Entanglement spectroscopy of chiral edge modes in the quantum Hall effect

We investigate the entanglement entropy in the integer quantum Hall effect in the presence of an edge, performing an exact calculation directly from the microscopic two-dimensional wave function. The edge contribution is shown to coincide exactly with that of a chiral Dirac fermion, and this corresp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B 2020-03, Vol.101 (11), p.1, Article 115136
Hauptverfasser: Estienne, Benoit, Stéphan, Jean-Marie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page 1
container_title Physical review. B
container_volume 101
creator Estienne, Benoit
Stéphan, Jean-Marie
description We investigate the entanglement entropy in the integer quantum Hall effect in the presence of an edge, performing an exact calculation directly from the microscopic two-dimensional wave function. The edge contribution is shown to coincide exactly with that of a chiral Dirac fermion, and this correspondence holds for an arbitrary collection of intervals. In particular, for a single interval, the celebrated conformal formula is recovered with left and right central charges c+c¯=1. Using Monte Carlo techniques, we establish that this behavior persists for strongly interacting systems such as Laughlin liquids. This illustrates how entanglement entropy is not only capable of detecting the presence of massless degrees of freedom, but also of pinpointing their position in real space, as well as elucidating their nature.
doi_str_mv 10.1103/PhysRevB.101.115136
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02423669v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2388015141</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-c8a790150fb785b85625ff5753dd8d5712186d33375f41fe0b53784525a3228d3</originalsourceid><addsrcrecordid>eNo9kE9LAzEQxYMoWGo_gZeAJw9bM8kmmxxrqbZQUETPId1Nulv2Xze7hX57U1Z7muHNb4Y3D6FHIHMAwl4-87P_sqfXORAICgcmbtCExkJFSgl1e-05uUcz7w-EEBBEJURN0GZV96bel7aydY99a9O-a3zatGfcOJzmRWdKbLO9xVWTWY-LGve5xcfB1P1Q4bUpw9i5sPaA7pwpvZ391Sn6eVt9L9fR9uN9s1xso5QJ6KNUmkQR4MTtEsl3kgvKneMJZ1kmM54ABSkyxljCXQzOkh1niYw55YZRKjM2Rc_j3dyUuu2KynRn3ZhCrxdbfdEIjSkTQp0gsE8j23bNcbC-14dm6OpgT1MmZbAB8YViI5WG131n3fUsEH2JWP9HHATQY8TsFyE0bhA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2388015141</pqid></control><display><type>article</type><title>Entanglement spectroscopy of chiral edge modes in the quantum Hall effect</title><source>American Physical Society Journals</source><creator>Estienne, Benoit ; Stéphan, Jean-Marie</creator><creatorcontrib>Estienne, Benoit ; Stéphan, Jean-Marie</creatorcontrib><description>We investigate the entanglement entropy in the integer quantum Hall effect in the presence of an edge, performing an exact calculation directly from the microscopic two-dimensional wave function. The edge contribution is shown to coincide exactly with that of a chiral Dirac fermion, and this correspondence holds for an arbitrary collection of intervals. In particular, for a single interval, the celebrated conformal formula is recovered with left and right central charges c+c¯=1. Using Monte Carlo techniques, we establish that this behavior persists for strongly interacting systems such as Laughlin liquids. This illustrates how entanglement entropy is not only capable of detecting the presence of massless degrees of freedom, but also of pinpointing their position in real space, as well as elucidating their nature.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.101.115136</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Electromagnetism ; Entropy ; Fermions ; General Physics ; Mathematical Physics ; Physics ; Quantum entanglement ; Quantum Hall effect ; Wave functions</subject><ispartof>Physical review. B, 2020-03, Vol.101 (11), p.1, Article 115136</ispartof><rights>Copyright American Physical Society Mar 15, 2020</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-c8a790150fb785b85625ff5753dd8d5712186d33375f41fe0b53784525a3228d3</citedby><cites>FETCH-LOGICAL-c361t-c8a790150fb785b85625ff5753dd8d5712186d33375f41fe0b53784525a3228d3</cites><orcidid>0000-0003-2316-9661</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,2862,2863,27903,27904</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02423669$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Estienne, Benoit</creatorcontrib><creatorcontrib>Stéphan, Jean-Marie</creatorcontrib><title>Entanglement spectroscopy of chiral edge modes in the quantum Hall effect</title><title>Physical review. B</title><description>We investigate the entanglement entropy in the integer quantum Hall effect in the presence of an edge, performing an exact calculation directly from the microscopic two-dimensional wave function. The edge contribution is shown to coincide exactly with that of a chiral Dirac fermion, and this correspondence holds for an arbitrary collection of intervals. In particular, for a single interval, the celebrated conformal formula is recovered with left and right central charges c+c¯=1. Using Monte Carlo techniques, we establish that this behavior persists for strongly interacting systems such as Laughlin liquids. This illustrates how entanglement entropy is not only capable of detecting the presence of massless degrees of freedom, but also of pinpointing their position in real space, as well as elucidating their nature.</description><subject>Electromagnetism</subject><subject>Entropy</subject><subject>Fermions</subject><subject>General Physics</subject><subject>Mathematical Physics</subject><subject>Physics</subject><subject>Quantum entanglement</subject><subject>Quantum Hall effect</subject><subject>Wave functions</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kE9LAzEQxYMoWGo_gZeAJw9bM8kmmxxrqbZQUETPId1Nulv2Xze7hX57U1Z7muHNb4Y3D6FHIHMAwl4-87P_sqfXORAICgcmbtCExkJFSgl1e-05uUcz7w-EEBBEJURN0GZV96bel7aydY99a9O-a3zatGfcOJzmRWdKbLO9xVWTWY-LGve5xcfB1P1Q4bUpw9i5sPaA7pwpvZ391Sn6eVt9L9fR9uN9s1xso5QJ6KNUmkQR4MTtEsl3kgvKneMJZ1kmM54ABSkyxljCXQzOkh1niYw55YZRKjM2Rc_j3dyUuu2KynRn3ZhCrxdbfdEIjSkTQp0gsE8j23bNcbC-14dm6OpgT1MmZbAB8YViI5WG131n3fUsEH2JWP9HHATQY8TsFyE0bhA</recordid><startdate>20200315</startdate><enddate>20200315</enddate><creator>Estienne, Benoit</creator><creator>Stéphan, Jean-Marie</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-2316-9661</orcidid></search><sort><creationdate>20200315</creationdate><title>Entanglement spectroscopy of chiral edge modes in the quantum Hall effect</title><author>Estienne, Benoit ; Stéphan, Jean-Marie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-c8a790150fb785b85625ff5753dd8d5712186d33375f41fe0b53784525a3228d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Electromagnetism</topic><topic>Entropy</topic><topic>Fermions</topic><topic>General Physics</topic><topic>Mathematical Physics</topic><topic>Physics</topic><topic>Quantum entanglement</topic><topic>Quantum Hall effect</topic><topic>Wave functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Estienne, Benoit</creatorcontrib><creatorcontrib>Stéphan, Jean-Marie</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Estienne, Benoit</au><au>Stéphan, Jean-Marie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Entanglement spectroscopy of chiral edge modes in the quantum Hall effect</atitle><jtitle>Physical review. B</jtitle><date>2020-03-15</date><risdate>2020</risdate><volume>101</volume><issue>11</issue><spage>1</spage><pages>1-</pages><artnum>115136</artnum><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>We investigate the entanglement entropy in the integer quantum Hall effect in the presence of an edge, performing an exact calculation directly from the microscopic two-dimensional wave function. The edge contribution is shown to coincide exactly with that of a chiral Dirac fermion, and this correspondence holds for an arbitrary collection of intervals. In particular, for a single interval, the celebrated conformal formula is recovered with left and right central charges c+c¯=1. Using Monte Carlo techniques, we establish that this behavior persists for strongly interacting systems such as Laughlin liquids. This illustrates how entanglement entropy is not only capable of detecting the presence of massless degrees of freedom, but also of pinpointing their position in real space, as well as elucidating their nature.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevB.101.115136</doi><orcidid>https://orcid.org/0000-0003-2316-9661</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2469-9950
ispartof Physical review. B, 2020-03, Vol.101 (11), p.1, Article 115136
issn 2469-9950
2469-9969
language eng
recordid cdi_hal_primary_oai_HAL_hal_02423669v1
source American Physical Society Journals
subjects Electromagnetism
Entropy
Fermions
General Physics
Mathematical Physics
Physics
Quantum entanglement
Quantum Hall effect
Wave functions
title Entanglement spectroscopy of chiral edge modes in the quantum Hall effect
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T03%3A12%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Entanglement%20spectroscopy%20of%20chiral%20edge%20modes%20in%20the%20quantum%20Hall%20effect&rft.jtitle=Physical%20review.%20B&rft.au=Estienne,%20Benoit&rft.date=2020-03-15&rft.volume=101&rft.issue=11&rft.spage=1&rft.pages=1-&rft.artnum=115136&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.101.115136&rft_dat=%3Cproquest_hal_p%3E2388015141%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2388015141&rft_id=info:pmid/&rfr_iscdi=true