation was assessed.•Two competitive phenomena occurred: grafting and homopolymerization.•Flame retardancy was improved and depended mainly on phosphorus content.</description><identifier>ISSN: 0141-3910</identifier><identifier>EISSN: 1873-2321</identifier><identifier>DOI: 10.1016/j.polymdegradstab.2019.05.025</identifier><language>eng</language><publisher>London: Elsevier Ltd</publisher><subject>Carbon ; Chemical reactions ; Cone calorimeters ; E-beam radiation ; Engineering Sciences ; Extinguishing ; Fabrics ; Flame retardancy ; Flame retardants ; Flammability ; Flax ; Grafting ; Irradiation ; Monomers ; NMR ; Nuclear magnetic resonance ; Phosphonic acids ; Phosphorus ; Pyrolysis ; Reactivity ; Scanning electron microscopy ; Thermodynamic properties ; Thermogravimetric analysis ; X-ray fluorescence</subject><ispartof>Polymer degradation and stability, 2019-08, Vol.166, p.86-98</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV Aug 2019</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c487t-42b13b39023e8c6c829e0b11a477cff284889b38daa65af77cc5d427a63cb5b63</citedby><cites>FETCH-LOGICAL-c487t-42b13b39023e8c6c829e0b11a477cff284889b38daa65af77cc5d427a63cb5b63</cites><orcidid>0000-0003-1967-9984 ; 0000-0002-1723-3287 ; 0000-0001-6487-7299 ; 0000-0002-8776-3929</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.polymdegradstab.2019.05.025$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,315,782,786,887,3552,27931,27932,46002</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02425052$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Hajj, Raymond</creatorcontrib><creatorcontrib>Otazaghine, Belkacem</creatorcontrib><creatorcontrib>Sonnier, Rodolphe</creatorcontrib><creatorcontrib>El Hage, Roland</creatorcontrib><creatorcontrib>Rouif, Sophie</creatorcontrib><creatorcontrib>Nakhl, Michel</creatorcontrib><creatorcontrib>Lopez-Cuesta, José-Marie</creatorcontrib><title>Influence of monomer reactivity on radiation grafting of phosphorus flame retardants on flax fabrics</title><title>Polymer degradation and stability</title><description>Flax fabrics were modified by radiation grafting method to improve their flame retardancy. Several phosphonated monomers with different carbon-carbon double bond reactivity were grafted. According to 1H NMR carried out on irradiated monomers solubilized in water, the reactivity is the highest for (acryloyloxy)methyl phosphonic acid (hPAAPC1), and the lowest for allyl phosphonic acid (APA). Nevertheless, grafting yield on flax, assessed by X-ray fluorescence and scanning electron microscopy showed a different tendency. Especially (methacryloyloxy)methyl phosphonic acid (hPMAPC1) and vinyl phosphonic acid (VPA) appear to be highly grafted. In all cases, diffusion of the molecules into the flax elementary fibers bulk was observed. The choice of the solvent in washing step after the irradiation step showed to be effective to control the final phosphorus content in flax fabrics. The effect of phosphorus grafting on thermal properties and fire behavior was studied using thermogravimetric analysis, pyrolysis combustion flow calorimetry and a preliminary fire test. According to the latter, self-extinguishing and non-flammable fabrics were obtained for phosphorus content of 0.5 wt% and 1.2 wt% respectively. Correlations with flammability at microscale were pointed out. Additional cone calorimeter tests highlight the influence of flame retardant treatment on flammability under forced flaming conditions.
•Phosphorus FR molecules were radiation grafted onto flax fabrics.•Reactivity of these FR molecules under radiation was assessed.•Two competitive phenomena occurred: grafting and homopolymerization.•Flame retardancy was improved and depended mainly on phosphorus content.</description><subject>Carbon</subject><subject>Chemical reactions</subject><subject>Cone calorimeters</subject><subject>E-beam radiation</subject><subject>Engineering Sciences</subject><subject>Extinguishing</subject><subject>Fabrics</subject><subject>Flame retardancy</subject><subject>Flame retardants</subject><subject>Flammability</subject><subject>Flax</subject><subject>Grafting</subject><subject>Irradiation</subject><subject>Monomers</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Phosphonic acids</subject><subject>Phosphorus</subject><subject>Pyrolysis</subject><subject>Reactivity</subject><subject>Scanning electron microscopy</subject><subject>Thermodynamic properties</subject><subject>Thermogravimetric analysis</subject><subject>X-ray fluorescence</subject><issn>0141-3910</issn><issn>1873-2321</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqNUctKAzEUDaJgffzDgLhwMWOe81i4ENG2UHCj63Ank9SUmUlN0mL_3gwVF64MhFwO55x7bw5CtwQXBJPyflNsXX8YOr320IUIbUExaQosCkzFCZqRumI5ZZScohkmnOSsIfgcXYSwwelwQWaoW46m3-lR6cyZbHCjG7TPvAYV7d7GQ-bGLLlbiDZVqZGJdlxP3O2HC-n6XchMD4NOogi-gzGGSZSwr8xA660KV-jMQB_09c97id5fnt-eFvnqdb58elzlitdVzDltCWtZgynTtSpVTRuNW0KAV5Uyhta8rpuW1R1AKcAkUImO0wpKplrRluwS3R19P6CXW28H8AfpwMrF40pOGKacCizoniTuzZG79e5zp0OUG7fzYxpPUlo1VcNxJRLr4chS3oXgtfm1JVhOIciN_BOCnEKQWKRmk35-1Ou09t5qL4Oy02931msVZefsP52-AX4rmsA</recordid><startdate>20190801</startdate><enddate>20190801</enddate><creator>Hajj, Raymond</creator><creator>Otazaghine, Belkacem</creator><creator>Sonnier, Rodolphe</creator><creator>El Hage, Roland</creator><creator>Rouif, Sophie</creator><creator>Nakhl, Michel</creator><creator>Lopez-Cuesta, José-Marie</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-1967-9984</orcidid><orcidid>https://orcid.org/0000-0002-1723-3287</orcidid><orcidid>https://orcid.org/0000-0001-6487-7299</orcidid><orcidid>https://orcid.org/0000-0002-8776-3929</orcidid></search><sort><creationdate>20190801</creationdate><title>Influence of monomer reactivity on radiation grafting of phosphorus flame retardants on flax fabrics</title><author>Hajj, Raymond ; Otazaghine, Belkacem ; Sonnier, Rodolphe ; El Hage, Roland ; Rouif, Sophie ; Nakhl, Michel ; Lopez-Cuesta, José-Marie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c487t-42b13b39023e8c6c829e0b11a477cff284889b38daa65af77cc5d427a63cb5b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Carbon</topic><topic>Chemical reactions</topic><topic>Cone calorimeters</topic><topic>E-beam radiation</topic><topic>Engineering Sciences</topic><topic>Extinguishing</topic><topic>Fabrics</topic><topic>Flame retardancy</topic><topic>Flame retardants</topic><topic>Flammability</topic><topic>Flax</topic><topic>Grafting</topic><topic>Irradiation</topic><topic>Monomers</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Phosphonic acids</topic><topic>Phosphorus</topic><topic>Pyrolysis</topic><topic>Reactivity</topic><topic>Scanning electron microscopy</topic><topic>Thermodynamic properties</topic><topic>Thermogravimetric analysis</topic><topic>X-ray fluorescence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hajj, Raymond</creatorcontrib><creatorcontrib>Otazaghine, Belkacem</creatorcontrib><creatorcontrib>Sonnier, Rodolphe</creatorcontrib><creatorcontrib>El Hage, Roland</creatorcontrib><creatorcontrib>Rouif, Sophie</creatorcontrib><creatorcontrib>Nakhl, Michel</creatorcontrib><creatorcontrib>Lopez-Cuesta, José-Marie</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Polymer degradation and stability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hajj, Raymond</au><au>Otazaghine, Belkacem</au><au>Sonnier, Rodolphe</au><au>El Hage, Roland</au><au>Rouif, Sophie</au><au>Nakhl, Michel</au><au>Lopez-Cuesta, José-Marie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of monomer reactivity on radiation grafting of phosphorus flame retardants on flax fabrics</atitle><jtitle>Polymer degradation and stability</jtitle><date>2019-08-01</date><risdate>2019</risdate><volume>166</volume><spage>86</spage><epage>98</epage><pages>86-98</pages><issn>0141-3910</issn><eissn>1873-2321</eissn><abstract>Flax fabrics were modified by radiation grafting method to improve their flame retardancy. Several phosphonated monomers with different carbon-carbon double bond reactivity were grafted. According to 1H NMR carried out on irradiated monomers solubilized in water, the reactivity is the highest for (acryloyloxy)methyl phosphonic acid (hPAAPC1), and the lowest for allyl phosphonic acid (APA). Nevertheless, grafting yield on flax, assessed by X-ray fluorescence and scanning electron microscopy showed a different tendency. Especially (methacryloyloxy)methyl phosphonic acid (hPMAPC1) and vinyl phosphonic acid (VPA) appear to be highly grafted. In all cases, diffusion of the molecules into the flax elementary fibers bulk was observed. The choice of the solvent in washing step after the irradiation step showed to be effective to control the final phosphorus content in flax fabrics. The effect of phosphorus grafting on thermal properties and fire behavior was studied using thermogravimetric analysis, pyrolysis combustion flow calorimetry and a preliminary fire test. According to the latter, self-extinguishing and non-flammable fabrics were obtained for phosphorus content of 0.5 wt% and 1.2 wt% respectively. Correlations with flammability at microscale were pointed out. Additional cone calorimeter tests highlight the influence of flame retardant treatment on flammability under forced flaming conditions.
•Phosphorus FR molecules were radiation grafted onto flax fabrics.•Reactivity of these FR molecules under radiation was assessed.•Two competitive phenomena occurred: grafting and homopolymerization.•Flame retardancy was improved and depended mainly on phosphorus content.</abstract><cop>London</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.polymdegradstab.2019.05.025</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-1967-9984</orcidid><orcidid>https://orcid.org/0000-0002-1723-3287</orcidid><orcidid>https://orcid.org/0000-0001-6487-7299</orcidid><orcidid>https://orcid.org/0000-0002-8776-3929</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0141-3910 |
ispartof | Polymer degradation and stability, 2019-08, Vol.166, p.86-98 |
issn | 0141-3910 1873-2321 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02425052v1 |
source | Access via ScienceDirect (Elsevier) |
subjects | Carbon Chemical reactions Cone calorimeters E-beam radiation Engineering Sciences Extinguishing Fabrics Flame retardancy Flame retardants Flammability Flax Grafting Irradiation Monomers NMR Nuclear magnetic resonance Phosphonic acids Phosphorus Pyrolysis Reactivity Scanning electron microscopy Thermodynamic properties Thermogravimetric analysis X-ray fluorescence |
title | Influence of monomer reactivity on radiation grafting of phosphorus flame retardants on flax fabrics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T13%3A56%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20monomer%20reactivity%20on%20radiation%20grafting%20of%20phosphorus%20flame%20retardants%20on%20flax%20fabrics&rft.jtitle=Polymer%20degradation%20and%20stability&rft.au=Hajj,%20Raymond&rft.date=2019-08-01&rft.volume=166&rft.spage=86&rft.epage=98&rft.pages=86-98&rft.issn=0141-3910&rft.eissn=1873-2321&rft_id=info:doi/10.1016/j.polymdegradstab.2019.05.025&rft_dat=%3Cproquest_hal_p%3E2279794075%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2279794075&rft_id=info:pmid/&rft_els_id=S0141391019301831&rfr_iscdi=true |