Astrophysical and local constraints on string theory: Runaway dilaton models

One of the clear predictions of string theory is the presence of a dynamical scalar partner of the spin-2 graviton, known as the dilaton. This will violate the Einstein equivalence principle, leading to a plethora of possibly observable consequences which in a cosmological context include dynamical...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. D 2019-12, Vol.100 (12), p.1, Article 123514
Hauptverfasser: Martins, C. J. A. P., Vacher, L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page 1
container_title Physical review. D
container_volume 100
creator Martins, C. J. A. P.
Vacher, L.
description One of the clear predictions of string theory is the presence of a dynamical scalar partner of the spin-2 graviton, known as the dilaton. This will violate the Einstein equivalence principle, leading to a plethora of possibly observable consequences which in a cosmological context include dynamical dark energy and spacetime variations of nature's fundamental constants. The runaway dilaton scenario of Damour, Piazza, and Veneziano is a particularly interesting class of string theory inspired models which can in principle reconcile a massless dilaton with experimental data. Here we use the latest background cosmology observations, astrophysical and laboratory tests of the stability of the fine-structure constant, and local tests of the weak equivalence principle to provide updated constraints on this scenario, under various simplifying assumptions. Overall we find consistency with the standard Λ CDM paradigm. We improve the existing constraints on the coupling of the dilaton to baryonic matter by a factor of 6 and to the dark sector by a factor of 2. At the one-sigma level the current data already exclude dark sector couplings of order unity, which would be their natural value.
doi_str_mv 10.1103/PhysRevD.100.123514
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02416893v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2334201405</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-9a4e103251a855946638f06e94eff0688933bf7a0007091c19c3ddaf8b69f7903</originalsourceid><addsrcrecordid>eNo9UE1Lw0AUXETBUvsLvAQ8eUh9L7v5WG-lflQIKEXPyzbZ2JQ0W3eTSv69r1Z7mmFmGIZh7Bphigj87m09-KXZP0wRSIl4jOKMjSKRQggQyfMTR7hkE-83QDQBmSKOWD7znbM7qqgL3QS6LYPGHlhhW3J03XY-sG1AvG4_g25trBvug2Xf6m89BGXd6I7srS1N46_YRaUbbyZ_OGYfT4_v80WYvz6_zGd5WHDELpRaGBoexaizOJYiSXhWQWKkMBVhlknOV1WqaWcKEguUBS9LXWWrRFapBD5mt8fetW7UztVb7QZlda0Ws1wdNIgEJlSzR8reHLM7Z7964zu1sb1raZ6KOBcRoICYUvyYKpz13pnqVIugDi-r_5dJIOX3Zf4DIwpv7A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2334201405</pqid></control><display><type>article</type><title>Astrophysical and local constraints on string theory: Runaway dilaton models</title><source>American Physical Society Journals</source><creator>Martins, C. J. A. P. ; Vacher, L.</creator><creatorcontrib>Martins, C. J. A. P. ; Vacher, L.</creatorcontrib><description>One of the clear predictions of string theory is the presence of a dynamical scalar partner of the spin-2 graviton, known as the dilaton. This will violate the Einstein equivalence principle, leading to a plethora of possibly observable consequences which in a cosmological context include dynamical dark energy and spacetime variations of nature's fundamental constants. The runaway dilaton scenario of Damour, Piazza, and Veneziano is a particularly interesting class of string theory inspired models which can in principle reconcile a massless dilaton with experimental data. Here we use the latest background cosmology observations, astrophysical and laboratory tests of the stability of the fine-structure constant, and local tests of the weak equivalence principle to provide updated constraints on this scenario, under various simplifying assumptions. Overall we find consistency with the standard Λ CDM paradigm. We improve the existing constraints on the coupling of the dilaton to baryonic matter by a factor of 6 and to the dark sector by a factor of 2. At the one-sigma level the current data already exclude dark sector couplings of order unity, which would be their natural value.</description><identifier>ISSN: 2470-0010</identifier><identifier>EISSN: 2470-0029</identifier><identifier>DOI: 10.1103/PhysRevD.100.123514</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Astronomical models ; Astrophysics ; Constraint modelling ; Cosmology ; Couplings ; Dark energy ; Dilatons ; Equivalence principle ; General Relativity and Quantum Cosmology ; Gravitons ; High Energy Physics - Phenomenology ; High Energy Physics - Theory ; Laboratory tests ; Physics ; String theory ; Structural stability</subject><ispartof>Physical review. D, 2019-12, Vol.100 (12), p.1, Article 123514</ispartof><rights>Copyright American Physical Society Dec 15, 2019</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c311t-9a4e103251a855946638f06e94eff0688933bf7a0007091c19c3ddaf8b69f7903</citedby><cites>FETCH-LOGICAL-c311t-9a4e103251a855946638f06e94eff0688933bf7a0007091c19c3ddaf8b69f7903</cites><orcidid>0000-0002-4886-9261 ; 0000-0001-9551-1417</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,778,782,883,2865,2866,27911,27912</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02416893$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Martins, C. J. A. P.</creatorcontrib><creatorcontrib>Vacher, L.</creatorcontrib><title>Astrophysical and local constraints on string theory: Runaway dilaton models</title><title>Physical review. D</title><description>One of the clear predictions of string theory is the presence of a dynamical scalar partner of the spin-2 graviton, known as the dilaton. This will violate the Einstein equivalence principle, leading to a plethora of possibly observable consequences which in a cosmological context include dynamical dark energy and spacetime variations of nature's fundamental constants. The runaway dilaton scenario of Damour, Piazza, and Veneziano is a particularly interesting class of string theory inspired models which can in principle reconcile a massless dilaton with experimental data. Here we use the latest background cosmology observations, astrophysical and laboratory tests of the stability of the fine-structure constant, and local tests of the weak equivalence principle to provide updated constraints on this scenario, under various simplifying assumptions. Overall we find consistency with the standard Λ CDM paradigm. We improve the existing constraints on the coupling of the dilaton to baryonic matter by a factor of 6 and to the dark sector by a factor of 2. At the one-sigma level the current data already exclude dark sector couplings of order unity, which would be their natural value.</description><subject>Astronomical models</subject><subject>Astrophysics</subject><subject>Constraint modelling</subject><subject>Cosmology</subject><subject>Couplings</subject><subject>Dark energy</subject><subject>Dilatons</subject><subject>Equivalence principle</subject><subject>General Relativity and Quantum Cosmology</subject><subject>Gravitons</subject><subject>High Energy Physics - Phenomenology</subject><subject>High Energy Physics - Theory</subject><subject>Laboratory tests</subject><subject>Physics</subject><subject>String theory</subject><subject>Structural stability</subject><issn>2470-0010</issn><issn>2470-0029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9UE1Lw0AUXETBUvsLvAQ8eUh9L7v5WG-lflQIKEXPyzbZ2JQ0W3eTSv69r1Z7mmFmGIZh7Bphigj87m09-KXZP0wRSIl4jOKMjSKRQggQyfMTR7hkE-83QDQBmSKOWD7znbM7qqgL3QS6LYPGHlhhW3J03XY-sG1AvG4_g25trBvug2Xf6m89BGXd6I7srS1N46_YRaUbbyZ_OGYfT4_v80WYvz6_zGd5WHDELpRaGBoexaizOJYiSXhWQWKkMBVhlknOV1WqaWcKEguUBS9LXWWrRFapBD5mt8fetW7UztVb7QZlda0Ws1wdNIgEJlSzR8reHLM7Z7964zu1sb1raZ6KOBcRoICYUvyYKpz13pnqVIugDi-r_5dJIOX3Zf4DIwpv7A</recordid><startdate>20191210</startdate><enddate>20191210</enddate><creator>Martins, C. J. A. P.</creator><creator>Vacher, L.</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-4886-9261</orcidid><orcidid>https://orcid.org/0000-0001-9551-1417</orcidid></search><sort><creationdate>20191210</creationdate><title>Astrophysical and local constraints on string theory: Runaway dilaton models</title><author>Martins, C. J. A. P. ; Vacher, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-9a4e103251a855946638f06e94eff0688933bf7a0007091c19c3ddaf8b69f7903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Astronomical models</topic><topic>Astrophysics</topic><topic>Constraint modelling</topic><topic>Cosmology</topic><topic>Couplings</topic><topic>Dark energy</topic><topic>Dilatons</topic><topic>Equivalence principle</topic><topic>General Relativity and Quantum Cosmology</topic><topic>Gravitons</topic><topic>High Energy Physics - Phenomenology</topic><topic>High Energy Physics - Theory</topic><topic>Laboratory tests</topic><topic>Physics</topic><topic>String theory</topic><topic>Structural stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martins, C. J. A. P.</creatorcontrib><creatorcontrib>Vacher, L.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Physical review. D</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martins, C. J. A. P.</au><au>Vacher, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Astrophysical and local constraints on string theory: Runaway dilaton models</atitle><jtitle>Physical review. D</jtitle><date>2019-12-10</date><risdate>2019</risdate><volume>100</volume><issue>12</issue><spage>1</spage><pages>1-</pages><artnum>123514</artnum><issn>2470-0010</issn><eissn>2470-0029</eissn><abstract>One of the clear predictions of string theory is the presence of a dynamical scalar partner of the spin-2 graviton, known as the dilaton. This will violate the Einstein equivalence principle, leading to a plethora of possibly observable consequences which in a cosmological context include dynamical dark energy and spacetime variations of nature's fundamental constants. The runaway dilaton scenario of Damour, Piazza, and Veneziano is a particularly interesting class of string theory inspired models which can in principle reconcile a massless dilaton with experimental data. Here we use the latest background cosmology observations, astrophysical and laboratory tests of the stability of the fine-structure constant, and local tests of the weak equivalence principle to provide updated constraints on this scenario, under various simplifying assumptions. Overall we find consistency with the standard Λ CDM paradigm. We improve the existing constraints on the coupling of the dilaton to baryonic matter by a factor of 6 and to the dark sector by a factor of 2. At the one-sigma level the current data already exclude dark sector couplings of order unity, which would be their natural value.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevD.100.123514</doi><orcidid>https://orcid.org/0000-0002-4886-9261</orcidid><orcidid>https://orcid.org/0000-0001-9551-1417</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2470-0010
ispartof Physical review. D, 2019-12, Vol.100 (12), p.1, Article 123514
issn 2470-0010
2470-0029
language eng
recordid cdi_hal_primary_oai_HAL_hal_02416893v1
source American Physical Society Journals
subjects Astronomical models
Astrophysics
Constraint modelling
Cosmology
Couplings
Dark energy
Dilatons
Equivalence principle
General Relativity and Quantum Cosmology
Gravitons
High Energy Physics - Phenomenology
High Energy Physics - Theory
Laboratory tests
Physics
String theory
Structural stability
title Astrophysical and local constraints on string theory: Runaway dilaton models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T11%3A06%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Astrophysical%20and%20local%20constraints%20on%20string%20theory:%20Runaway%20dilaton%20models&rft.jtitle=Physical%20review.%20D&rft.au=Martins,%20C.%E2%80%89J.%E2%80%89A.%E2%80%89P.&rft.date=2019-12-10&rft.volume=100&rft.issue=12&rft.spage=1&rft.pages=1-&rft.artnum=123514&rft.issn=2470-0010&rft.eissn=2470-0029&rft_id=info:doi/10.1103/PhysRevD.100.123514&rft_dat=%3Cproquest_hal_p%3E2334201405%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2334201405&rft_id=info:pmid/&rfr_iscdi=true