Transcriptional integration of the responses to iron availability in Arabidopsis by the bHLH factor ILR3

Iron (Fe) homeostasis is crucial for all living organisms. In mammals, an integrated posttranscriptional mechanism couples the regulation of both Fe deficiency and Fe excess responses. Whether in plants an integrated control mechanism involving common players regulates responses both to deficiency a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The New phytologist 2019-08, Vol.223 (3), p.1433-1446
Hauptverfasser: Tissot, Nicolas, Robe, Kevin, Gao, Fei, Grant-Grant, Susana, Boucherez, Jossia, Bellegarde, Fanny, Maghiaoui, Amel, Marcelin, Romain, Izquierdo, Esther, Benhamed, Moussa, Martin, Antoine, Vignols, Florence, Roschzttardtz, Hannetz, Gaymard, Frédéric, Briat, Jean-François, Dubos, Christian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1446
container_issue 3
container_start_page 1433
container_title The New phytologist
container_volume 223
creator Tissot, Nicolas
Robe, Kevin
Gao, Fei
Grant-Grant, Susana
Boucherez, Jossia
Bellegarde, Fanny
Maghiaoui, Amel
Marcelin, Romain
Izquierdo, Esther
Benhamed, Moussa
Martin, Antoine
Vignols, Florence
Roschzttardtz, Hannetz
Gaymard, Frédéric
Briat, Jean-François
Dubos, Christian
description Iron (Fe) homeostasis is crucial for all living organisms. In mammals, an integrated posttranscriptional mechanism couples the regulation of both Fe deficiency and Fe excess responses. Whether in plants an integrated control mechanism involving common players regulates responses both to deficiency and to excess is still to be determined. In this study, molecular, genetic and biochemical approaches were used to investigate transcriptional responses to both Fe deficiency and excess. A transcriptional activator of responses to Fe shortage in Arabidopsis, called bHLH105/ILR3, was found to also negatively regulate the expression of ferritin genes, which are markers of the plant’s response to Fe excess. Further investigations revealed that ILR3 repressed the expression of several structural genes that function in the control of Fe homeostasis. ILR3 interacts directly with the promoter of its target genes, and repressive activity was conferred by its dimerisation with bHLH47/PYE. Last, this study highlighted that important facets of plant growth in response to Fe deficiency or excess rely on ILR3 activity. Altogether, the data presented herein support that ILR3 is at the centre of the transcriptional regulatory network that controls Fe homeostasis in Arabidopsis, in which it acts as both transcriptional activator and repressor.
doi_str_mv 10.1111/nph.15753
format Article
fullrecord <record><control><sourceid>jstor_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02414006v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26759486</jstor_id><sourcerecordid>26759486</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5103-616d811eeb529835bb5399237cb9cd6b315a9fa50ae3aa5e08cd4f0ac96d85a53</originalsourceid><addsrcrecordid>eNp1kVFLHDEUhUNpqVvtgz-gJeBL-zCaTCaZyeMitiMMKqLQt3CTybhZZidjMqvsv2_W1S0IzUPCTb5zbrgHoWNKTmlaZ8O4OKW85OwDmtFCyKyirPyIZoTkVSYK8ecAfYlxSQiRXOSf0QEjZclEUc7Q4i7AEE1w4-T8AD12w2QfAmwr7Ds8LSwONo5-iDbiyWMX0gM8getBu95Nm6TA85CK1o_RRaw3LyJdNzXuwEw-4Mvmlh2hTx300X59PQ_R_a-Lu_M6a65_X57Pm8xwSlgmqGgrSq3VPJcV41pzJmXOSqOlaYVmlIPsgBOwDIBbUpm26AgYmXQcODtEP3e-C-jVGNwKwkZ5cKqeN2p7R_KCFoSIJ5rYHzt2DP5xbeOkVi4a2_cwWL-OKqcVo1Xay4SevEOXfh3SwBKVb0dPOWX_mpvgYwy22_-AErWNSqWo1EtUif3-6rjWK9vuybdsEnC2A55dbzf_d1JXN_Wb5bedYhnT2PeKXJRcFpVgfwEid6Xg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2257531513</pqid></control><display><type>article</type><title>Transcriptional integration of the responses to iron availability in Arabidopsis by the bHLH factor ILR3</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Online Library Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Tissot, Nicolas ; Robe, Kevin ; Gao, Fei ; Grant-Grant, Susana ; Boucherez, Jossia ; Bellegarde, Fanny ; Maghiaoui, Amel ; Marcelin, Romain ; Izquierdo, Esther ; Benhamed, Moussa ; Martin, Antoine ; Vignols, Florence ; Roschzttardtz, Hannetz ; Gaymard, Frédéric ; Briat, Jean-François ; Dubos, Christian</creator><creatorcontrib>Tissot, Nicolas ; Robe, Kevin ; Gao, Fei ; Grant-Grant, Susana ; Boucherez, Jossia ; Bellegarde, Fanny ; Maghiaoui, Amel ; Marcelin, Romain ; Izquierdo, Esther ; Benhamed, Moussa ; Martin, Antoine ; Vignols, Florence ; Roschzttardtz, Hannetz ; Gaymard, Frédéric ; Briat, Jean-François ; Dubos, Christian</creatorcontrib><description>Iron (Fe) homeostasis is crucial for all living organisms. In mammals, an integrated posttranscriptional mechanism couples the regulation of both Fe deficiency and Fe excess responses. Whether in plants an integrated control mechanism involving common players regulates responses both to deficiency and to excess is still to be determined. In this study, molecular, genetic and biochemical approaches were used to investigate transcriptional responses to both Fe deficiency and excess. A transcriptional activator of responses to Fe shortage in Arabidopsis, called bHLH105/ILR3, was found to also negatively regulate the expression of ferritin genes, which are markers of the plant’s response to Fe excess. Further investigations revealed that ILR3 repressed the expression of several structural genes that function in the control of Fe homeostasis. ILR3 interacts directly with the promoter of its target genes, and repressive activity was conferred by its dimerisation with bHLH47/PYE. Last, this study highlighted that important facets of plant growth in response to Fe deficiency or excess rely on ILR3 activity. Altogether, the data presented herein support that ILR3 is at the centre of the transcriptional regulatory network that controls Fe homeostasis in Arabidopsis, in which it acts as both transcriptional activator and repressor.</description><identifier>ISSN: 0028-646X</identifier><identifier>EISSN: 1469-8137</identifier><identifier>DOI: 10.1111/nph.15753</identifier><identifier>PMID: 30773647</identifier><language>eng</language><publisher>England: Wiley</publisher><subject>Arabidopsis ; Arabidopsis - drug effects ; Arabidopsis - genetics ; Arabidopsis - growth &amp; development ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - metabolism ; Arabidopsis thaliana ; Basic Helix-Loop-Helix Transcription Factors - metabolism ; basic helix−loop−helix ; bHLH105 ; E-Box Elements - genetics ; Ferritin ; ferritins ; Ferritins - genetics ; Ferritins - metabolism ; Gene expression ; Gene Expression Regulation, Plant - drug effects ; Genes ; Genes, Plant ; Helix-loop-helix proteins (basic) ; Homeostasis ; ILR3 ; Integrated control ; Iron ; Iron - pharmacology ; Iron deficiency ; Life Sciences ; Models, Biological ; Plant breeding ; Plant growth ; Plant Leaves - drug effects ; Plant Leaves - metabolism ; Plant Roots - drug effects ; Plant Roots - growth &amp; development ; Post-transcription ; Promoter Regions, Genetic - genetics ; Protein Binding - drug effects ; PYE ; Seedlings - drug effects ; Seedlings - growth &amp; development ; Transcription, Genetic - drug effects ; Vegetal Biology</subject><ispartof>The New phytologist, 2019-08, Vol.223 (3), p.1433-1446</ispartof><rights>2019 INRA © 2019 New Phytologist Trust</rights><rights>2019 INRA © 2019 New Phytologist Trust</rights><rights>2019 INRA New Phytologist © 2019 New Phytologist Trust.</rights><rights>Copyright © 2019 New Phytologist Trust</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5103-616d811eeb529835bb5399237cb9cd6b315a9fa50ae3aa5e08cd4f0ac96d85a53</citedby><cites>FETCH-LOGICAL-c5103-616d811eeb529835bb5399237cb9cd6b315a9fa50ae3aa5e08cd4f0ac96d85a53</cites><orcidid>0000-0001-5486-3643 ; 0000-0002-4347-8499 ; 0000-0001-7221-5033 ; 0000-0002-2031-0407 ; 0000-0003-0448-4447 ; 0000-0002-6956-2904 ; 0000-0002-2614-2504 ; 0000-0001-7825-2142 ; 0000-0002-2716-748X ; 0000-0002-4181-1702</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26759486$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26759486$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,881,1411,1427,27901,27902,45550,45551,46384,46808,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30773647$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02414006$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Tissot, Nicolas</creatorcontrib><creatorcontrib>Robe, Kevin</creatorcontrib><creatorcontrib>Gao, Fei</creatorcontrib><creatorcontrib>Grant-Grant, Susana</creatorcontrib><creatorcontrib>Boucherez, Jossia</creatorcontrib><creatorcontrib>Bellegarde, Fanny</creatorcontrib><creatorcontrib>Maghiaoui, Amel</creatorcontrib><creatorcontrib>Marcelin, Romain</creatorcontrib><creatorcontrib>Izquierdo, Esther</creatorcontrib><creatorcontrib>Benhamed, Moussa</creatorcontrib><creatorcontrib>Martin, Antoine</creatorcontrib><creatorcontrib>Vignols, Florence</creatorcontrib><creatorcontrib>Roschzttardtz, Hannetz</creatorcontrib><creatorcontrib>Gaymard, Frédéric</creatorcontrib><creatorcontrib>Briat, Jean-François</creatorcontrib><creatorcontrib>Dubos, Christian</creatorcontrib><title>Transcriptional integration of the responses to iron availability in Arabidopsis by the bHLH factor ILR3</title><title>The New phytologist</title><addtitle>New Phytol</addtitle><description>Iron (Fe) homeostasis is crucial for all living organisms. In mammals, an integrated posttranscriptional mechanism couples the regulation of both Fe deficiency and Fe excess responses. Whether in plants an integrated control mechanism involving common players regulates responses both to deficiency and to excess is still to be determined. In this study, molecular, genetic and biochemical approaches were used to investigate transcriptional responses to both Fe deficiency and excess. A transcriptional activator of responses to Fe shortage in Arabidopsis, called bHLH105/ILR3, was found to also negatively regulate the expression of ferritin genes, which are markers of the plant’s response to Fe excess. Further investigations revealed that ILR3 repressed the expression of several structural genes that function in the control of Fe homeostasis. ILR3 interacts directly with the promoter of its target genes, and repressive activity was conferred by its dimerisation with bHLH47/PYE. Last, this study highlighted that important facets of plant growth in response to Fe deficiency or excess rely on ILR3 activity. Altogether, the data presented herein support that ILR3 is at the centre of the transcriptional regulatory network that controls Fe homeostasis in Arabidopsis, in which it acts as both transcriptional activator and repressor.</description><subject>Arabidopsis</subject><subject>Arabidopsis - drug effects</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - growth &amp; development</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Arabidopsis thaliana</subject><subject>Basic Helix-Loop-Helix Transcription Factors - metabolism</subject><subject>basic helix−loop−helix</subject><subject>bHLH105</subject><subject>E-Box Elements - genetics</subject><subject>Ferritin</subject><subject>ferritins</subject><subject>Ferritins - genetics</subject><subject>Ferritins - metabolism</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Plant - drug effects</subject><subject>Genes</subject><subject>Genes, Plant</subject><subject>Helix-loop-helix proteins (basic)</subject><subject>Homeostasis</subject><subject>ILR3</subject><subject>Integrated control</subject><subject>Iron</subject><subject>Iron - pharmacology</subject><subject>Iron deficiency</subject><subject>Life Sciences</subject><subject>Models, Biological</subject><subject>Plant breeding</subject><subject>Plant growth</subject><subject>Plant Leaves - drug effects</subject><subject>Plant Leaves - metabolism</subject><subject>Plant Roots - drug effects</subject><subject>Plant Roots - growth &amp; development</subject><subject>Post-transcription</subject><subject>Promoter Regions, Genetic - genetics</subject><subject>Protein Binding - drug effects</subject><subject>PYE</subject><subject>Seedlings - drug effects</subject><subject>Seedlings - growth &amp; development</subject><subject>Transcription, Genetic - drug effects</subject><subject>Vegetal Biology</subject><issn>0028-646X</issn><issn>1469-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kVFLHDEUhUNpqVvtgz-gJeBL-zCaTCaZyeMitiMMKqLQt3CTybhZZidjMqvsv2_W1S0IzUPCTb5zbrgHoWNKTmlaZ8O4OKW85OwDmtFCyKyirPyIZoTkVSYK8ecAfYlxSQiRXOSf0QEjZclEUc7Q4i7AEE1w4-T8AD12w2QfAmwr7Ds8LSwONo5-iDbiyWMX0gM8getBu95Nm6TA85CK1o_RRaw3LyJdNzXuwEw-4Mvmlh2hTx300X59PQ_R_a-Lu_M6a65_X57Pm8xwSlgmqGgrSq3VPJcV41pzJmXOSqOlaYVmlIPsgBOwDIBbUpm26AgYmXQcODtEP3e-C-jVGNwKwkZ5cKqeN2p7R_KCFoSIJ5rYHzt2DP5xbeOkVi4a2_cwWL-OKqcVo1Xay4SevEOXfh3SwBKVb0dPOWX_mpvgYwy22_-AErWNSqWo1EtUif3-6rjWK9vuybdsEnC2A55dbzf_d1JXN_Wb5bedYhnT2PeKXJRcFpVgfwEid6Xg</recordid><startdate>201908</startdate><enddate>201908</enddate><creator>Tissot, Nicolas</creator><creator>Robe, Kevin</creator><creator>Gao, Fei</creator><creator>Grant-Grant, Susana</creator><creator>Boucherez, Jossia</creator><creator>Bellegarde, Fanny</creator><creator>Maghiaoui, Amel</creator><creator>Marcelin, Romain</creator><creator>Izquierdo, Esther</creator><creator>Benhamed, Moussa</creator><creator>Martin, Antoine</creator><creator>Vignols, Florence</creator><creator>Roschzttardtz, Hannetz</creator><creator>Gaymard, Frédéric</creator><creator>Briat, Jean-François</creator><creator>Dubos, Christian</creator><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-5486-3643</orcidid><orcidid>https://orcid.org/0000-0002-4347-8499</orcidid><orcidid>https://orcid.org/0000-0001-7221-5033</orcidid><orcidid>https://orcid.org/0000-0002-2031-0407</orcidid><orcidid>https://orcid.org/0000-0003-0448-4447</orcidid><orcidid>https://orcid.org/0000-0002-6956-2904</orcidid><orcidid>https://orcid.org/0000-0002-2614-2504</orcidid><orcidid>https://orcid.org/0000-0001-7825-2142</orcidid><orcidid>https://orcid.org/0000-0002-2716-748X</orcidid><orcidid>https://orcid.org/0000-0002-4181-1702</orcidid></search><sort><creationdate>201908</creationdate><title>Transcriptional integration of the responses to iron availability in Arabidopsis by the bHLH factor ILR3</title><author>Tissot, Nicolas ; Robe, Kevin ; Gao, Fei ; Grant-Grant, Susana ; Boucherez, Jossia ; Bellegarde, Fanny ; Maghiaoui, Amel ; Marcelin, Romain ; Izquierdo, Esther ; Benhamed, Moussa ; Martin, Antoine ; Vignols, Florence ; Roschzttardtz, Hannetz ; Gaymard, Frédéric ; Briat, Jean-François ; Dubos, Christian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5103-616d811eeb529835bb5399237cb9cd6b315a9fa50ae3aa5e08cd4f0ac96d85a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Arabidopsis</topic><topic>Arabidopsis - drug effects</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - growth &amp; development</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Arabidopsis thaliana</topic><topic>Basic Helix-Loop-Helix Transcription Factors - metabolism</topic><topic>basic helix−loop−helix</topic><topic>bHLH105</topic><topic>E-Box Elements - genetics</topic><topic>Ferritin</topic><topic>ferritins</topic><topic>Ferritins - genetics</topic><topic>Ferritins - metabolism</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Plant - drug effects</topic><topic>Genes</topic><topic>Genes, Plant</topic><topic>Helix-loop-helix proteins (basic)</topic><topic>Homeostasis</topic><topic>ILR3</topic><topic>Integrated control</topic><topic>Iron</topic><topic>Iron - pharmacology</topic><topic>Iron deficiency</topic><topic>Life Sciences</topic><topic>Models, Biological</topic><topic>Plant breeding</topic><topic>Plant growth</topic><topic>Plant Leaves - drug effects</topic><topic>Plant Leaves - metabolism</topic><topic>Plant Roots - drug effects</topic><topic>Plant Roots - growth &amp; development</topic><topic>Post-transcription</topic><topic>Promoter Regions, Genetic - genetics</topic><topic>Protein Binding - drug effects</topic><topic>PYE</topic><topic>Seedlings - drug effects</topic><topic>Seedlings - growth &amp; development</topic><topic>Transcription, Genetic - drug effects</topic><topic>Vegetal Biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tissot, Nicolas</creatorcontrib><creatorcontrib>Robe, Kevin</creatorcontrib><creatorcontrib>Gao, Fei</creatorcontrib><creatorcontrib>Grant-Grant, Susana</creatorcontrib><creatorcontrib>Boucherez, Jossia</creatorcontrib><creatorcontrib>Bellegarde, Fanny</creatorcontrib><creatorcontrib>Maghiaoui, Amel</creatorcontrib><creatorcontrib>Marcelin, Romain</creatorcontrib><creatorcontrib>Izquierdo, Esther</creatorcontrib><creatorcontrib>Benhamed, Moussa</creatorcontrib><creatorcontrib>Martin, Antoine</creatorcontrib><creatorcontrib>Vignols, Florence</creatorcontrib><creatorcontrib>Roschzttardtz, Hannetz</creatorcontrib><creatorcontrib>Gaymard, Frédéric</creatorcontrib><creatorcontrib>Briat, Jean-François</creatorcontrib><creatorcontrib>Dubos, Christian</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>The New phytologist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tissot, Nicolas</au><au>Robe, Kevin</au><au>Gao, Fei</au><au>Grant-Grant, Susana</au><au>Boucherez, Jossia</au><au>Bellegarde, Fanny</au><au>Maghiaoui, Amel</au><au>Marcelin, Romain</au><au>Izquierdo, Esther</au><au>Benhamed, Moussa</au><au>Martin, Antoine</au><au>Vignols, Florence</au><au>Roschzttardtz, Hannetz</au><au>Gaymard, Frédéric</au><au>Briat, Jean-François</au><au>Dubos, Christian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transcriptional integration of the responses to iron availability in Arabidopsis by the bHLH factor ILR3</atitle><jtitle>The New phytologist</jtitle><addtitle>New Phytol</addtitle><date>2019-08</date><risdate>2019</risdate><volume>223</volume><issue>3</issue><spage>1433</spage><epage>1446</epage><pages>1433-1446</pages><issn>0028-646X</issn><eissn>1469-8137</eissn><abstract>Iron (Fe) homeostasis is crucial for all living organisms. In mammals, an integrated posttranscriptional mechanism couples the regulation of both Fe deficiency and Fe excess responses. Whether in plants an integrated control mechanism involving common players regulates responses both to deficiency and to excess is still to be determined. In this study, molecular, genetic and biochemical approaches were used to investigate transcriptional responses to both Fe deficiency and excess. A transcriptional activator of responses to Fe shortage in Arabidopsis, called bHLH105/ILR3, was found to also negatively regulate the expression of ferritin genes, which are markers of the plant’s response to Fe excess. Further investigations revealed that ILR3 repressed the expression of several structural genes that function in the control of Fe homeostasis. ILR3 interacts directly with the promoter of its target genes, and repressive activity was conferred by its dimerisation with bHLH47/PYE. Last, this study highlighted that important facets of plant growth in response to Fe deficiency or excess rely on ILR3 activity. Altogether, the data presented herein support that ILR3 is at the centre of the transcriptional regulatory network that controls Fe homeostasis in Arabidopsis, in which it acts as both transcriptional activator and repressor.</abstract><cop>England</cop><pub>Wiley</pub><pmid>30773647</pmid><doi>10.1111/nph.15753</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-5486-3643</orcidid><orcidid>https://orcid.org/0000-0002-4347-8499</orcidid><orcidid>https://orcid.org/0000-0001-7221-5033</orcidid><orcidid>https://orcid.org/0000-0002-2031-0407</orcidid><orcidid>https://orcid.org/0000-0003-0448-4447</orcidid><orcidid>https://orcid.org/0000-0002-6956-2904</orcidid><orcidid>https://orcid.org/0000-0002-2614-2504</orcidid><orcidid>https://orcid.org/0000-0001-7825-2142</orcidid><orcidid>https://orcid.org/0000-0002-2716-748X</orcidid><orcidid>https://orcid.org/0000-0002-4181-1702</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-646X
ispartof The New phytologist, 2019-08, Vol.223 (3), p.1433-1446
issn 0028-646X
1469-8137
language eng
recordid cdi_hal_primary_oai_HAL_hal_02414006v1
source Jstor Complete Legacy; MEDLINE; Wiley Online Library Journals Frontfile Complete; Wiley Online Library Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Arabidopsis
Arabidopsis - drug effects
Arabidopsis - genetics
Arabidopsis - growth & development
Arabidopsis Proteins - genetics
Arabidopsis Proteins - metabolism
Arabidopsis thaliana
Basic Helix-Loop-Helix Transcription Factors - metabolism
basic helix−loop−helix
bHLH105
E-Box Elements - genetics
Ferritin
ferritins
Ferritins - genetics
Ferritins - metabolism
Gene expression
Gene Expression Regulation, Plant - drug effects
Genes
Genes, Plant
Helix-loop-helix proteins (basic)
Homeostasis
ILR3
Integrated control
Iron
Iron - pharmacology
Iron deficiency
Life Sciences
Models, Biological
Plant breeding
Plant growth
Plant Leaves - drug effects
Plant Leaves - metabolism
Plant Roots - drug effects
Plant Roots - growth & development
Post-transcription
Promoter Regions, Genetic - genetics
Protein Binding - drug effects
PYE
Seedlings - drug effects
Seedlings - growth & development
Transcription, Genetic - drug effects
Vegetal Biology
title Transcriptional integration of the responses to iron availability in Arabidopsis by the bHLH factor ILR3
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T16%3A16%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transcriptional%20integration%20of%20the%20responses%20to%20iron%20availability%20in%20Arabidopsis%20by%20the%20bHLH%20factor%20ILR3&rft.jtitle=The%20New%20phytologist&rft.au=Tissot,%20Nicolas&rft.date=2019-08&rft.volume=223&rft.issue=3&rft.spage=1433&rft.epage=1446&rft.pages=1433-1446&rft.issn=0028-646X&rft.eissn=1469-8137&rft_id=info:doi/10.1111/nph.15753&rft_dat=%3Cjstor_hal_p%3E26759486%3C/jstor_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2257531513&rft_id=info:pmid/30773647&rft_jstor_id=26759486&rfr_iscdi=true