Influence of monomer reactivity on radiation grafting of phosphorus flame retardants on flax fabrics

Flax fabrics were modified by radiation grafting method to improve their flame retardancy. Several phosphonated monomers with different carbon-carbon double bond reactivity were grafted. According to 1H NMR carried out on irradiated monomers solubilized in water, the reactivity is the highest for (a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymer degradation and stability 2019-08, Vol.166, p.86-98
Hauptverfasser: Hajj, Raymond, Otazaghine, Belkacem, Sonnier, Rodolphe, El Hage, Roland, Rouif, Sophie, Nakhl, Michel, Lopez-Cuesta, José-Marie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 98
container_issue
container_start_page 86
container_title Polymer degradation and stability
container_volume 166
creator Hajj, Raymond
Otazaghine, Belkacem
Sonnier, Rodolphe
El Hage, Roland
Rouif, Sophie
Nakhl, Michel
Lopez-Cuesta, José-Marie
description Flax fabrics were modified by radiation grafting method to improve their flame retardancy. Several phosphonated monomers with different carbon-carbon double bond reactivity were grafted. According to 1H NMR carried out on irradiated monomers solubilized in water, the reactivity is the highest for (acryloyloxy)methyl phosphonic acid (hPAAPC1), and the lowest for allyl phosphonic acid (APA). Nevertheless, grafting yield on flax, assessed by X-ray fluorescence and scanning electron microscopy showed a different tendency. Especially (methacryloyloxy)methyl phosphonic acid (hPMAPC1) and vinyl phosphonic acid (VPA) appear to be highly grafted. In all cases, diffusion of the molecules into the flax elementary fibers bulk was observed. The choice of the solvent in washing step after the irradiation step showed to be effective to control the final phosphorus content in flax fabrics. The effect of phosphorus grafting on thermal properties and fire behavior was studied using thermogravimetric analysis, pyrolysis combustion flow calorimetry and a preliminary fire test. According to the latter, self-extinguishing and non-flammable fabrics were obtained for phosphorus content of 0.5 wt% and 1.2 wt% respectively. Correlations with flammability at microscale were pointed out. Additional cone calorimeter tests highlight the influence of flame retardant treatment on flammability under forced flaming conditions. •Phosphorus FR molecules were radiation grafted onto flax fabrics.•Reactivity of these FR molecules under radiation was assessed.•Two competitive phenomena occurred: grafting and homopolymerization.•Flame retardancy was improved and depended mainly on phosphorus content.
doi_str_mv 10.1016/j.polymdegradstab.2019.05.025
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02425052v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0141391019301831</els_id><sourcerecordid>2279794075</sourcerecordid><originalsourceid>FETCH-LOGICAL-c487t-42b13b39023e8c6c829e0b11a477cff284889b38daa65af77cc5d427a63cb5b63</originalsourceid><addsrcrecordid>eNqNUctKAzEUDaJgffzDgLhwMWOe81i4ENG2UHCj63Ank9SUmUlN0mL_3gwVF64MhFwO55x7bw5CtwQXBJPyflNsXX8YOr320IUIbUExaQosCkzFCZqRumI5ZZScohkmnOSsIfgcXYSwwelwQWaoW46m3-lR6cyZbHCjG7TPvAYV7d7GQ-bGLLlbiDZVqZGJdlxP3O2HC-n6XchMD4NOogi-gzGGSZSwr8xA660KV-jMQB_09c97id5fnt-eFvnqdb58elzlitdVzDltCWtZgynTtSpVTRuNW0KAV5Uyhta8rpuW1R1AKcAkUImO0wpKplrRluwS3R19P6CXW28H8AfpwMrF40pOGKacCizoniTuzZG79e5zp0OUG7fzYxpPUlo1VcNxJRLr4chS3oXgtfm1JVhOIciN_BOCnEKQWKRmk35-1Ou09t5qL4Oy02931msVZefsP52-AX4rmsA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2279794075</pqid></control><display><type>article</type><title>Influence of monomer reactivity on radiation grafting of phosphorus flame retardants on flax fabrics</title><source>Access via ScienceDirect (Elsevier)</source><creator>Hajj, Raymond ; Otazaghine, Belkacem ; Sonnier, Rodolphe ; El Hage, Roland ; Rouif, Sophie ; Nakhl, Michel ; Lopez-Cuesta, José-Marie</creator><creatorcontrib>Hajj, Raymond ; Otazaghine, Belkacem ; Sonnier, Rodolphe ; El Hage, Roland ; Rouif, Sophie ; Nakhl, Michel ; Lopez-Cuesta, José-Marie</creatorcontrib><description>Flax fabrics were modified by radiation grafting method to improve their flame retardancy. Several phosphonated monomers with different carbon-carbon double bond reactivity were grafted. According to 1H NMR carried out on irradiated monomers solubilized in water, the reactivity is the highest for (acryloyloxy)methyl phosphonic acid (hPAAPC1), and the lowest for allyl phosphonic acid (APA). Nevertheless, grafting yield on flax, assessed by X-ray fluorescence and scanning electron microscopy showed a different tendency. Especially (methacryloyloxy)methyl phosphonic acid (hPMAPC1) and vinyl phosphonic acid (VPA) appear to be highly grafted. In all cases, diffusion of the molecules into the flax elementary fibers bulk was observed. The choice of the solvent in washing step after the irradiation step showed to be effective to control the final phosphorus content in flax fabrics. The effect of phosphorus grafting on thermal properties and fire behavior was studied using thermogravimetric analysis, pyrolysis combustion flow calorimetry and a preliminary fire test. According to the latter, self-extinguishing and non-flammable fabrics were obtained for phosphorus content of 0.5 wt% and 1.2 wt% respectively. Correlations with flammability at microscale were pointed out. Additional cone calorimeter tests highlight the influence of flame retardant treatment on flammability under forced flaming conditions. •Phosphorus FR molecules were radiation grafted onto flax fabrics.•Reactivity of these FR molecules under radiation was assessed.•Two competitive phenomena occurred: grafting and homopolymerization.•Flame retardancy was improved and depended mainly on phosphorus content.</description><identifier>ISSN: 0141-3910</identifier><identifier>EISSN: 1873-2321</identifier><identifier>DOI: 10.1016/j.polymdegradstab.2019.05.025</identifier><language>eng</language><publisher>London: Elsevier Ltd</publisher><subject>Carbon ; Chemical reactions ; Cone calorimeters ; E-beam radiation ; Engineering Sciences ; Extinguishing ; Fabrics ; Flame retardancy ; Flame retardants ; Flammability ; Flax ; Grafting ; Irradiation ; Monomers ; NMR ; Nuclear magnetic resonance ; Phosphonic acids ; Phosphorus ; Pyrolysis ; Reactivity ; Scanning electron microscopy ; Thermodynamic properties ; Thermogravimetric analysis ; X-ray fluorescence</subject><ispartof>Polymer degradation and stability, 2019-08, Vol.166, p.86-98</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV Aug 2019</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c487t-42b13b39023e8c6c829e0b11a477cff284889b38daa65af77cc5d427a63cb5b63</citedby><cites>FETCH-LOGICAL-c487t-42b13b39023e8c6c829e0b11a477cff284889b38daa65af77cc5d427a63cb5b63</cites><orcidid>0000-0003-1967-9984 ; 0000-0002-1723-3287 ; 0000-0001-6487-7299 ; 0000-0002-8776-3929</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.polymdegradstab.2019.05.025$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,315,782,786,887,3552,27931,27932,46002</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02425052$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Hajj, Raymond</creatorcontrib><creatorcontrib>Otazaghine, Belkacem</creatorcontrib><creatorcontrib>Sonnier, Rodolphe</creatorcontrib><creatorcontrib>El Hage, Roland</creatorcontrib><creatorcontrib>Rouif, Sophie</creatorcontrib><creatorcontrib>Nakhl, Michel</creatorcontrib><creatorcontrib>Lopez-Cuesta, José-Marie</creatorcontrib><title>Influence of monomer reactivity on radiation grafting of phosphorus flame retardants on flax fabrics</title><title>Polymer degradation and stability</title><description>Flax fabrics were modified by radiation grafting method to improve their flame retardancy. Several phosphonated monomers with different carbon-carbon double bond reactivity were grafted. According to 1H NMR carried out on irradiated monomers solubilized in water, the reactivity is the highest for (acryloyloxy)methyl phosphonic acid (hPAAPC1), and the lowest for allyl phosphonic acid (APA). Nevertheless, grafting yield on flax, assessed by X-ray fluorescence and scanning electron microscopy showed a different tendency. Especially (methacryloyloxy)methyl phosphonic acid (hPMAPC1) and vinyl phosphonic acid (VPA) appear to be highly grafted. In all cases, diffusion of the molecules into the flax elementary fibers bulk was observed. The choice of the solvent in washing step after the irradiation step showed to be effective to control the final phosphorus content in flax fabrics. The effect of phosphorus grafting on thermal properties and fire behavior was studied using thermogravimetric analysis, pyrolysis combustion flow calorimetry and a preliminary fire test. According to the latter, self-extinguishing and non-flammable fabrics were obtained for phosphorus content of 0.5 wt% and 1.2 wt% respectively. Correlations with flammability at microscale were pointed out. Additional cone calorimeter tests highlight the influence of flame retardant treatment on flammability under forced flaming conditions. •Phosphorus FR molecules were radiation grafted onto flax fabrics.•Reactivity of these FR molecules under radiation was assessed.•Two competitive phenomena occurred: grafting and homopolymerization.•Flame retardancy was improved and depended mainly on phosphorus content.</description><subject>Carbon</subject><subject>Chemical reactions</subject><subject>Cone calorimeters</subject><subject>E-beam radiation</subject><subject>Engineering Sciences</subject><subject>Extinguishing</subject><subject>Fabrics</subject><subject>Flame retardancy</subject><subject>Flame retardants</subject><subject>Flammability</subject><subject>Flax</subject><subject>Grafting</subject><subject>Irradiation</subject><subject>Monomers</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Phosphonic acids</subject><subject>Phosphorus</subject><subject>Pyrolysis</subject><subject>Reactivity</subject><subject>Scanning electron microscopy</subject><subject>Thermodynamic properties</subject><subject>Thermogravimetric analysis</subject><subject>X-ray fluorescence</subject><issn>0141-3910</issn><issn>1873-2321</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqNUctKAzEUDaJgffzDgLhwMWOe81i4ENG2UHCj63Ank9SUmUlN0mL_3gwVF64MhFwO55x7bw5CtwQXBJPyflNsXX8YOr320IUIbUExaQosCkzFCZqRumI5ZZScohkmnOSsIfgcXYSwwelwQWaoW46m3-lR6cyZbHCjG7TPvAYV7d7GQ-bGLLlbiDZVqZGJdlxP3O2HC-n6XchMD4NOogi-gzGGSZSwr8xA660KV-jMQB_09c97id5fnt-eFvnqdb58elzlitdVzDltCWtZgynTtSpVTRuNW0KAV5Uyhta8rpuW1R1AKcAkUImO0wpKplrRluwS3R19P6CXW28H8AfpwMrF40pOGKacCizoniTuzZG79e5zp0OUG7fzYxpPUlo1VcNxJRLr4chS3oXgtfm1JVhOIciN_BOCnEKQWKRmk35-1Ou09t5qL4Oy02931msVZefsP52-AX4rmsA</recordid><startdate>20190801</startdate><enddate>20190801</enddate><creator>Hajj, Raymond</creator><creator>Otazaghine, Belkacem</creator><creator>Sonnier, Rodolphe</creator><creator>El Hage, Roland</creator><creator>Rouif, Sophie</creator><creator>Nakhl, Michel</creator><creator>Lopez-Cuesta, José-Marie</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-1967-9984</orcidid><orcidid>https://orcid.org/0000-0002-1723-3287</orcidid><orcidid>https://orcid.org/0000-0001-6487-7299</orcidid><orcidid>https://orcid.org/0000-0002-8776-3929</orcidid></search><sort><creationdate>20190801</creationdate><title>Influence of monomer reactivity on radiation grafting of phosphorus flame retardants on flax fabrics</title><author>Hajj, Raymond ; Otazaghine, Belkacem ; Sonnier, Rodolphe ; El Hage, Roland ; Rouif, Sophie ; Nakhl, Michel ; Lopez-Cuesta, José-Marie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c487t-42b13b39023e8c6c829e0b11a477cff284889b38daa65af77cc5d427a63cb5b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Carbon</topic><topic>Chemical reactions</topic><topic>Cone calorimeters</topic><topic>E-beam radiation</topic><topic>Engineering Sciences</topic><topic>Extinguishing</topic><topic>Fabrics</topic><topic>Flame retardancy</topic><topic>Flame retardants</topic><topic>Flammability</topic><topic>Flax</topic><topic>Grafting</topic><topic>Irradiation</topic><topic>Monomers</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Phosphonic acids</topic><topic>Phosphorus</topic><topic>Pyrolysis</topic><topic>Reactivity</topic><topic>Scanning electron microscopy</topic><topic>Thermodynamic properties</topic><topic>Thermogravimetric analysis</topic><topic>X-ray fluorescence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hajj, Raymond</creatorcontrib><creatorcontrib>Otazaghine, Belkacem</creatorcontrib><creatorcontrib>Sonnier, Rodolphe</creatorcontrib><creatorcontrib>El Hage, Roland</creatorcontrib><creatorcontrib>Rouif, Sophie</creatorcontrib><creatorcontrib>Nakhl, Michel</creatorcontrib><creatorcontrib>Lopez-Cuesta, José-Marie</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Polymer degradation and stability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hajj, Raymond</au><au>Otazaghine, Belkacem</au><au>Sonnier, Rodolphe</au><au>El Hage, Roland</au><au>Rouif, Sophie</au><au>Nakhl, Michel</au><au>Lopez-Cuesta, José-Marie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of monomer reactivity on radiation grafting of phosphorus flame retardants on flax fabrics</atitle><jtitle>Polymer degradation and stability</jtitle><date>2019-08-01</date><risdate>2019</risdate><volume>166</volume><spage>86</spage><epage>98</epage><pages>86-98</pages><issn>0141-3910</issn><eissn>1873-2321</eissn><abstract>Flax fabrics were modified by radiation grafting method to improve their flame retardancy. Several phosphonated monomers with different carbon-carbon double bond reactivity were grafted. According to 1H NMR carried out on irradiated monomers solubilized in water, the reactivity is the highest for (acryloyloxy)methyl phosphonic acid (hPAAPC1), and the lowest for allyl phosphonic acid (APA). Nevertheless, grafting yield on flax, assessed by X-ray fluorescence and scanning electron microscopy showed a different tendency. Especially (methacryloyloxy)methyl phosphonic acid (hPMAPC1) and vinyl phosphonic acid (VPA) appear to be highly grafted. In all cases, diffusion of the molecules into the flax elementary fibers bulk was observed. The choice of the solvent in washing step after the irradiation step showed to be effective to control the final phosphorus content in flax fabrics. The effect of phosphorus grafting on thermal properties and fire behavior was studied using thermogravimetric analysis, pyrolysis combustion flow calorimetry and a preliminary fire test. According to the latter, self-extinguishing and non-flammable fabrics were obtained for phosphorus content of 0.5 wt% and 1.2 wt% respectively. Correlations with flammability at microscale were pointed out. Additional cone calorimeter tests highlight the influence of flame retardant treatment on flammability under forced flaming conditions. •Phosphorus FR molecules were radiation grafted onto flax fabrics.•Reactivity of these FR molecules under radiation was assessed.•Two competitive phenomena occurred: grafting and homopolymerization.•Flame retardancy was improved and depended mainly on phosphorus content.</abstract><cop>London</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.polymdegradstab.2019.05.025</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-1967-9984</orcidid><orcidid>https://orcid.org/0000-0002-1723-3287</orcidid><orcidid>https://orcid.org/0000-0001-6487-7299</orcidid><orcidid>https://orcid.org/0000-0002-8776-3929</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0141-3910
ispartof Polymer degradation and stability, 2019-08, Vol.166, p.86-98
issn 0141-3910
1873-2321
language eng
recordid cdi_hal_primary_oai_HAL_hal_02425052v1
source Access via ScienceDirect (Elsevier)
subjects Carbon
Chemical reactions
Cone calorimeters
E-beam radiation
Engineering Sciences
Extinguishing
Fabrics
Flame retardancy
Flame retardants
Flammability
Flax
Grafting
Irradiation
Monomers
NMR
Nuclear magnetic resonance
Phosphonic acids
Phosphorus
Pyrolysis
Reactivity
Scanning electron microscopy
Thermodynamic properties
Thermogravimetric analysis
X-ray fluorescence
title Influence of monomer reactivity on radiation grafting of phosphorus flame retardants on flax fabrics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T13%3A56%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20monomer%20reactivity%20on%20radiation%20grafting%20of%20phosphorus%20flame%20retardants%20on%20flax%20fabrics&rft.jtitle=Polymer%20degradation%20and%20stability&rft.au=Hajj,%20Raymond&rft.date=2019-08-01&rft.volume=166&rft.spage=86&rft.epage=98&rft.pages=86-98&rft.issn=0141-3910&rft.eissn=1873-2321&rft_id=info:doi/10.1016/j.polymdegradstab.2019.05.025&rft_dat=%3Cproquest_hal_p%3E2279794075%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2279794075&rft_id=info:pmid/&rft_els_id=S0141391019301831&rfr_iscdi=true