Thermodynamics of metabolic energy conversion under muscle load
The metabolic processes complexity is at the heart of energy conversion in living organisms and forms a huge obstacle to develop tractable thermodynamic metabolism models. By raising our analysis to a higher level of abstraction, we develop a compact-i.e. relying on a reduced set of parameters-therm...
Gespeichert in:
Veröffentlicht in: | New journal of physics 2019-02, Vol.21 (2), p.23021 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 23021 |
container_title | New journal of physics |
container_volume | 21 |
creator | Goupil, Christophe Ouerdane, Henni Herbert, Eric Goupil, Clémence D'Angelo, Yves |
description | The metabolic processes complexity is at the heart of energy conversion in living organisms and forms a huge obstacle to develop tractable thermodynamic metabolism models. By raising our analysis to a higher level of abstraction, we develop a compact-i.e. relying on a reduced set of parameters-thermodynamic model of metabolism, in order to analyse the chemical-to-mechanical energy conversion under muscle load, and give a thermodynamic ground to Hill's seminal muscular operational response model. Living organisms are viewed as dynamical systems experiencing a feedback loop in the sense that they can be considered as thermodynamic systems subjected to mixed boundary conditions, coupling both potentials and fluxes. Starting from a rigorous derivation of generalized thermoelastic and transport coefficients, leading to the definition of a metabolic figure of merit, we establish the expression of the chemical-mechanical coupling, and specify the nature of the dissipative mechanism and the so-called figure of merit. The particular nature of the boundary conditions of such a system reveals the presence of a feedback resistance, representing an active parameter, which is crucial for the proper interpretation of the muscle response under effort in the framework of Hill's model. We also develop an exergy analysis of the so-called maximum power principle, here understood as a particular configuration of an out-of-equilibrium system, with no supplemental extremal principle involved. |
doi_str_mv | 10.1088/1367-2630/ab0223 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02418873v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_5de35f2c18f1420a8fe7d3f944d02848</doaj_id><sourcerecordid>2312378093</sourcerecordid><originalsourceid>FETCH-LOGICAL-c521t-9c6b083afb5c3da35c851f89ac153c44245c72cfe64a20d6491a4e9c8d8a2d973</originalsourceid><addsrcrecordid>eNp9kU1Lw0AQhoMoWKt3jwEPIli7O7tJNicpRW2h4KWel-l-tClJNu62hf57UyNVQTzt8PLMw-xMFF1T8kCJEEPK0mwAKSNDXBAAdhL1jtHpj_o8ughhTQilAqAXPc5XxldO72usChViZ-PKbHDhykLFpjZ-uY-Vq3fGh8LV8bbWxsfVNqjSxKVDfRmdWSyDufp6-9Hb89N8PBnMXl-m49FsoBKgm0Gu0gURDO0iUUwjS5RIqBU5KpowxTnwRGWgrEk5AtEpzylykyuhBYLOM9aPpp1XO1zLxhcV-r10WMjPwPmlRL8p2rFkog1LLCgqLOVAUFiTaWZzzjUBwUXruutcKyx_qSajmTxkBDgVImM72rI3Hdt49741YSPXbuvr9qsSGAWWCZKzliIdpbwLwRt71FIiD-eRh_3Lw_5ld5625b5rKVzz7fwHv_0Dr9eNBCqhnZiRtmi0ZR_ZX5tY</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2312378093</pqid></control><display><type>article</type><title>Thermodynamics of metabolic energy conversion under muscle load</title><source>IOP Publishing Free Content</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>IOPscience extra</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Goupil, Christophe ; Ouerdane, Henni ; Herbert, Eric ; Goupil, Clémence ; D'Angelo, Yves</creator><creatorcontrib>Goupil, Christophe ; Ouerdane, Henni ; Herbert, Eric ; Goupil, Clémence ; D'Angelo, Yves</creatorcontrib><description>The metabolic processes complexity is at the heart of energy conversion in living organisms and forms a huge obstacle to develop tractable thermodynamic metabolism models. By raising our analysis to a higher level of abstraction, we develop a compact-i.e. relying on a reduced set of parameters-thermodynamic model of metabolism, in order to analyse the chemical-to-mechanical energy conversion under muscle load, and give a thermodynamic ground to Hill's seminal muscular operational response model. Living organisms are viewed as dynamical systems experiencing a feedback loop in the sense that they can be considered as thermodynamic systems subjected to mixed boundary conditions, coupling both potentials and fluxes. Starting from a rigorous derivation of generalized thermoelastic and transport coefficients, leading to the definition of a metabolic figure of merit, we establish the expression of the chemical-mechanical coupling, and specify the nature of the dissipative mechanism and the so-called figure of merit. The particular nature of the boundary conditions of such a system reveals the presence of a feedback resistance, representing an active parameter, which is crucial for the proper interpretation of the muscle response under effort in the framework of Hill's model. We also develop an exergy analysis of the so-called maximum power principle, here understood as a particular configuration of an out-of-equilibrium system, with no supplemental extremal principle involved.</description><identifier>ISSN: 1367-2630</identifier><identifier>EISSN: 1367-2630</identifier><identifier>DOI: 10.1088/1367-2630/ab0223</identifier><identifier>CODEN: NJOPFM</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Boundary conditions ; Coupling ; Energy conversion ; Energy dissipation ; Exergy ; Feedback loops ; Figure of merit ; Fluxes ; Maximum power ; Metabolism ; muscle load ; Muscles ; Organic chemistry ; Parameters ; Physics ; Thermodynamic models ; thermodynamics ; Transport properties</subject><ispartof>New journal of physics, 2019-02, Vol.21 (2), p.23021</ispartof><rights>2019 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c521t-9c6b083afb5c3da35c851f89ac153c44245c72cfe64a20d6491a4e9c8d8a2d973</citedby><cites>FETCH-LOGICAL-c521t-9c6b083afb5c3da35c851f89ac153c44245c72cfe64a20d6491a4e9c8d8a2d973</cites><orcidid>0000-0002-8814-8936 ; 0000-0003-0954-7603 ; 0000-0001-6596-0895 ; 0000-0002-1914-0244</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1367-2630/ab0223/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>230,314,776,780,860,881,2096,27903,27904,38847,38869,53818,53845</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02418873$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Goupil, Christophe</creatorcontrib><creatorcontrib>Ouerdane, Henni</creatorcontrib><creatorcontrib>Herbert, Eric</creatorcontrib><creatorcontrib>Goupil, Clémence</creatorcontrib><creatorcontrib>D'Angelo, Yves</creatorcontrib><title>Thermodynamics of metabolic energy conversion under muscle load</title><title>New journal of physics</title><addtitle>NJP</addtitle><addtitle>New J. Phys</addtitle><description>The metabolic processes complexity is at the heart of energy conversion in living organisms and forms a huge obstacle to develop tractable thermodynamic metabolism models. By raising our analysis to a higher level of abstraction, we develop a compact-i.e. relying on a reduced set of parameters-thermodynamic model of metabolism, in order to analyse the chemical-to-mechanical energy conversion under muscle load, and give a thermodynamic ground to Hill's seminal muscular operational response model. Living organisms are viewed as dynamical systems experiencing a feedback loop in the sense that they can be considered as thermodynamic systems subjected to mixed boundary conditions, coupling both potentials and fluxes. Starting from a rigorous derivation of generalized thermoelastic and transport coefficients, leading to the definition of a metabolic figure of merit, we establish the expression of the chemical-mechanical coupling, and specify the nature of the dissipative mechanism and the so-called figure of merit. The particular nature of the boundary conditions of such a system reveals the presence of a feedback resistance, representing an active parameter, which is crucial for the proper interpretation of the muscle response under effort in the framework of Hill's model. We also develop an exergy analysis of the so-called maximum power principle, here understood as a particular configuration of an out-of-equilibrium system, with no supplemental extremal principle involved.</description><subject>Boundary conditions</subject><subject>Coupling</subject><subject>Energy conversion</subject><subject>Energy dissipation</subject><subject>Exergy</subject><subject>Feedback loops</subject><subject>Figure of merit</subject><subject>Fluxes</subject><subject>Maximum power</subject><subject>Metabolism</subject><subject>muscle load</subject><subject>Muscles</subject><subject>Organic chemistry</subject><subject>Parameters</subject><subject>Physics</subject><subject>Thermodynamic models</subject><subject>thermodynamics</subject><subject>Transport properties</subject><issn>1367-2630</issn><issn>1367-2630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNp9kU1Lw0AQhoMoWKt3jwEPIli7O7tJNicpRW2h4KWel-l-tClJNu62hf57UyNVQTzt8PLMw-xMFF1T8kCJEEPK0mwAKSNDXBAAdhL1jtHpj_o8ughhTQilAqAXPc5XxldO72usChViZ-PKbHDhykLFpjZ-uY-Vq3fGh8LV8bbWxsfVNqjSxKVDfRmdWSyDufp6-9Hb89N8PBnMXl-m49FsoBKgm0Gu0gURDO0iUUwjS5RIqBU5KpowxTnwRGWgrEk5AtEpzylykyuhBYLOM9aPpp1XO1zLxhcV-r10WMjPwPmlRL8p2rFkog1LLCgqLOVAUFiTaWZzzjUBwUXruutcKyx_qSajmTxkBDgVImM72rI3Hdt49741YSPXbuvr9qsSGAWWCZKzliIdpbwLwRt71FIiD-eRh_3Lw_5ld5625b5rKVzz7fwHv_0Dr9eNBCqhnZiRtmi0ZR_ZX5tY</recordid><startdate>20190228</startdate><enddate>20190228</enddate><creator>Goupil, Christophe</creator><creator>Ouerdane, Henni</creator><creator>Herbert, Eric</creator><creator>Goupil, Clémence</creator><creator>D'Angelo, Yves</creator><general>IOP Publishing</general><general>Institute of Physics: Open Access Journals</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>L7M</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>1XC</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8814-8936</orcidid><orcidid>https://orcid.org/0000-0003-0954-7603</orcidid><orcidid>https://orcid.org/0000-0001-6596-0895</orcidid><orcidid>https://orcid.org/0000-0002-1914-0244</orcidid></search><sort><creationdate>20190228</creationdate><title>Thermodynamics of metabolic energy conversion under muscle load</title><author>Goupil, Christophe ; Ouerdane, Henni ; Herbert, Eric ; Goupil, Clémence ; D'Angelo, Yves</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c521t-9c6b083afb5c3da35c851f89ac153c44245c72cfe64a20d6491a4e9c8d8a2d973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Boundary conditions</topic><topic>Coupling</topic><topic>Energy conversion</topic><topic>Energy dissipation</topic><topic>Exergy</topic><topic>Feedback loops</topic><topic>Figure of merit</topic><topic>Fluxes</topic><topic>Maximum power</topic><topic>Metabolism</topic><topic>muscle load</topic><topic>Muscles</topic><topic>Organic chemistry</topic><topic>Parameters</topic><topic>Physics</topic><topic>Thermodynamic models</topic><topic>thermodynamics</topic><topic>Transport properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goupil, Christophe</creatorcontrib><creatorcontrib>Ouerdane, Henni</creatorcontrib><creatorcontrib>Herbert, Eric</creatorcontrib><creatorcontrib>Goupil, Clémence</creatorcontrib><creatorcontrib>D'Angelo, Yves</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>New journal of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goupil, Christophe</au><au>Ouerdane, Henni</au><au>Herbert, Eric</au><au>Goupil, Clémence</au><au>D'Angelo, Yves</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermodynamics of metabolic energy conversion under muscle load</atitle><jtitle>New journal of physics</jtitle><stitle>NJP</stitle><addtitle>New J. Phys</addtitle><date>2019-02-28</date><risdate>2019</risdate><volume>21</volume><issue>2</issue><spage>23021</spage><pages>23021-</pages><issn>1367-2630</issn><eissn>1367-2630</eissn><coden>NJOPFM</coden><abstract>The metabolic processes complexity is at the heart of energy conversion in living organisms and forms a huge obstacle to develop tractable thermodynamic metabolism models. By raising our analysis to a higher level of abstraction, we develop a compact-i.e. relying on a reduced set of parameters-thermodynamic model of metabolism, in order to analyse the chemical-to-mechanical energy conversion under muscle load, and give a thermodynamic ground to Hill's seminal muscular operational response model. Living organisms are viewed as dynamical systems experiencing a feedback loop in the sense that they can be considered as thermodynamic systems subjected to mixed boundary conditions, coupling both potentials and fluxes. Starting from a rigorous derivation of generalized thermoelastic and transport coefficients, leading to the definition of a metabolic figure of merit, we establish the expression of the chemical-mechanical coupling, and specify the nature of the dissipative mechanism and the so-called figure of merit. The particular nature of the boundary conditions of such a system reveals the presence of a feedback resistance, representing an active parameter, which is crucial for the proper interpretation of the muscle response under effort in the framework of Hill's model. We also develop an exergy analysis of the so-called maximum power principle, here understood as a particular configuration of an out-of-equilibrium system, with no supplemental extremal principle involved.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1367-2630/ab0223</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-8814-8936</orcidid><orcidid>https://orcid.org/0000-0003-0954-7603</orcidid><orcidid>https://orcid.org/0000-0001-6596-0895</orcidid><orcidid>https://orcid.org/0000-0002-1914-0244</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1367-2630 |
ispartof | New journal of physics, 2019-02, Vol.21 (2), p.23021 |
issn | 1367-2630 1367-2630 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02418873v1 |
source | IOP Publishing Free Content; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; IOPscience extra; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Boundary conditions Coupling Energy conversion Energy dissipation Exergy Feedback loops Figure of merit Fluxes Maximum power Metabolism muscle load Muscles Organic chemistry Parameters Physics Thermodynamic models thermodynamics Transport properties |
title | Thermodynamics of metabolic energy conversion under muscle load |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T18%3A38%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermodynamics%20of%20metabolic%20energy%20conversion%20under%20muscle%20load&rft.jtitle=New%20journal%20of%20physics&rft.au=Goupil,%20Christophe&rft.date=2019-02-28&rft.volume=21&rft.issue=2&rft.spage=23021&rft.pages=23021-&rft.issn=1367-2630&rft.eissn=1367-2630&rft.coden=NJOPFM&rft_id=info:doi/10.1088/1367-2630/ab0223&rft_dat=%3Cproquest_hal_p%3E2312378093%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2312378093&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_5de35f2c18f1420a8fe7d3f944d02848&rfr_iscdi=true |