Strong second-harmonic generation from Au-Al heterodimers
Second-harmonic generation (SHG) is investigated from three kinds of lithographically fabricated plasmonic systems: Al monomers, Au monomers and Au-Al heterodimers with nanogaps of 20 nm. Spectrally integrated SHG intensities and the linear optical responses are recorded and compared. The results sh...
Gespeichert in:
Veröffentlicht in: | Nanoscale 2019-12, Vol.11 (48), p.23475-23481 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 23481 |
---|---|
container_issue | 48 |
container_start_page | 23475 |
container_title | Nanoscale |
container_volume | 11 |
creator | Wang, Jiyong Butet, Jérémy Bernasconi, Gabriel David Baudrion, Anne-Laure Lévêque, Gaëtan Horrer, Andreas Horneber, Anke Martin, Olivier J. F Meixner, Alfred J Fleischer, Monika Adam, Pierre-Michel Zhang, Dai |
description | Second-harmonic generation (SHG) is investigated from three kinds of lithographically fabricated plasmonic systems: Al monomers, Au monomers and Au-Al heterodimers with nanogaps of 20 nm. Spectrally integrated SHG intensities and the linear optical responses are recorded and compared. The results show that for the monomer nanoantennas, the SHG signal depends sensitively on the linear excitation of the plasmon resonance by the fundamental wavelength. For Au-Al heterodimer nanoantennas, apart from fundamental resonant excitation, nonlinear optical factors such as SH driving fields and phase interferences need to be taken into account, which play significant roles at the excitation and scattering stages of SHG radiation. It is interesting to note that a possible energy transfer process could take place between the two constituting nanoparticles (NPs) in the Au-Al heterodimers. Excited at the linear plasmon resonance, the Au NP transfers the absorbed energy from the fundamental field to the nearby Al NP, which efficiently scatters SHG to the far-field, giving rise to an enhanced SHG intensity. The mechanisms reported here provide new approaches to boost the far-field SHG radiation by taking full advantage of strongly coupled plasmonic oscillations and the synergism from materials of different compositions.
Strong second-harmonic generation from Au-Al heterodimers with a nanogap is observed and predicted, mainly attributed to coupling of plasmonic resonance in the fundamental field and synergistic driving from constituting nanoantennas in the SH field. |
doi_str_mv | 10.1039/c9nr07644a |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02420018v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2324931845</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-8a7749c6223793d6d2b10f7daa666bf9c75c4a420324d02210f1e8f9573384733</originalsourceid><addsrcrecordid>eNpd0U1LwzAYB_AgipvTi3el4EWFat6aNMcy1AlDwZdzyNJ062ibmbSC397MzgpekpDnl4fkHwBOEbxBkIhbLRoHOaNU7YExhhTGhHC8P6wZHYEj79cQMkEYOQQjgrgQCaFjIF5bZ5tl5I22TR6vlKttU-poaRrjVFvaJiqcraOsi7MqWpnWOJuXtXH-GBwUqvLmZDdPwPv93dt0Fs-fHx6n2TzWFPI2ThXnVGiGMeGC5CzHCwQLnivFGFsUQvNEU0UxJJjmEONQRCYtRMIJSWkYJuCq77tSldy4slbuS1pVylk2l9s9iMNpiNJPFOxlbzfOfnTGt7IuvTZVpRpjOy8xwYgxTCEL9OIfXdvONeElW0UFQSlNgrrulXbWe2eK4QYIym34ciqeXn7CzwI-37XsFrXJB_qbdgBnPXBeD9W_3yPfNAOFKA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2324931845</pqid></control><display><type>article</type><title>Strong second-harmonic generation from Au-Al heterodimers</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Wang, Jiyong ; Butet, Jérémy ; Bernasconi, Gabriel David ; Baudrion, Anne-Laure ; Lévêque, Gaëtan ; Horrer, Andreas ; Horneber, Anke ; Martin, Olivier J. F ; Meixner, Alfred J ; Fleischer, Monika ; Adam, Pierre-Michel ; Zhang, Dai</creator><creatorcontrib>Wang, Jiyong ; Butet, Jérémy ; Bernasconi, Gabriel David ; Baudrion, Anne-Laure ; Lévêque, Gaëtan ; Horrer, Andreas ; Horneber, Anke ; Martin, Olivier J. F ; Meixner, Alfred J ; Fleischer, Monika ; Adam, Pierre-Michel ; Zhang, Dai</creatorcontrib><description>Second-harmonic generation (SHG) is investigated from three kinds of lithographically fabricated plasmonic systems: Al monomers, Au monomers and Au-Al heterodimers with nanogaps of 20 nm. Spectrally integrated SHG intensities and the linear optical responses are recorded and compared. The results show that for the monomer nanoantennas, the SHG signal depends sensitively on the linear excitation of the plasmon resonance by the fundamental wavelength. For Au-Al heterodimer nanoantennas, apart from fundamental resonant excitation, nonlinear optical factors such as SH driving fields and phase interferences need to be taken into account, which play significant roles at the excitation and scattering stages of SHG radiation. It is interesting to note that a possible energy transfer process could take place between the two constituting nanoparticles (NPs) in the Au-Al heterodimers. Excited at the linear plasmon resonance, the Au NP transfers the absorbed energy from the fundamental field to the nearby Al NP, which efficiently scatters SHG to the far-field, giving rise to an enhanced SHG intensity. The mechanisms reported here provide new approaches to boost the far-field SHG radiation by taking full advantage of strongly coupled plasmonic oscillations and the synergism from materials of different compositions.
Strong second-harmonic generation from Au-Al heterodimers with a nanogap is observed and predicted, mainly attributed to coupling of plasmonic resonance in the fundamental field and synergistic driving from constituting nanoantennas in the SH field.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/c9nr07644a</identifier><identifier>PMID: 31799534</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Energy transfer ; Engineering Sciences ; Excitation ; Far fields ; Gold ; Micro and nanotechnologies ; Microelectronics ; Monomers ; Nanoparticles ; Optics ; Photonic ; Resonance ; Second harmonic generation</subject><ispartof>Nanoscale, 2019-12, Vol.11 (48), p.23475-23481</ispartof><rights>Copyright Royal Society of Chemistry 2019</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-8a7749c6223793d6d2b10f7daa666bf9c75c4a420324d02210f1e8f9573384733</citedby><cites>FETCH-LOGICAL-c407t-8a7749c6223793d6d2b10f7daa666bf9c75c4a420324d02210f1e8f9573384733</cites><orcidid>0000-0001-5625-5975 ; 0000-0002-6370-8298 ; 0000-0001-9751-9957 ; 0000-0001-8190-3030 ; 0000-0002-4541-814X ; 0000-0003-3065-9394 ; 0000-0003-1626-8207 ; 0000-0002-0187-2906</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31799534$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://utt.hal.science/hal-02420018$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Jiyong</creatorcontrib><creatorcontrib>Butet, Jérémy</creatorcontrib><creatorcontrib>Bernasconi, Gabriel David</creatorcontrib><creatorcontrib>Baudrion, Anne-Laure</creatorcontrib><creatorcontrib>Lévêque, Gaëtan</creatorcontrib><creatorcontrib>Horrer, Andreas</creatorcontrib><creatorcontrib>Horneber, Anke</creatorcontrib><creatorcontrib>Martin, Olivier J. F</creatorcontrib><creatorcontrib>Meixner, Alfred J</creatorcontrib><creatorcontrib>Fleischer, Monika</creatorcontrib><creatorcontrib>Adam, Pierre-Michel</creatorcontrib><creatorcontrib>Zhang, Dai</creatorcontrib><title>Strong second-harmonic generation from Au-Al heterodimers</title><title>Nanoscale</title><addtitle>Nanoscale</addtitle><description>Second-harmonic generation (SHG) is investigated from three kinds of lithographically fabricated plasmonic systems: Al monomers, Au monomers and Au-Al heterodimers with nanogaps of 20 nm. Spectrally integrated SHG intensities and the linear optical responses are recorded and compared. The results show that for the monomer nanoantennas, the SHG signal depends sensitively on the linear excitation of the plasmon resonance by the fundamental wavelength. For Au-Al heterodimer nanoantennas, apart from fundamental resonant excitation, nonlinear optical factors such as SH driving fields and phase interferences need to be taken into account, which play significant roles at the excitation and scattering stages of SHG radiation. It is interesting to note that a possible energy transfer process could take place between the two constituting nanoparticles (NPs) in the Au-Al heterodimers. Excited at the linear plasmon resonance, the Au NP transfers the absorbed energy from the fundamental field to the nearby Al NP, which efficiently scatters SHG to the far-field, giving rise to an enhanced SHG intensity. The mechanisms reported here provide new approaches to boost the far-field SHG radiation by taking full advantage of strongly coupled plasmonic oscillations and the synergism from materials of different compositions.
Strong second-harmonic generation from Au-Al heterodimers with a nanogap is observed and predicted, mainly attributed to coupling of plasmonic resonance in the fundamental field and synergistic driving from constituting nanoantennas in the SH field.</description><subject>Energy transfer</subject><subject>Engineering Sciences</subject><subject>Excitation</subject><subject>Far fields</subject><subject>Gold</subject><subject>Micro and nanotechnologies</subject><subject>Microelectronics</subject><subject>Monomers</subject><subject>Nanoparticles</subject><subject>Optics</subject><subject>Photonic</subject><subject>Resonance</subject><subject>Second harmonic generation</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpd0U1LwzAYB_AgipvTi3el4EWFat6aNMcy1AlDwZdzyNJ062ibmbSC397MzgpekpDnl4fkHwBOEbxBkIhbLRoHOaNU7YExhhTGhHC8P6wZHYEj79cQMkEYOQQjgrgQCaFjIF5bZ5tl5I22TR6vlKttU-poaRrjVFvaJiqcraOsi7MqWpnWOJuXtXH-GBwUqvLmZDdPwPv93dt0Fs-fHx6n2TzWFPI2ThXnVGiGMeGC5CzHCwQLnivFGFsUQvNEU0UxJJjmEONQRCYtRMIJSWkYJuCq77tSldy4slbuS1pVylk2l9s9iMNpiNJPFOxlbzfOfnTGt7IuvTZVpRpjOy8xwYgxTCEL9OIfXdvONeElW0UFQSlNgrrulXbWe2eK4QYIym34ciqeXn7CzwI-37XsFrXJB_qbdgBnPXBeD9W_3yPfNAOFKA</recordid><startdate>20191228</startdate><enddate>20191228</enddate><creator>Wang, Jiyong</creator><creator>Butet, Jérémy</creator><creator>Bernasconi, Gabriel David</creator><creator>Baudrion, Anne-Laure</creator><creator>Lévêque, Gaëtan</creator><creator>Horrer, Andreas</creator><creator>Horneber, Anke</creator><creator>Martin, Olivier J. F</creator><creator>Meixner, Alfred J</creator><creator>Fleischer, Monika</creator><creator>Adam, Pierre-Michel</creator><creator>Zhang, Dai</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-5625-5975</orcidid><orcidid>https://orcid.org/0000-0002-6370-8298</orcidid><orcidid>https://orcid.org/0000-0001-9751-9957</orcidid><orcidid>https://orcid.org/0000-0001-8190-3030</orcidid><orcidid>https://orcid.org/0000-0002-4541-814X</orcidid><orcidid>https://orcid.org/0000-0003-3065-9394</orcidid><orcidid>https://orcid.org/0000-0003-1626-8207</orcidid><orcidid>https://orcid.org/0000-0002-0187-2906</orcidid></search><sort><creationdate>20191228</creationdate><title>Strong second-harmonic generation from Au-Al heterodimers</title><author>Wang, Jiyong ; Butet, Jérémy ; Bernasconi, Gabriel David ; Baudrion, Anne-Laure ; Lévêque, Gaëtan ; Horrer, Andreas ; Horneber, Anke ; Martin, Olivier J. F ; Meixner, Alfred J ; Fleischer, Monika ; Adam, Pierre-Michel ; Zhang, Dai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-8a7749c6223793d6d2b10f7daa666bf9c75c4a420324d02210f1e8f9573384733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Energy transfer</topic><topic>Engineering Sciences</topic><topic>Excitation</topic><topic>Far fields</topic><topic>Gold</topic><topic>Micro and nanotechnologies</topic><topic>Microelectronics</topic><topic>Monomers</topic><topic>Nanoparticles</topic><topic>Optics</topic><topic>Photonic</topic><topic>Resonance</topic><topic>Second harmonic generation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jiyong</creatorcontrib><creatorcontrib>Butet, Jérémy</creatorcontrib><creatorcontrib>Bernasconi, Gabriel David</creatorcontrib><creatorcontrib>Baudrion, Anne-Laure</creatorcontrib><creatorcontrib>Lévêque, Gaëtan</creatorcontrib><creatorcontrib>Horrer, Andreas</creatorcontrib><creatorcontrib>Horneber, Anke</creatorcontrib><creatorcontrib>Martin, Olivier J. F</creatorcontrib><creatorcontrib>Meixner, Alfred J</creatorcontrib><creatorcontrib>Fleischer, Monika</creatorcontrib><creatorcontrib>Adam, Pierre-Michel</creatorcontrib><creatorcontrib>Zhang, Dai</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Jiyong</au><au>Butet, Jérémy</au><au>Bernasconi, Gabriel David</au><au>Baudrion, Anne-Laure</au><au>Lévêque, Gaëtan</au><au>Horrer, Andreas</au><au>Horneber, Anke</au><au>Martin, Olivier J. F</au><au>Meixner, Alfred J</au><au>Fleischer, Monika</au><au>Adam, Pierre-Michel</au><au>Zhang, Dai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strong second-harmonic generation from Au-Al heterodimers</atitle><jtitle>Nanoscale</jtitle><addtitle>Nanoscale</addtitle><date>2019-12-28</date><risdate>2019</risdate><volume>11</volume><issue>48</issue><spage>23475</spage><epage>23481</epage><pages>23475-23481</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>Second-harmonic generation (SHG) is investigated from three kinds of lithographically fabricated plasmonic systems: Al monomers, Au monomers and Au-Al heterodimers with nanogaps of 20 nm. Spectrally integrated SHG intensities and the linear optical responses are recorded and compared. The results show that for the monomer nanoantennas, the SHG signal depends sensitively on the linear excitation of the plasmon resonance by the fundamental wavelength. For Au-Al heterodimer nanoantennas, apart from fundamental resonant excitation, nonlinear optical factors such as SH driving fields and phase interferences need to be taken into account, which play significant roles at the excitation and scattering stages of SHG radiation. It is interesting to note that a possible energy transfer process could take place between the two constituting nanoparticles (NPs) in the Au-Al heterodimers. Excited at the linear plasmon resonance, the Au NP transfers the absorbed energy from the fundamental field to the nearby Al NP, which efficiently scatters SHG to the far-field, giving rise to an enhanced SHG intensity. The mechanisms reported here provide new approaches to boost the far-field SHG radiation by taking full advantage of strongly coupled plasmonic oscillations and the synergism from materials of different compositions.
Strong second-harmonic generation from Au-Al heterodimers with a nanogap is observed and predicted, mainly attributed to coupling of plasmonic resonance in the fundamental field and synergistic driving from constituting nanoantennas in the SH field.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>31799534</pmid><doi>10.1039/c9nr07644a</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-5625-5975</orcidid><orcidid>https://orcid.org/0000-0002-6370-8298</orcidid><orcidid>https://orcid.org/0000-0001-9751-9957</orcidid><orcidid>https://orcid.org/0000-0001-8190-3030</orcidid><orcidid>https://orcid.org/0000-0002-4541-814X</orcidid><orcidid>https://orcid.org/0000-0003-3065-9394</orcidid><orcidid>https://orcid.org/0000-0003-1626-8207</orcidid><orcidid>https://orcid.org/0000-0002-0187-2906</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2040-3364 |
ispartof | Nanoscale, 2019-12, Vol.11 (48), p.23475-23481 |
issn | 2040-3364 2040-3372 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02420018v1 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Energy transfer Engineering Sciences Excitation Far fields Gold Micro and nanotechnologies Microelectronics Monomers Nanoparticles Optics Photonic Resonance Second harmonic generation |
title | Strong second-harmonic generation from Au-Al heterodimers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T20%3A46%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strong%20second-harmonic%20generation%20from%20Au-Al%20heterodimers&rft.jtitle=Nanoscale&rft.au=Wang,%20Jiyong&rft.date=2019-12-28&rft.volume=11&rft.issue=48&rft.spage=23475&rft.epage=23481&rft.pages=23475-23481&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/c9nr07644a&rft_dat=%3Cproquest_hal_p%3E2324931845%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2324931845&rft_id=info:pmid/31799534&rfr_iscdi=true |