An informational approach for sensor and actuator fault diagnosis for autonomous mobile robots
In this paper, a model-based fault detection and isolation (FDI) method is proposed, with the objective to ensure a fault-tolerant autonomous mobile robot navigation. The proposed solution uses an informational framework, which is able to detect and isolate both sensor and actuator faults, including...
Gespeichert in:
Veröffentlicht in: | Journal of intelligent & robotic systems 2020-08, Vol.99 (2), p.387-406 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 406 |
---|---|
container_issue | 2 |
container_start_page | 387 |
container_title | Journal of intelligent & robotic systems |
container_volume | 99 |
creator | Abci, Boussad El Badaoui El Najjar, Maan Cocquempot, Vincent Dherbomez, Gerald |
description | In this paper, a model-based fault detection and isolation (FDI) method is proposed, with the objective to ensure a fault-tolerant autonomous mobile robot navigation. The proposed solution uses an informational framework, which is able to detect and isolate both sensor and actuator faults, including the case of multiple faults occurrence. An information filter with a prediction model based on encoders data is adopted. For the diagnosis layer, a bank of filters are used. Residuals are generated by computing the Kullback-Leibler Divergence between the probability distribution of the predicted estimation with updated estimation obtained from sensors measurements. In order to isolate encoder and actuator faults, a secondary information filter with a prediction model based on a closed-loop controller is added. An additional bank of filters is developed, and extra residuals based on the Kullback-Leibler Divergence are generated. In the proposed method, the two designed filters supervise each other, which improves fault diagnosis, by taking into account all available information of the system, from control objective to multi-sensor data fusion. Actuator and sensor faults are treated within the same frame during the fusion process, and multiple faults occurrence is considered. A real-time experimentation on a real differential mobile robot is performed and demonstrates the efficiency of the proposed method. |
doi_str_mv | 10.1007/s10846-019-01099-7 |
format | Article |
fullrecord | <record><control><sourceid>gale_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02424125v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A724156898</galeid><sourcerecordid>A724156898</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-18d86b46b016ef93cc44d7bdb430ff15df7ae519511c186f25890240438a0c3</originalsourceid><addsrcrecordid>eNp9kc9r2zAUx8XYYFnWf6AnQ087OH2SZVs6htA1g8AO23niWZYSB1tKJXnQ_35KXbpbEeKhx-f7fuhLyC2FDQVo7yMFwZsSqMwXpCzbD2RF67YqgYP8SFYgGS2ByeYz-RLjGQCkqOWK_Nm6YnDWhwnT4B2OBV4uwaM-FTlZRONiDuj6AnWaMeWHxXlMRT_g0fk4xBcO5-Sdn_wci8l3w2iK4Duf4lfyyeIYzc1rXJNf3x9-7_bl4efjj932UOpKslRS0Yum400HtDFWVlpz3rdd3_EKrKV1b1s0NZU1pZqKxrJaSGAceCUQdLUm35aqJxzVJQwThmflcVD77UFdc5llnLL6L83s3cLmLZ9mE5M6-znkxaNiTErJWxBtpjYLdcTRqOsHpYA6n95Mg_bO2Lyj2ra5at0IKbKALQIdfIzB2Lc5KKirRWqxSGWL1ItF6tqlWkQxw-5owv9Z3lH9A6B6k5Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2299947087</pqid></control><display><type>article</type><title>An informational approach for sensor and actuator fault diagnosis for autonomous mobile robots</title><source>SpringerLink Journals</source><creator>Abci, Boussad ; El Badaoui El Najjar, Maan ; Cocquempot, Vincent ; Dherbomez, Gerald</creator><creatorcontrib>Abci, Boussad ; El Badaoui El Najjar, Maan ; Cocquempot, Vincent ; Dherbomez, Gerald</creatorcontrib><description>In this paper, a model-based fault detection and isolation (FDI) method is proposed, with the objective to ensure a fault-tolerant autonomous mobile robot navigation. The proposed solution uses an informational framework, which is able to detect and isolate both sensor and actuator faults, including the case of multiple faults occurrence. An information filter with a prediction model based on encoders data is adopted. For the diagnosis layer, a bank of filters are used. Residuals are generated by computing the Kullback-Leibler Divergence between the probability distribution of the predicted estimation with updated estimation obtained from sensors measurements. In order to isolate encoder and actuator faults, a secondary information filter with a prediction model based on a closed-loop controller is added. An additional bank of filters is developed, and extra residuals based on the Kullback-Leibler Divergence are generated. In the proposed method, the two designed filters supervise each other, which improves fault diagnosis, by taking into account all available information of the system, from control objective to multi-sensor data fusion. Actuator and sensor faults are treated within the same frame during the fusion process, and multiple faults occurrence is considered. A real-time experimentation on a real differential mobile robot is performed and demonstrates the efficiency of the proposed method.</description><identifier>ISSN: 0921-0296</identifier><identifier>EISSN: 1573-0409</identifier><identifier>DOI: 10.1007/s10846-019-01099-7</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Actuators ; Analysis ; Artificial Intelligence ; Automatic ; Automatic Control Engineering ; Autonomous navigation ; Banks (Finance) ; Coders ; Computer Science ; Control ; Data integration ; Distribution (Probability theory) ; Divergence ; Electrical Engineering ; Engineering ; Engineering Sciences ; Experimentation ; Fault detection ; Fault diagnosis ; Fault tolerance ; Foreign investments ; Measuring instruments ; Mechanical Engineering ; Mechatronics ; Multisensor fusion ; Prediction models ; Robotics ; Robotics industry ; Robots ; Sensors</subject><ispartof>Journal of intelligent & robotic systems, 2020-08, Vol.99 (2), p.387-406</ispartof><rights>Springer Nature B.V. 2019</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Springer Nature B.V. 2019.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-18d86b46b016ef93cc44d7bdb430ff15df7ae519511c186f25890240438a0c3</citedby><cites>FETCH-LOGICAL-c392t-18d86b46b016ef93cc44d7bdb430ff15df7ae519511c186f25890240438a0c3</cites><orcidid>0000-0002-1880-0212 ; 0000-0001-7281-911X ; 0000-0002-0267-264X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10846-019-01099-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10846-019-01099-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02424125$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Abci, Boussad</creatorcontrib><creatorcontrib>El Badaoui El Najjar, Maan</creatorcontrib><creatorcontrib>Cocquempot, Vincent</creatorcontrib><creatorcontrib>Dherbomez, Gerald</creatorcontrib><title>An informational approach for sensor and actuator fault diagnosis for autonomous mobile robots</title><title>Journal of intelligent & robotic systems</title><addtitle>J Intell Robot Syst</addtitle><description>In this paper, a model-based fault detection and isolation (FDI) method is proposed, with the objective to ensure a fault-tolerant autonomous mobile robot navigation. The proposed solution uses an informational framework, which is able to detect and isolate both sensor and actuator faults, including the case of multiple faults occurrence. An information filter with a prediction model based on encoders data is adopted. For the diagnosis layer, a bank of filters are used. Residuals are generated by computing the Kullback-Leibler Divergence between the probability distribution of the predicted estimation with updated estimation obtained from sensors measurements. In order to isolate encoder and actuator faults, a secondary information filter with a prediction model based on a closed-loop controller is added. An additional bank of filters is developed, and extra residuals based on the Kullback-Leibler Divergence are generated. In the proposed method, the two designed filters supervise each other, which improves fault diagnosis, by taking into account all available information of the system, from control objective to multi-sensor data fusion. Actuator and sensor faults are treated within the same frame during the fusion process, and multiple faults occurrence is considered. A real-time experimentation on a real differential mobile robot is performed and demonstrates the efficiency of the proposed method.</description><subject>Actuators</subject><subject>Analysis</subject><subject>Artificial Intelligence</subject><subject>Automatic</subject><subject>Automatic Control Engineering</subject><subject>Autonomous navigation</subject><subject>Banks (Finance)</subject><subject>Coders</subject><subject>Computer Science</subject><subject>Control</subject><subject>Data integration</subject><subject>Distribution (Probability theory)</subject><subject>Divergence</subject><subject>Electrical Engineering</subject><subject>Engineering</subject><subject>Engineering Sciences</subject><subject>Experimentation</subject><subject>Fault detection</subject><subject>Fault diagnosis</subject><subject>Fault tolerance</subject><subject>Foreign investments</subject><subject>Measuring instruments</subject><subject>Mechanical Engineering</subject><subject>Mechatronics</subject><subject>Multisensor fusion</subject><subject>Prediction models</subject><subject>Robotics</subject><subject>Robotics industry</subject><subject>Robots</subject><subject>Sensors</subject><issn>0921-0296</issn><issn>1573-0409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kc9r2zAUx8XYYFnWf6AnQ087OH2SZVs6htA1g8AO23niWZYSB1tKJXnQ_35KXbpbEeKhx-f7fuhLyC2FDQVo7yMFwZsSqMwXpCzbD2RF67YqgYP8SFYgGS2ByeYz-RLjGQCkqOWK_Nm6YnDWhwnT4B2OBV4uwaM-FTlZRONiDuj6AnWaMeWHxXlMRT_g0fk4xBcO5-Sdn_wci8l3w2iK4Duf4lfyyeIYzc1rXJNf3x9-7_bl4efjj932UOpKslRS0Yum400HtDFWVlpz3rdd3_EKrKV1b1s0NZU1pZqKxrJaSGAceCUQdLUm35aqJxzVJQwThmflcVD77UFdc5llnLL6L83s3cLmLZ9mE5M6-znkxaNiTErJWxBtpjYLdcTRqOsHpYA6n95Mg_bO2Lyj2ra5at0IKbKALQIdfIzB2Lc5KKirRWqxSGWL1ItF6tqlWkQxw-5owv9Z3lH9A6B6k5Q</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Abci, Boussad</creator><creator>El Badaoui El Najjar, Maan</creator><creator>Cocquempot, Vincent</creator><creator>Dherbomez, Gerald</creator><general>Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-1880-0212</orcidid><orcidid>https://orcid.org/0000-0001-7281-911X</orcidid><orcidid>https://orcid.org/0000-0002-0267-264X</orcidid></search><sort><creationdate>20200801</creationdate><title>An informational approach for sensor and actuator fault diagnosis for autonomous mobile robots</title><author>Abci, Boussad ; El Badaoui El Najjar, Maan ; Cocquempot, Vincent ; Dherbomez, Gerald</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-18d86b46b016ef93cc44d7bdb430ff15df7ae519511c186f25890240438a0c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Actuators</topic><topic>Analysis</topic><topic>Artificial Intelligence</topic><topic>Automatic</topic><topic>Automatic Control Engineering</topic><topic>Autonomous navigation</topic><topic>Banks (Finance)</topic><topic>Coders</topic><topic>Computer Science</topic><topic>Control</topic><topic>Data integration</topic><topic>Distribution (Probability theory)</topic><topic>Divergence</topic><topic>Electrical Engineering</topic><topic>Engineering</topic><topic>Engineering Sciences</topic><topic>Experimentation</topic><topic>Fault detection</topic><topic>Fault diagnosis</topic><topic>Fault tolerance</topic><topic>Foreign investments</topic><topic>Measuring instruments</topic><topic>Mechanical Engineering</topic><topic>Mechatronics</topic><topic>Multisensor fusion</topic><topic>Prediction models</topic><topic>Robotics</topic><topic>Robotics industry</topic><topic>Robots</topic><topic>Sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abci, Boussad</creatorcontrib><creatorcontrib>El Badaoui El Najjar, Maan</creatorcontrib><creatorcontrib>Cocquempot, Vincent</creatorcontrib><creatorcontrib>Dherbomez, Gerald</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of intelligent & robotic systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abci, Boussad</au><au>El Badaoui El Najjar, Maan</au><au>Cocquempot, Vincent</au><au>Dherbomez, Gerald</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An informational approach for sensor and actuator fault diagnosis for autonomous mobile robots</atitle><jtitle>Journal of intelligent & robotic systems</jtitle><stitle>J Intell Robot Syst</stitle><date>2020-08-01</date><risdate>2020</risdate><volume>99</volume><issue>2</issue><spage>387</spage><epage>406</epage><pages>387-406</pages><issn>0921-0296</issn><eissn>1573-0409</eissn><abstract>In this paper, a model-based fault detection and isolation (FDI) method is proposed, with the objective to ensure a fault-tolerant autonomous mobile robot navigation. The proposed solution uses an informational framework, which is able to detect and isolate both sensor and actuator faults, including the case of multiple faults occurrence. An information filter with a prediction model based on encoders data is adopted. For the diagnosis layer, a bank of filters are used. Residuals are generated by computing the Kullback-Leibler Divergence between the probability distribution of the predicted estimation with updated estimation obtained from sensors measurements. In order to isolate encoder and actuator faults, a secondary information filter with a prediction model based on a closed-loop controller is added. An additional bank of filters is developed, and extra residuals based on the Kullback-Leibler Divergence are generated. In the proposed method, the two designed filters supervise each other, which improves fault diagnosis, by taking into account all available information of the system, from control objective to multi-sensor data fusion. Actuator and sensor faults are treated within the same frame during the fusion process, and multiple faults occurrence is considered. A real-time experimentation on a real differential mobile robot is performed and demonstrates the efficiency of the proposed method.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10846-019-01099-7</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-1880-0212</orcidid><orcidid>https://orcid.org/0000-0001-7281-911X</orcidid><orcidid>https://orcid.org/0000-0002-0267-264X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0921-0296 |
ispartof | Journal of intelligent & robotic systems, 2020-08, Vol.99 (2), p.387-406 |
issn | 0921-0296 1573-0409 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02424125v1 |
source | SpringerLink Journals |
subjects | Actuators Analysis Artificial Intelligence Automatic Automatic Control Engineering Autonomous navigation Banks (Finance) Coders Computer Science Control Data integration Distribution (Probability theory) Divergence Electrical Engineering Engineering Engineering Sciences Experimentation Fault detection Fault diagnosis Fault tolerance Foreign investments Measuring instruments Mechanical Engineering Mechatronics Multisensor fusion Prediction models Robotics Robotics industry Robots Sensors |
title | An informational approach for sensor and actuator fault diagnosis for autonomous mobile robots |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T04%3A08%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20informational%20approach%20for%20sensor%20and%20actuator%20fault%20diagnosis%20for%20autonomous%20mobile%20robots&rft.jtitle=Journal%20of%20intelligent%20&%20robotic%20systems&rft.au=Abci,%20Boussad&rft.date=2020-08-01&rft.volume=99&rft.issue=2&rft.spage=387&rft.epage=406&rft.pages=387-406&rft.issn=0921-0296&rft.eissn=1573-0409&rft_id=info:doi/10.1007/s10846-019-01099-7&rft_dat=%3Cgale_hal_p%3EA724156898%3C/gale_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2299947087&rft_id=info:pmid/&rft_galeid=A724156898&rfr_iscdi=true |