Entanglement spectroscopy of chiral edge modes in the quantum Hall effect
We investigate the entanglement entropy in the integer quantum Hall effect in the presence of an edge, performing an exact calculation directly from the microscopic two-dimensional wave function. The edge contribution is shown to coincide exactly with that of a chiral Dirac fermion, and this corresp...
Gespeichert in:
Veröffentlicht in: | Physical review. B 2020-03, Vol.101 (11), p.1, Article 115136 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 11 |
container_start_page | 1 |
container_title | Physical review. B |
container_volume | 101 |
creator | Estienne, Benoit Stéphan, Jean-Marie |
description | We investigate the entanglement entropy in the integer quantum Hall effect in the presence of an edge, performing an exact calculation directly from the microscopic two-dimensional wave function. The edge contribution is shown to coincide exactly with that of a chiral Dirac fermion, and this correspondence holds for an arbitrary collection of intervals. In particular, for a single interval, the celebrated conformal formula is recovered with left and right central charges c+c¯=1. Using Monte Carlo techniques, we establish that this behavior persists for strongly interacting systems such as Laughlin liquids. This illustrates how entanglement entropy is not only capable of detecting the presence of massless degrees of freedom, but also of pinpointing their position in real space, as well as elucidating their nature. |
doi_str_mv | 10.1103/PhysRevB.101.115136 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02423669v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2388015141</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-c8a790150fb785b85625ff5753dd8d5712186d33375f41fe0b53784525a3228d3</originalsourceid><addsrcrecordid>eNo9kE9LAzEQxYMoWGo_gZeAJw9bM8kmmxxrqbZQUETPId1Nulv2Xze7hX57U1Z7muHNb4Y3D6FHIHMAwl4-87P_sqfXORAICgcmbtCExkJFSgl1e-05uUcz7w-EEBBEJURN0GZV96bel7aydY99a9O-a3zatGfcOJzmRWdKbLO9xVWTWY-LGve5xcfB1P1Q4bUpw9i5sPaA7pwpvZ391Sn6eVt9L9fR9uN9s1xso5QJ6KNUmkQR4MTtEsl3kgvKneMJZ1kmM54ABSkyxljCXQzOkh1niYw55YZRKjM2Rc_j3dyUuu2KynRn3ZhCrxdbfdEIjSkTQp0gsE8j23bNcbC-14dm6OpgT1MmZbAB8YViI5WG131n3fUsEH2JWP9HHATQY8TsFyE0bhA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2388015141</pqid></control><display><type>article</type><title>Entanglement spectroscopy of chiral edge modes in the quantum Hall effect</title><source>American Physical Society Journals</source><creator>Estienne, Benoit ; Stéphan, Jean-Marie</creator><creatorcontrib>Estienne, Benoit ; Stéphan, Jean-Marie</creatorcontrib><description>We investigate the entanglement entropy in the integer quantum Hall effect in the presence of an edge, performing an exact calculation directly from the microscopic two-dimensional wave function. The edge contribution is shown to coincide exactly with that of a chiral Dirac fermion, and this correspondence holds for an arbitrary collection of intervals. In particular, for a single interval, the celebrated conformal formula is recovered with left and right central charges c+c¯=1. Using Monte Carlo techniques, we establish that this behavior persists for strongly interacting systems such as Laughlin liquids. This illustrates how entanglement entropy is not only capable of detecting the presence of massless degrees of freedom, but also of pinpointing their position in real space, as well as elucidating their nature.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.101.115136</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Electromagnetism ; Entropy ; Fermions ; General Physics ; Mathematical Physics ; Physics ; Quantum entanglement ; Quantum Hall effect ; Wave functions</subject><ispartof>Physical review. B, 2020-03, Vol.101 (11), p.1, Article 115136</ispartof><rights>Copyright American Physical Society Mar 15, 2020</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-c8a790150fb785b85625ff5753dd8d5712186d33375f41fe0b53784525a3228d3</citedby><cites>FETCH-LOGICAL-c361t-c8a790150fb785b85625ff5753dd8d5712186d33375f41fe0b53784525a3228d3</cites><orcidid>0000-0003-2316-9661</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,2862,2863,27903,27904</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02423669$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Estienne, Benoit</creatorcontrib><creatorcontrib>Stéphan, Jean-Marie</creatorcontrib><title>Entanglement spectroscopy of chiral edge modes in the quantum Hall effect</title><title>Physical review. B</title><description>We investigate the entanglement entropy in the integer quantum Hall effect in the presence of an edge, performing an exact calculation directly from the microscopic two-dimensional wave function. The edge contribution is shown to coincide exactly with that of a chiral Dirac fermion, and this correspondence holds for an arbitrary collection of intervals. In particular, for a single interval, the celebrated conformal formula is recovered with left and right central charges c+c¯=1. Using Monte Carlo techniques, we establish that this behavior persists for strongly interacting systems such as Laughlin liquids. This illustrates how entanglement entropy is not only capable of detecting the presence of massless degrees of freedom, but also of pinpointing their position in real space, as well as elucidating their nature.</description><subject>Electromagnetism</subject><subject>Entropy</subject><subject>Fermions</subject><subject>General Physics</subject><subject>Mathematical Physics</subject><subject>Physics</subject><subject>Quantum entanglement</subject><subject>Quantum Hall effect</subject><subject>Wave functions</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kE9LAzEQxYMoWGo_gZeAJw9bM8kmmxxrqbZQUETPId1Nulv2Xze7hX57U1Z7muHNb4Y3D6FHIHMAwl4-87P_sqfXORAICgcmbtCExkJFSgl1e-05uUcz7w-EEBBEJURN0GZV96bel7aydY99a9O-a3zatGfcOJzmRWdKbLO9xVWTWY-LGve5xcfB1P1Q4bUpw9i5sPaA7pwpvZ391Sn6eVt9L9fR9uN9s1xso5QJ6KNUmkQR4MTtEsl3kgvKneMJZ1kmM54ABSkyxljCXQzOkh1niYw55YZRKjM2Rc_j3dyUuu2KynRn3ZhCrxdbfdEIjSkTQp0gsE8j23bNcbC-14dm6OpgT1MmZbAB8YViI5WG131n3fUsEH2JWP9HHATQY8TsFyE0bhA</recordid><startdate>20200315</startdate><enddate>20200315</enddate><creator>Estienne, Benoit</creator><creator>Stéphan, Jean-Marie</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-2316-9661</orcidid></search><sort><creationdate>20200315</creationdate><title>Entanglement spectroscopy of chiral edge modes in the quantum Hall effect</title><author>Estienne, Benoit ; Stéphan, Jean-Marie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-c8a790150fb785b85625ff5753dd8d5712186d33375f41fe0b53784525a3228d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Electromagnetism</topic><topic>Entropy</topic><topic>Fermions</topic><topic>General Physics</topic><topic>Mathematical Physics</topic><topic>Physics</topic><topic>Quantum entanglement</topic><topic>Quantum Hall effect</topic><topic>Wave functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Estienne, Benoit</creatorcontrib><creatorcontrib>Stéphan, Jean-Marie</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Estienne, Benoit</au><au>Stéphan, Jean-Marie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Entanglement spectroscopy of chiral edge modes in the quantum Hall effect</atitle><jtitle>Physical review. B</jtitle><date>2020-03-15</date><risdate>2020</risdate><volume>101</volume><issue>11</issue><spage>1</spage><pages>1-</pages><artnum>115136</artnum><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>We investigate the entanglement entropy in the integer quantum Hall effect in the presence of an edge, performing an exact calculation directly from the microscopic two-dimensional wave function. The edge contribution is shown to coincide exactly with that of a chiral Dirac fermion, and this correspondence holds for an arbitrary collection of intervals. In particular, for a single interval, the celebrated conformal formula is recovered with left and right central charges c+c¯=1. Using Monte Carlo techniques, we establish that this behavior persists for strongly interacting systems such as Laughlin liquids. This illustrates how entanglement entropy is not only capable of detecting the presence of massless degrees of freedom, but also of pinpointing their position in real space, as well as elucidating their nature.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevB.101.115136</doi><orcidid>https://orcid.org/0000-0003-2316-9661</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2469-9950 |
ispartof | Physical review. B, 2020-03, Vol.101 (11), p.1, Article 115136 |
issn | 2469-9950 2469-9969 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02423669v1 |
source | American Physical Society Journals |
subjects | Electromagnetism Entropy Fermions General Physics Mathematical Physics Physics Quantum entanglement Quantum Hall effect Wave functions |
title | Entanglement spectroscopy of chiral edge modes in the quantum Hall effect |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T03%3A12%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Entanglement%20spectroscopy%20of%20chiral%20edge%20modes%20in%20the%20quantum%20Hall%20effect&rft.jtitle=Physical%20review.%20B&rft.au=Estienne,%20Benoit&rft.date=2020-03-15&rft.volume=101&rft.issue=11&rft.spage=1&rft.pages=1-&rft.artnum=115136&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.101.115136&rft_dat=%3Cproquest_hal_p%3E2388015141%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2388015141&rft_id=info:pmid/&rfr_iscdi=true |