Microdosimetry Using Rhodamine B Within Macro- and Microsystems for Radiofrequency Signals Exposures of Biological Samples

Exposing living cells to a certain level of electromagnetic field (EMF) might induce some biological effects including temperature elevation. In this article, we studied two exposure systems at the macro and microscopic levels, allowing the study of the EMF effect on the biological samples exposed t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on microwave theory and techniques 2020-03, Vol.68 (3), p.1142-1150
Hauptverfasser: Nefzi, Amani, Carr, Lynn, Dalmay, Claire, Pothier, Arnaud, Leveque, Philippe, Arnaud-Cormos, Delia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1150
container_issue 3
container_start_page 1142
container_title IEEE transactions on microwave theory and techniques
container_volume 68
creator Nefzi, Amani
Carr, Lynn
Dalmay, Claire
Pothier, Arnaud
Leveque, Philippe
Arnaud-Cormos, Delia
description Exposing living cells to a certain level of electromagnetic field (EMF) might induce some biological effects including temperature elevation. In this article, we studied two exposure systems at the macro and microscopic levels, allowing the study of the EMF effect on the biological samples exposed to 1.8-GHz signals. The macrosystem was an open transverse electromagnetic (TEM) cell that served as a dosimetry reference for defining limitations and optimal conditions for the temperature calibration using Rhodamine B (RhodB). The microfluidic microsystem was based on the coplanar waveguide (CPW) electrodes. Temperature measurements are carried out with a fluorooptic probe to extract specific absorption rate (SAR) values that are compared with numerical dosimetry, based on an FDTD method. After calibration, the fluorescence fits well with the temperature variation measured by the probe. To investigate dosimetry at a microscopic level, the fluorescence of the temperature-dependent dye RhodB was measured by fluorescence microscopy within the microfluidic channel or the biological cells. Results evidenced that the technique is applicable for RhodB concentrations higher than 1 μm with a value of 50 μm recommended for reliable experiments. For steady detection and SAR assessments, temperature variations of a few tenths of degrees were required.
doi_str_mv 10.1109/TMTT.2019.2950191
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02412853v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8897573</ieee_id><sourcerecordid>2374696572</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-2c226509c57174503f0bf0c9dec3fe5eba582ca8615ce6fe938179ba9aa050163</originalsourceid><addsrcrecordid>eNo9kU9PGzEQxS1UJFLoB0C9WOqJw6b-E6_tIyAKSIkqQVCPluMdJ0a762BvUMOnx0sQp9GMfm80bx5C55RMKSX693KxXE4ZoXrKtCiFHqEJFUJWupbkG5oQQlWlZ4qcoO85P5d2JoiaoLdFcCk2MYcOhrTHTzn0a_ywiY3tQg_4Cv8Lwyb0eGELV2HbN_hDkvd5gC5jHxN-sE2IPsHLDnq3x49h3ds245v_25h3CTKOHl-F2MZ1cLbFj7bbtpDP0LEvGPz4rKfo6c_N8vqumv-9vb--nFeOSzJUzDFWC6KdkFSWo7knK0-cbsBxDwJWVijmrKqpcFB70FxRqVdWW0vKJ2p-ii4Oeze2NdsUOpv2Jtpg7i7nZpwRNqNMCf5KC_vrwG5TLG7yYJ7jLo1uDONyVutaSFYoeqDGP-QE_mstJWaMw4xxmDEO8xlH0fw8aAIAfPFKaSkk5-_MCIcs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2374696572</pqid></control><display><type>article</type><title>Microdosimetry Using Rhodamine B Within Macro- and Microsystems for Radiofrequency Signals Exposures of Biological Samples</title><source>IEEE Electronic Library (IEL)</source><creator>Nefzi, Amani ; Carr, Lynn ; Dalmay, Claire ; Pothier, Arnaud ; Leveque, Philippe ; Arnaud-Cormos, Delia</creator><creatorcontrib>Nefzi, Amani ; Carr, Lynn ; Dalmay, Claire ; Pothier, Arnaud ; Leveque, Philippe ; Arnaud-Cormos, Delia</creatorcontrib><description>Exposing living cells to a certain level of electromagnetic field (EMF) might induce some biological effects including temperature elevation. In this article, we studied two exposure systems at the macro and microscopic levels, allowing the study of the EMF effect on the biological samples exposed to 1.8-GHz signals. The macrosystem was an open transverse electromagnetic (TEM) cell that served as a dosimetry reference for defining limitations and optimal conditions for the temperature calibration using Rhodamine B (RhodB). The microfluidic microsystem was based on the coplanar waveguide (CPW) electrodes. Temperature measurements are carried out with a fluorooptic probe to extract specific absorption rate (SAR) values that are compared with numerical dosimetry, based on an FDTD method. After calibration, the fluorescence fits well with the temperature variation measured by the probe. To investigate dosimetry at a microscopic level, the fluorescence of the temperature-dependent dye RhodB was measured by fluorescence microscopy within the microfluidic channel or the biological cells. Results evidenced that the technique is applicable for RhodB concentrations higher than 1 μm with a value of 50 μm recommended for reliable experiments. For steady detection and SAR assessments, temperature variations of a few tenths of degrees were required.</description><identifier>ISSN: 0018-9480</identifier><identifier>EISSN: 1557-9670</identifier><identifier>DOI: 10.1109/TMTT.2019.2950191</identifier><identifier>CODEN: IETMAB</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Biological effects ; Biological properties ; Biological system modeling ; Calibration ; Coplanar waveguides ; Dosimeters ; Dosimetry ; Electromagnetic fields ; Electromagnetism ; Engineering Sciences ; Exposure ; Exposure systems ; Fluorescence ; Glass ; Microdosimeters ; microdosimetry ; microelectrodes ; Microfluidics ; Micromechanical devices ; Microscopy ; Radio frequency ; radiofrequency (RF) ; Rhodamine ; rhodamine B (RhodB) ; Temperature dependence ; Temperature measurement</subject><ispartof>IEEE transactions on microwave theory and techniques, 2020-03, Vol.68 (3), p.1142-1150</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c370t-2c226509c57174503f0bf0c9dec3fe5eba582ca8615ce6fe938179ba9aa050163</citedby><cites>FETCH-LOGICAL-c370t-2c226509c57174503f0bf0c9dec3fe5eba582ca8615ce6fe938179ba9aa050163</cites><orcidid>0000-0003-3687-436X ; 0000-0003-1896-250X ; 0000-0001-8858-0545 ; 0000-0002-3093-7334 ; 0000-0001-5479-8247</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8897573$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8897573$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://hal.science/hal-02412853$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Nefzi, Amani</creatorcontrib><creatorcontrib>Carr, Lynn</creatorcontrib><creatorcontrib>Dalmay, Claire</creatorcontrib><creatorcontrib>Pothier, Arnaud</creatorcontrib><creatorcontrib>Leveque, Philippe</creatorcontrib><creatorcontrib>Arnaud-Cormos, Delia</creatorcontrib><title>Microdosimetry Using Rhodamine B Within Macro- and Microsystems for Radiofrequency Signals Exposures of Biological Samples</title><title>IEEE transactions on microwave theory and techniques</title><addtitle>TMTT</addtitle><description>Exposing living cells to a certain level of electromagnetic field (EMF) might induce some biological effects including temperature elevation. In this article, we studied two exposure systems at the macro and microscopic levels, allowing the study of the EMF effect on the biological samples exposed to 1.8-GHz signals. The macrosystem was an open transverse electromagnetic (TEM) cell that served as a dosimetry reference for defining limitations and optimal conditions for the temperature calibration using Rhodamine B (RhodB). The microfluidic microsystem was based on the coplanar waveguide (CPW) electrodes. Temperature measurements are carried out with a fluorooptic probe to extract specific absorption rate (SAR) values that are compared with numerical dosimetry, based on an FDTD method. After calibration, the fluorescence fits well with the temperature variation measured by the probe. To investigate dosimetry at a microscopic level, the fluorescence of the temperature-dependent dye RhodB was measured by fluorescence microscopy within the microfluidic channel or the biological cells. Results evidenced that the technique is applicable for RhodB concentrations higher than 1 μm with a value of 50 μm recommended for reliable experiments. For steady detection and SAR assessments, temperature variations of a few tenths of degrees were required.</description><subject>Biological effects</subject><subject>Biological properties</subject><subject>Biological system modeling</subject><subject>Calibration</subject><subject>Coplanar waveguides</subject><subject>Dosimeters</subject><subject>Dosimetry</subject><subject>Electromagnetic fields</subject><subject>Electromagnetism</subject><subject>Engineering Sciences</subject><subject>Exposure</subject><subject>Exposure systems</subject><subject>Fluorescence</subject><subject>Glass</subject><subject>Microdosimeters</subject><subject>microdosimetry</subject><subject>microelectrodes</subject><subject>Microfluidics</subject><subject>Micromechanical devices</subject><subject>Microscopy</subject><subject>Radio frequency</subject><subject>radiofrequency (RF)</subject><subject>Rhodamine</subject><subject>rhodamine B (RhodB)</subject><subject>Temperature dependence</subject><subject>Temperature measurement</subject><issn>0018-9480</issn><issn>1557-9670</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kU9PGzEQxS1UJFLoB0C9WOqJw6b-E6_tIyAKSIkqQVCPluMdJ0a762BvUMOnx0sQp9GMfm80bx5C55RMKSX693KxXE4ZoXrKtCiFHqEJFUJWupbkG5oQQlWlZ4qcoO85P5d2JoiaoLdFcCk2MYcOhrTHTzn0a_ywiY3tQg_4Cv8Lwyb0eGELV2HbN_hDkvd5gC5jHxN-sE2IPsHLDnq3x49h3ds245v_25h3CTKOHl-F2MZ1cLbFj7bbtpDP0LEvGPz4rKfo6c_N8vqumv-9vb--nFeOSzJUzDFWC6KdkFSWo7knK0-cbsBxDwJWVijmrKqpcFB70FxRqVdWW0vKJ2p-ii4Oeze2NdsUOpv2Jtpg7i7nZpwRNqNMCf5KC_vrwG5TLG7yYJ7jLo1uDONyVutaSFYoeqDGP-QE_mstJWaMw4xxmDEO8xlH0fw8aAIAfPFKaSkk5-_MCIcs</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Nefzi, Amani</creator><creator>Carr, Lynn</creator><creator>Dalmay, Claire</creator><creator>Pothier, Arnaud</creator><creator>Leveque, Philippe</creator><creator>Arnaud-Cormos, Delia</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-3687-436X</orcidid><orcidid>https://orcid.org/0000-0003-1896-250X</orcidid><orcidid>https://orcid.org/0000-0001-8858-0545</orcidid><orcidid>https://orcid.org/0000-0002-3093-7334</orcidid><orcidid>https://orcid.org/0000-0001-5479-8247</orcidid></search><sort><creationdate>20200301</creationdate><title>Microdosimetry Using Rhodamine B Within Macro- and Microsystems for Radiofrequency Signals Exposures of Biological Samples</title><author>Nefzi, Amani ; Carr, Lynn ; Dalmay, Claire ; Pothier, Arnaud ; Leveque, Philippe ; Arnaud-Cormos, Delia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-2c226509c57174503f0bf0c9dec3fe5eba582ca8615ce6fe938179ba9aa050163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biological effects</topic><topic>Biological properties</topic><topic>Biological system modeling</topic><topic>Calibration</topic><topic>Coplanar waveguides</topic><topic>Dosimeters</topic><topic>Dosimetry</topic><topic>Electromagnetic fields</topic><topic>Electromagnetism</topic><topic>Engineering Sciences</topic><topic>Exposure</topic><topic>Exposure systems</topic><topic>Fluorescence</topic><topic>Glass</topic><topic>Microdosimeters</topic><topic>microdosimetry</topic><topic>microelectrodes</topic><topic>Microfluidics</topic><topic>Micromechanical devices</topic><topic>Microscopy</topic><topic>Radio frequency</topic><topic>radiofrequency (RF)</topic><topic>Rhodamine</topic><topic>rhodamine B (RhodB)</topic><topic>Temperature dependence</topic><topic>Temperature measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nefzi, Amani</creatorcontrib><creatorcontrib>Carr, Lynn</creatorcontrib><creatorcontrib>Dalmay, Claire</creatorcontrib><creatorcontrib>Pothier, Arnaud</creatorcontrib><creatorcontrib>Leveque, Philippe</creatorcontrib><creatorcontrib>Arnaud-Cormos, Delia</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>IEEE transactions on microwave theory and techniques</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nefzi, Amani</au><au>Carr, Lynn</au><au>Dalmay, Claire</au><au>Pothier, Arnaud</au><au>Leveque, Philippe</au><au>Arnaud-Cormos, Delia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microdosimetry Using Rhodamine B Within Macro- and Microsystems for Radiofrequency Signals Exposures of Biological Samples</atitle><jtitle>IEEE transactions on microwave theory and techniques</jtitle><stitle>TMTT</stitle><date>2020-03-01</date><risdate>2020</risdate><volume>68</volume><issue>3</issue><spage>1142</spage><epage>1150</epage><pages>1142-1150</pages><issn>0018-9480</issn><eissn>1557-9670</eissn><coden>IETMAB</coden><abstract>Exposing living cells to a certain level of electromagnetic field (EMF) might induce some biological effects including temperature elevation. In this article, we studied two exposure systems at the macro and microscopic levels, allowing the study of the EMF effect on the biological samples exposed to 1.8-GHz signals. The macrosystem was an open transverse electromagnetic (TEM) cell that served as a dosimetry reference for defining limitations and optimal conditions for the temperature calibration using Rhodamine B (RhodB). The microfluidic microsystem was based on the coplanar waveguide (CPW) electrodes. Temperature measurements are carried out with a fluorooptic probe to extract specific absorption rate (SAR) values that are compared with numerical dosimetry, based on an FDTD method. After calibration, the fluorescence fits well with the temperature variation measured by the probe. To investigate dosimetry at a microscopic level, the fluorescence of the temperature-dependent dye RhodB was measured by fluorescence microscopy within the microfluidic channel or the biological cells. Results evidenced that the technique is applicable for RhodB concentrations higher than 1 μm with a value of 50 μm recommended for reliable experiments. For steady detection and SAR assessments, temperature variations of a few tenths of degrees were required.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMTT.2019.2950191</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-3687-436X</orcidid><orcidid>https://orcid.org/0000-0003-1896-250X</orcidid><orcidid>https://orcid.org/0000-0001-8858-0545</orcidid><orcidid>https://orcid.org/0000-0002-3093-7334</orcidid><orcidid>https://orcid.org/0000-0001-5479-8247</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9480
ispartof IEEE transactions on microwave theory and techniques, 2020-03, Vol.68 (3), p.1142-1150
issn 0018-9480
1557-9670
language eng
recordid cdi_hal_primary_oai_HAL_hal_02412853v1
source IEEE Electronic Library (IEL)
subjects Biological effects
Biological properties
Biological system modeling
Calibration
Coplanar waveguides
Dosimeters
Dosimetry
Electromagnetic fields
Electromagnetism
Engineering Sciences
Exposure
Exposure systems
Fluorescence
Glass
Microdosimeters
microdosimetry
microelectrodes
Microfluidics
Micromechanical devices
Microscopy
Radio frequency
radiofrequency (RF)
Rhodamine
rhodamine B (RhodB)
Temperature dependence
Temperature measurement
title Microdosimetry Using Rhodamine B Within Macro- and Microsystems for Radiofrequency Signals Exposures of Biological Samples
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T01%3A01%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microdosimetry%20Using%20Rhodamine%20B%20Within%20Macro-%20and%20Microsystems%20for%20Radiofrequency%20Signals%20Exposures%20of%20Biological%20Samples&rft.jtitle=IEEE%20transactions%20on%20microwave%20theory%20and%20techniques&rft.au=Nefzi,%20Amani&rft.date=2020-03-01&rft.volume=68&rft.issue=3&rft.spage=1142&rft.epage=1150&rft.pages=1142-1150&rft.issn=0018-9480&rft.eissn=1557-9670&rft.coden=IETMAB&rft_id=info:doi/10.1109/TMTT.2019.2950191&rft_dat=%3Cproquest_RIE%3E2374696572%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2374696572&rft_id=info:pmid/&rft_ieee_id=8897573&rfr_iscdi=true