Microdosimetry Using Rhodamine B Within Macro- and Microsystems for Radiofrequency Signals Exposures of Biological Samples
Exposing living cells to a certain level of electromagnetic field (EMF) might induce some biological effects including temperature elevation. In this article, we studied two exposure systems at the macro and microscopic levels, allowing the study of the EMF effect on the biological samples exposed t...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on microwave theory and techniques 2020-03, Vol.68 (3), p.1142-1150 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1150 |
---|---|
container_issue | 3 |
container_start_page | 1142 |
container_title | IEEE transactions on microwave theory and techniques |
container_volume | 68 |
creator | Nefzi, Amani Carr, Lynn Dalmay, Claire Pothier, Arnaud Leveque, Philippe Arnaud-Cormos, Delia |
description | Exposing living cells to a certain level of electromagnetic field (EMF) might induce some biological effects including temperature elevation. In this article, we studied two exposure systems at the macro and microscopic levels, allowing the study of the EMF effect on the biological samples exposed to 1.8-GHz signals. The macrosystem was an open transverse electromagnetic (TEM) cell that served as a dosimetry reference for defining limitations and optimal conditions for the temperature calibration using Rhodamine B (RhodB). The microfluidic microsystem was based on the coplanar waveguide (CPW) electrodes. Temperature measurements are carried out with a fluorooptic probe to extract specific absorption rate (SAR) values that are compared with numerical dosimetry, based on an FDTD method. After calibration, the fluorescence fits well with the temperature variation measured by the probe. To investigate dosimetry at a microscopic level, the fluorescence of the temperature-dependent dye RhodB was measured by fluorescence microscopy within the microfluidic channel or the biological cells. Results evidenced that the technique is applicable for RhodB concentrations higher than 1 μm with a value of 50 μm recommended for reliable experiments. For steady detection and SAR assessments, temperature variations of a few tenths of degrees were required. |
doi_str_mv | 10.1109/TMTT.2019.2950191 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02412853v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8897573</ieee_id><sourcerecordid>2374696572</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-2c226509c57174503f0bf0c9dec3fe5eba582ca8615ce6fe938179ba9aa050163</originalsourceid><addsrcrecordid>eNo9kU9PGzEQxS1UJFLoB0C9WOqJw6b-E6_tIyAKSIkqQVCPluMdJ0a762BvUMOnx0sQp9GMfm80bx5C55RMKSX693KxXE4ZoXrKtCiFHqEJFUJWupbkG5oQQlWlZ4qcoO85P5d2JoiaoLdFcCk2MYcOhrTHTzn0a_ywiY3tQg_4Cv8Lwyb0eGELV2HbN_hDkvd5gC5jHxN-sE2IPsHLDnq3x49h3ds245v_25h3CTKOHl-F2MZ1cLbFj7bbtpDP0LEvGPz4rKfo6c_N8vqumv-9vb--nFeOSzJUzDFWC6KdkFSWo7knK0-cbsBxDwJWVijmrKqpcFB70FxRqVdWW0vKJ2p-ii4Oeze2NdsUOpv2Jtpg7i7nZpwRNqNMCf5KC_vrwG5TLG7yYJ7jLo1uDONyVutaSFYoeqDGP-QE_mstJWaMw4xxmDEO8xlH0fw8aAIAfPFKaSkk5-_MCIcs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2374696572</pqid></control><display><type>article</type><title>Microdosimetry Using Rhodamine B Within Macro- and Microsystems for Radiofrequency Signals Exposures of Biological Samples</title><source>IEEE Electronic Library (IEL)</source><creator>Nefzi, Amani ; Carr, Lynn ; Dalmay, Claire ; Pothier, Arnaud ; Leveque, Philippe ; Arnaud-Cormos, Delia</creator><creatorcontrib>Nefzi, Amani ; Carr, Lynn ; Dalmay, Claire ; Pothier, Arnaud ; Leveque, Philippe ; Arnaud-Cormos, Delia</creatorcontrib><description>Exposing living cells to a certain level of electromagnetic field (EMF) might induce some biological effects including temperature elevation. In this article, we studied two exposure systems at the macro and microscopic levels, allowing the study of the EMF effect on the biological samples exposed to 1.8-GHz signals. The macrosystem was an open transverse electromagnetic (TEM) cell that served as a dosimetry reference for defining limitations and optimal conditions for the temperature calibration using Rhodamine B (RhodB). The microfluidic microsystem was based on the coplanar waveguide (CPW) electrodes. Temperature measurements are carried out with a fluorooptic probe to extract specific absorption rate (SAR) values that are compared with numerical dosimetry, based on an FDTD method. After calibration, the fluorescence fits well with the temperature variation measured by the probe. To investigate dosimetry at a microscopic level, the fluorescence of the temperature-dependent dye RhodB was measured by fluorescence microscopy within the microfluidic channel or the biological cells. Results evidenced that the technique is applicable for RhodB concentrations higher than 1 μm with a value of 50 μm recommended for reliable experiments. For steady detection and SAR assessments, temperature variations of a few tenths of degrees were required.</description><identifier>ISSN: 0018-9480</identifier><identifier>EISSN: 1557-9670</identifier><identifier>DOI: 10.1109/TMTT.2019.2950191</identifier><identifier>CODEN: IETMAB</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Biological effects ; Biological properties ; Biological system modeling ; Calibration ; Coplanar waveguides ; Dosimeters ; Dosimetry ; Electromagnetic fields ; Electromagnetism ; Engineering Sciences ; Exposure ; Exposure systems ; Fluorescence ; Glass ; Microdosimeters ; microdosimetry ; microelectrodes ; Microfluidics ; Micromechanical devices ; Microscopy ; Radio frequency ; radiofrequency (RF) ; Rhodamine ; rhodamine B (RhodB) ; Temperature dependence ; Temperature measurement</subject><ispartof>IEEE transactions on microwave theory and techniques, 2020-03, Vol.68 (3), p.1142-1150</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c370t-2c226509c57174503f0bf0c9dec3fe5eba582ca8615ce6fe938179ba9aa050163</citedby><cites>FETCH-LOGICAL-c370t-2c226509c57174503f0bf0c9dec3fe5eba582ca8615ce6fe938179ba9aa050163</cites><orcidid>0000-0003-3687-436X ; 0000-0003-1896-250X ; 0000-0001-8858-0545 ; 0000-0002-3093-7334 ; 0000-0001-5479-8247</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8897573$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8897573$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://hal.science/hal-02412853$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Nefzi, Amani</creatorcontrib><creatorcontrib>Carr, Lynn</creatorcontrib><creatorcontrib>Dalmay, Claire</creatorcontrib><creatorcontrib>Pothier, Arnaud</creatorcontrib><creatorcontrib>Leveque, Philippe</creatorcontrib><creatorcontrib>Arnaud-Cormos, Delia</creatorcontrib><title>Microdosimetry Using Rhodamine B Within Macro- and Microsystems for Radiofrequency Signals Exposures of Biological Samples</title><title>IEEE transactions on microwave theory and techniques</title><addtitle>TMTT</addtitle><description>Exposing living cells to a certain level of electromagnetic field (EMF) might induce some biological effects including temperature elevation. In this article, we studied two exposure systems at the macro and microscopic levels, allowing the study of the EMF effect on the biological samples exposed to 1.8-GHz signals. The macrosystem was an open transverse electromagnetic (TEM) cell that served as a dosimetry reference for defining limitations and optimal conditions for the temperature calibration using Rhodamine B (RhodB). The microfluidic microsystem was based on the coplanar waveguide (CPW) electrodes. Temperature measurements are carried out with a fluorooptic probe to extract specific absorption rate (SAR) values that are compared with numerical dosimetry, based on an FDTD method. After calibration, the fluorescence fits well with the temperature variation measured by the probe. To investigate dosimetry at a microscopic level, the fluorescence of the temperature-dependent dye RhodB was measured by fluorescence microscopy within the microfluidic channel or the biological cells. Results evidenced that the technique is applicable for RhodB concentrations higher than 1 μm with a value of 50 μm recommended for reliable experiments. For steady detection and SAR assessments, temperature variations of a few tenths of degrees were required.</description><subject>Biological effects</subject><subject>Biological properties</subject><subject>Biological system modeling</subject><subject>Calibration</subject><subject>Coplanar waveguides</subject><subject>Dosimeters</subject><subject>Dosimetry</subject><subject>Electromagnetic fields</subject><subject>Electromagnetism</subject><subject>Engineering Sciences</subject><subject>Exposure</subject><subject>Exposure systems</subject><subject>Fluorescence</subject><subject>Glass</subject><subject>Microdosimeters</subject><subject>microdosimetry</subject><subject>microelectrodes</subject><subject>Microfluidics</subject><subject>Micromechanical devices</subject><subject>Microscopy</subject><subject>Radio frequency</subject><subject>radiofrequency (RF)</subject><subject>Rhodamine</subject><subject>rhodamine B (RhodB)</subject><subject>Temperature dependence</subject><subject>Temperature measurement</subject><issn>0018-9480</issn><issn>1557-9670</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kU9PGzEQxS1UJFLoB0C9WOqJw6b-E6_tIyAKSIkqQVCPluMdJ0a762BvUMOnx0sQp9GMfm80bx5C55RMKSX693KxXE4ZoXrKtCiFHqEJFUJWupbkG5oQQlWlZ4qcoO85P5d2JoiaoLdFcCk2MYcOhrTHTzn0a_ywiY3tQg_4Cv8Lwyb0eGELV2HbN_hDkvd5gC5jHxN-sE2IPsHLDnq3x49h3ds245v_25h3CTKOHl-F2MZ1cLbFj7bbtpDP0LEvGPz4rKfo6c_N8vqumv-9vb--nFeOSzJUzDFWC6KdkFSWo7knK0-cbsBxDwJWVijmrKqpcFB70FxRqVdWW0vKJ2p-ii4Oeze2NdsUOpv2Jtpg7i7nZpwRNqNMCf5KC_vrwG5TLG7yYJ7jLo1uDONyVutaSFYoeqDGP-QE_mstJWaMw4xxmDEO8xlH0fw8aAIAfPFKaSkk5-_MCIcs</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Nefzi, Amani</creator><creator>Carr, Lynn</creator><creator>Dalmay, Claire</creator><creator>Pothier, Arnaud</creator><creator>Leveque, Philippe</creator><creator>Arnaud-Cormos, Delia</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-3687-436X</orcidid><orcidid>https://orcid.org/0000-0003-1896-250X</orcidid><orcidid>https://orcid.org/0000-0001-8858-0545</orcidid><orcidid>https://orcid.org/0000-0002-3093-7334</orcidid><orcidid>https://orcid.org/0000-0001-5479-8247</orcidid></search><sort><creationdate>20200301</creationdate><title>Microdosimetry Using Rhodamine B Within Macro- and Microsystems for Radiofrequency Signals Exposures of Biological Samples</title><author>Nefzi, Amani ; Carr, Lynn ; Dalmay, Claire ; Pothier, Arnaud ; Leveque, Philippe ; Arnaud-Cormos, Delia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-2c226509c57174503f0bf0c9dec3fe5eba582ca8615ce6fe938179ba9aa050163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biological effects</topic><topic>Biological properties</topic><topic>Biological system modeling</topic><topic>Calibration</topic><topic>Coplanar waveguides</topic><topic>Dosimeters</topic><topic>Dosimetry</topic><topic>Electromagnetic fields</topic><topic>Electromagnetism</topic><topic>Engineering Sciences</topic><topic>Exposure</topic><topic>Exposure systems</topic><topic>Fluorescence</topic><topic>Glass</topic><topic>Microdosimeters</topic><topic>microdosimetry</topic><topic>microelectrodes</topic><topic>Microfluidics</topic><topic>Micromechanical devices</topic><topic>Microscopy</topic><topic>Radio frequency</topic><topic>radiofrequency (RF)</topic><topic>Rhodamine</topic><topic>rhodamine B (RhodB)</topic><topic>Temperature dependence</topic><topic>Temperature measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nefzi, Amani</creatorcontrib><creatorcontrib>Carr, Lynn</creatorcontrib><creatorcontrib>Dalmay, Claire</creatorcontrib><creatorcontrib>Pothier, Arnaud</creatorcontrib><creatorcontrib>Leveque, Philippe</creatorcontrib><creatorcontrib>Arnaud-Cormos, Delia</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>IEEE transactions on microwave theory and techniques</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nefzi, Amani</au><au>Carr, Lynn</au><au>Dalmay, Claire</au><au>Pothier, Arnaud</au><au>Leveque, Philippe</au><au>Arnaud-Cormos, Delia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microdosimetry Using Rhodamine B Within Macro- and Microsystems for Radiofrequency Signals Exposures of Biological Samples</atitle><jtitle>IEEE transactions on microwave theory and techniques</jtitle><stitle>TMTT</stitle><date>2020-03-01</date><risdate>2020</risdate><volume>68</volume><issue>3</issue><spage>1142</spage><epage>1150</epage><pages>1142-1150</pages><issn>0018-9480</issn><eissn>1557-9670</eissn><coden>IETMAB</coden><abstract>Exposing living cells to a certain level of electromagnetic field (EMF) might induce some biological effects including temperature elevation. In this article, we studied two exposure systems at the macro and microscopic levels, allowing the study of the EMF effect on the biological samples exposed to 1.8-GHz signals. The macrosystem was an open transverse electromagnetic (TEM) cell that served as a dosimetry reference for defining limitations and optimal conditions for the temperature calibration using Rhodamine B (RhodB). The microfluidic microsystem was based on the coplanar waveguide (CPW) electrodes. Temperature measurements are carried out with a fluorooptic probe to extract specific absorption rate (SAR) values that are compared with numerical dosimetry, based on an FDTD method. After calibration, the fluorescence fits well with the temperature variation measured by the probe. To investigate dosimetry at a microscopic level, the fluorescence of the temperature-dependent dye RhodB was measured by fluorescence microscopy within the microfluidic channel or the biological cells. Results evidenced that the technique is applicable for RhodB concentrations higher than 1 μm with a value of 50 μm recommended for reliable experiments. For steady detection and SAR assessments, temperature variations of a few tenths of degrees were required.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMTT.2019.2950191</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-3687-436X</orcidid><orcidid>https://orcid.org/0000-0003-1896-250X</orcidid><orcidid>https://orcid.org/0000-0001-8858-0545</orcidid><orcidid>https://orcid.org/0000-0002-3093-7334</orcidid><orcidid>https://orcid.org/0000-0001-5479-8247</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9480 |
ispartof | IEEE transactions on microwave theory and techniques, 2020-03, Vol.68 (3), p.1142-1150 |
issn | 0018-9480 1557-9670 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02412853v1 |
source | IEEE Electronic Library (IEL) |
subjects | Biological effects Biological properties Biological system modeling Calibration Coplanar waveguides Dosimeters Dosimetry Electromagnetic fields Electromagnetism Engineering Sciences Exposure Exposure systems Fluorescence Glass Microdosimeters microdosimetry microelectrodes Microfluidics Micromechanical devices Microscopy Radio frequency radiofrequency (RF) Rhodamine rhodamine B (RhodB) Temperature dependence Temperature measurement |
title | Microdosimetry Using Rhodamine B Within Macro- and Microsystems for Radiofrequency Signals Exposures of Biological Samples |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T01%3A01%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microdosimetry%20Using%20Rhodamine%20B%20Within%20Macro-%20and%20Microsystems%20for%20Radiofrequency%20Signals%20Exposures%20of%20Biological%20Samples&rft.jtitle=IEEE%20transactions%20on%20microwave%20theory%20and%20techniques&rft.au=Nefzi,%20Amani&rft.date=2020-03-01&rft.volume=68&rft.issue=3&rft.spage=1142&rft.epage=1150&rft.pages=1142-1150&rft.issn=0018-9480&rft.eissn=1557-9670&rft.coden=IETMAB&rft_id=info:doi/10.1109/TMTT.2019.2950191&rft_dat=%3Cproquest_RIE%3E2374696572%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2374696572&rft_id=info:pmid/&rft_ieee_id=8897573&rfr_iscdi=true |