A Unified Description of Intrinsically Disordered Protein Dynamics under Physiological Conditions Using NMR Spectroscopy

Intrinsically disordered proteins (IDPs) are flexible biomolecules whose essential functions are defined by their dynamic nature. Nuclear magnetic resonance (NMR) spectroscopy is ideally suited to the investigation of this behavior at atomic resolution. NMR relaxation is increasingly used to detect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2019-11, Vol.141 (44), p.17817-17829
Hauptverfasser: Adamski, Wiktor, Salvi, Nicola, Maurin, Damien, Magnat, Justine, Milles, Sigrid, Jensen, Malene Ringkjøbing, Abyzov, Anton, Moreau, Christophe J, Blackledge, Martin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 17829
container_issue 44
container_start_page 17817
container_title Journal of the American Chemical Society
container_volume 141
creator Adamski, Wiktor
Salvi, Nicola
Maurin, Damien
Magnat, Justine
Milles, Sigrid
Jensen, Malene Ringkjøbing
Abyzov, Anton
Moreau, Christophe J
Blackledge, Martin
description Intrinsically disordered proteins (IDPs) are flexible biomolecules whose essential functions are defined by their dynamic nature. Nuclear magnetic resonance (NMR) spectroscopy is ideally suited to the investigation of this behavior at atomic resolution. NMR relaxation is increasingly used to detect conformational dynamics in free and bound forms of IDPs under conditions approaching physiological, although a general framework providing a quantitative interpretation of these exquisitely sensitive probes as a function of experimental conditions is still lacking. Here, measuring an extensive set of relaxation rates sampling multiple-time-scale dynamics over a broad range of crowding conditions, we develop and test an integrated analytical description that accurately portrays the motion of IDPs as a function of the intrinsic properties of the crowded molecular environment. In particular we observe a strong dependence of both short-range and long-range motional time scales of the protein on the friction of the solvent. This tight coupling between the dynamic behavior of the IDP and its environment allows us to develop analytical expressions for protein motions and NMR relaxation properties that can be accurately applied over a vast range of experimental conditions. This unified dynamic description provides new insight into the physical behavior of IDPs, extending our ability to quantitatively investigate their conformational dynamics under complex environmental conditions, and accurately predicting relaxation rates reporting on motions on time scales up to tens of nanoseconds, both in vitro and in cellulo.
doi_str_mv 10.1021/jacs.9b09002
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02414561v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2302472295</sourcerecordid><originalsourceid>FETCH-LOGICAL-a396t-195e1c0ade8f2c3f30984f0d22859acf2f34a75c97018f087a34f9663f019f083</originalsourceid><addsrcrecordid>eNptkUtPAyEURonRaH3sXBuWmjjKY14sm1atSX1E7ZogA0ozhRFmjPPvZdKqG1fkXs49N_ABcIzRBUYEXy6FDBfsFTGEyBYY4YygJMMk3wYjFFtJUeZ0D-yHsIxlSkq8C_YozhguGR2BrzFcWKONquBUBelN0xpnodPw1rbe2GCkqOseTk1wvlI-co_etcpYOO2tWBkZYGfjBXx874NxtXsbJuDE2coMqgAXwdg3eH_3BJ8bJVvvgnRNfwh2tKiDOtqcB2BxffUymSXzh5vbyXieCMryNsEsU1giUalSE0k1RaxMNaoIKTMmpCaapqLIJCsQLjUqC0FTzfKcaoRZrOkBOFt730XNG29WwvfcCcNn4zkfeoikOM1y_Ikje7pmG-8-OhVavjJBqroWVrkucEIjXBDCsoier1EZ3xO80r9ujPiQCx9y4ZtcIn6yMXevK1X9wj9B_K0eppau8zZ-yv-ub7Qhlnk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2302472295</pqid></control><display><type>article</type><title>A Unified Description of Intrinsically Disordered Protein Dynamics under Physiological Conditions Using NMR Spectroscopy</title><source>American Chemical Society Journals</source><creator>Adamski, Wiktor ; Salvi, Nicola ; Maurin, Damien ; Magnat, Justine ; Milles, Sigrid ; Jensen, Malene Ringkjøbing ; Abyzov, Anton ; Moreau, Christophe J ; Blackledge, Martin</creator><creatorcontrib>Adamski, Wiktor ; Salvi, Nicola ; Maurin, Damien ; Magnat, Justine ; Milles, Sigrid ; Jensen, Malene Ringkjøbing ; Abyzov, Anton ; Moreau, Christophe J ; Blackledge, Martin</creatorcontrib><description>Intrinsically disordered proteins (IDPs) are flexible biomolecules whose essential functions are defined by their dynamic nature. Nuclear magnetic resonance (NMR) spectroscopy is ideally suited to the investigation of this behavior at atomic resolution. NMR relaxation is increasingly used to detect conformational dynamics in free and bound forms of IDPs under conditions approaching physiological, although a general framework providing a quantitative interpretation of these exquisitely sensitive probes as a function of experimental conditions is still lacking. Here, measuring an extensive set of relaxation rates sampling multiple-time-scale dynamics over a broad range of crowding conditions, we develop and test an integrated analytical description that accurately portrays the motion of IDPs as a function of the intrinsic properties of the crowded molecular environment. In particular we observe a strong dependence of both short-range and long-range motional time scales of the protein on the friction of the solvent. This tight coupling between the dynamic behavior of the IDP and its environment allows us to develop analytical expressions for protein motions and NMR relaxation properties that can be accurately applied over a vast range of experimental conditions. This unified dynamic description provides new insight into the physical behavior of IDPs, extending our ability to quantitatively investigate their conformational dynamics under complex environmental conditions, and accurately predicting relaxation rates reporting on motions on time scales up to tens of nanoseconds, both in vitro and in cellulo.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.9b09002</identifier><identifier>PMID: 31591893</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Biochemistry, Molecular Biology ; Life Sciences ; Structural Biology</subject><ispartof>Journal of the American Chemical Society, 2019-11, Vol.141 (44), p.17817-17829</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a396t-195e1c0ade8f2c3f30984f0d22859acf2f34a75c97018f087a34f9663f019f083</citedby><cites>FETCH-LOGICAL-a396t-195e1c0ade8f2c3f30984f0d22859acf2f34a75c97018f087a34f9663f019f083</cites><orcidid>0000-0003-0935-721X ; 0000-0003-1515-6908 ; 0000-0002-5463-9593 ; 0000-0003-0419-2196 ; 0000-0001-9362-9606</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.9b09002$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.9b09002$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31591893$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.univ-grenoble-alpes.fr/hal-02414561$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Adamski, Wiktor</creatorcontrib><creatorcontrib>Salvi, Nicola</creatorcontrib><creatorcontrib>Maurin, Damien</creatorcontrib><creatorcontrib>Magnat, Justine</creatorcontrib><creatorcontrib>Milles, Sigrid</creatorcontrib><creatorcontrib>Jensen, Malene Ringkjøbing</creatorcontrib><creatorcontrib>Abyzov, Anton</creatorcontrib><creatorcontrib>Moreau, Christophe J</creatorcontrib><creatorcontrib>Blackledge, Martin</creatorcontrib><title>A Unified Description of Intrinsically Disordered Protein Dynamics under Physiological Conditions Using NMR Spectroscopy</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Intrinsically disordered proteins (IDPs) are flexible biomolecules whose essential functions are defined by their dynamic nature. Nuclear magnetic resonance (NMR) spectroscopy is ideally suited to the investigation of this behavior at atomic resolution. NMR relaxation is increasingly used to detect conformational dynamics in free and bound forms of IDPs under conditions approaching physiological, although a general framework providing a quantitative interpretation of these exquisitely sensitive probes as a function of experimental conditions is still lacking. Here, measuring an extensive set of relaxation rates sampling multiple-time-scale dynamics over a broad range of crowding conditions, we develop and test an integrated analytical description that accurately portrays the motion of IDPs as a function of the intrinsic properties of the crowded molecular environment. In particular we observe a strong dependence of both short-range and long-range motional time scales of the protein on the friction of the solvent. This tight coupling between the dynamic behavior of the IDP and its environment allows us to develop analytical expressions for protein motions and NMR relaxation properties that can be accurately applied over a vast range of experimental conditions. This unified dynamic description provides new insight into the physical behavior of IDPs, extending our ability to quantitatively investigate their conformational dynamics under complex environmental conditions, and accurately predicting relaxation rates reporting on motions on time scales up to tens of nanoseconds, both in vitro and in cellulo.</description><subject>Biochemistry, Molecular Biology</subject><subject>Life Sciences</subject><subject>Structural Biology</subject><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNptkUtPAyEURonRaH3sXBuWmjjKY14sm1atSX1E7ZogA0ozhRFmjPPvZdKqG1fkXs49N_ABcIzRBUYEXy6FDBfsFTGEyBYY4YygJMMk3wYjFFtJUeZ0D-yHsIxlSkq8C_YozhguGR2BrzFcWKONquBUBelN0xpnodPw1rbe2GCkqOseTk1wvlI-co_etcpYOO2tWBkZYGfjBXx874NxtXsbJuDE2coMqgAXwdg3eH_3BJ8bJVvvgnRNfwh2tKiDOtqcB2BxffUymSXzh5vbyXieCMryNsEsU1giUalSE0k1RaxMNaoIKTMmpCaapqLIJCsQLjUqC0FTzfKcaoRZrOkBOFt730XNG29WwvfcCcNn4zkfeoikOM1y_Ikje7pmG-8-OhVavjJBqroWVrkucEIjXBDCsoier1EZ3xO80r9ujPiQCx9y4ZtcIn6yMXevK1X9wj9B_K0eppau8zZ-yv-ub7Qhlnk</recordid><startdate>20191106</startdate><enddate>20191106</enddate><creator>Adamski, Wiktor</creator><creator>Salvi, Nicola</creator><creator>Maurin, Damien</creator><creator>Magnat, Justine</creator><creator>Milles, Sigrid</creator><creator>Jensen, Malene Ringkjøbing</creator><creator>Abyzov, Anton</creator><creator>Moreau, Christophe J</creator><creator>Blackledge, Martin</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-0935-721X</orcidid><orcidid>https://orcid.org/0000-0003-1515-6908</orcidid><orcidid>https://orcid.org/0000-0002-5463-9593</orcidid><orcidid>https://orcid.org/0000-0003-0419-2196</orcidid><orcidid>https://orcid.org/0000-0001-9362-9606</orcidid></search><sort><creationdate>20191106</creationdate><title>A Unified Description of Intrinsically Disordered Protein Dynamics under Physiological Conditions Using NMR Spectroscopy</title><author>Adamski, Wiktor ; Salvi, Nicola ; Maurin, Damien ; Magnat, Justine ; Milles, Sigrid ; Jensen, Malene Ringkjøbing ; Abyzov, Anton ; Moreau, Christophe J ; Blackledge, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a396t-195e1c0ade8f2c3f30984f0d22859acf2f34a75c97018f087a34f9663f019f083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Biochemistry, Molecular Biology</topic><topic>Life Sciences</topic><topic>Structural Biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Adamski, Wiktor</creatorcontrib><creatorcontrib>Salvi, Nicola</creatorcontrib><creatorcontrib>Maurin, Damien</creatorcontrib><creatorcontrib>Magnat, Justine</creatorcontrib><creatorcontrib>Milles, Sigrid</creatorcontrib><creatorcontrib>Jensen, Malene Ringkjøbing</creatorcontrib><creatorcontrib>Abyzov, Anton</creatorcontrib><creatorcontrib>Moreau, Christophe J</creatorcontrib><creatorcontrib>Blackledge, Martin</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Adamski, Wiktor</au><au>Salvi, Nicola</au><au>Maurin, Damien</au><au>Magnat, Justine</au><au>Milles, Sigrid</au><au>Jensen, Malene Ringkjøbing</au><au>Abyzov, Anton</au><au>Moreau, Christophe J</au><au>Blackledge, Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Unified Description of Intrinsically Disordered Protein Dynamics under Physiological Conditions Using NMR Spectroscopy</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2019-11-06</date><risdate>2019</risdate><volume>141</volume><issue>44</issue><spage>17817</spage><epage>17829</epage><pages>17817-17829</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>Intrinsically disordered proteins (IDPs) are flexible biomolecules whose essential functions are defined by their dynamic nature. Nuclear magnetic resonance (NMR) spectroscopy is ideally suited to the investigation of this behavior at atomic resolution. NMR relaxation is increasingly used to detect conformational dynamics in free and bound forms of IDPs under conditions approaching physiological, although a general framework providing a quantitative interpretation of these exquisitely sensitive probes as a function of experimental conditions is still lacking. Here, measuring an extensive set of relaxation rates sampling multiple-time-scale dynamics over a broad range of crowding conditions, we develop and test an integrated analytical description that accurately portrays the motion of IDPs as a function of the intrinsic properties of the crowded molecular environment. In particular we observe a strong dependence of both short-range and long-range motional time scales of the protein on the friction of the solvent. This tight coupling between the dynamic behavior of the IDP and its environment allows us to develop analytical expressions for protein motions and NMR relaxation properties that can be accurately applied over a vast range of experimental conditions. This unified dynamic description provides new insight into the physical behavior of IDPs, extending our ability to quantitatively investigate their conformational dynamics under complex environmental conditions, and accurately predicting relaxation rates reporting on motions on time scales up to tens of nanoseconds, both in vitro and in cellulo.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>31591893</pmid><doi>10.1021/jacs.9b09002</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-0935-721X</orcidid><orcidid>https://orcid.org/0000-0003-1515-6908</orcidid><orcidid>https://orcid.org/0000-0002-5463-9593</orcidid><orcidid>https://orcid.org/0000-0003-0419-2196</orcidid><orcidid>https://orcid.org/0000-0001-9362-9606</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2019-11, Vol.141 (44), p.17817-17829
issn 0002-7863
1520-5126
language eng
recordid cdi_hal_primary_oai_HAL_hal_02414561v1
source American Chemical Society Journals
subjects Biochemistry, Molecular Biology
Life Sciences
Structural Biology
title A Unified Description of Intrinsically Disordered Protein Dynamics under Physiological Conditions Using NMR Spectroscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T09%3A04%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Unified%20Description%20of%20Intrinsically%20Disordered%20Protein%20Dynamics%20under%20Physiological%20Conditions%20Using%20NMR%20Spectroscopy&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Adamski,%20Wiktor&rft.date=2019-11-06&rft.volume=141&rft.issue=44&rft.spage=17817&rft.epage=17829&rft.pages=17817-17829&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.9b09002&rft_dat=%3Cproquest_hal_p%3E2302472295%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2302472295&rft_id=info:pmid/31591893&rfr_iscdi=true