Annual Phytoplankton Primary Production Estimation in a Temperate Estuary by Coupling PAM and Carbon Incorporation Methods
Phytoplankton primary production varies considerably with environmental parameters especially in dynamic ecosystems like estuaries. The aim of this study was to investigate short-term primary production along the salinity gradient of a temperate estuary over the course of 1 year. The combination of...
Gespeichert in:
Veröffentlicht in: | Estuaries and coasts 2018-07, Vol.41 (5), p.1337-1355 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1355 |
---|---|
container_issue | 5 |
container_start_page | 1337 |
container_title | Estuaries and coasts |
container_volume | 41 |
creator | Morelle, Jérôme Schapira, Mathilde Orvain, Francis Riou, Philippe Lopez, Pascal Jean Pierre-Duplessix, Olivier Rabiller, Emilie Maheux, Frank Simon, Benjamin Claquin, Pascal |
description | Phytoplankton primary production varies considerably with environmental parameters especially in dynamic ecosystems like estuaries. The aim of this study was to investigate short-term primary production along the salinity gradient of a temperate estuary over the course of 1 year. The combination of carbon incorporation and fluorescence methods enabled primary production estimation at short spatial and temporal scales. The electron requirement for carbon fixation was investigated in relation with physical-chemical parameters to accurately estimate primary production at high frequency. These results combined with the variability of the photic layer allowed the annual estimation of primary production along the estuary. Phytoplankton dynamics was closely related to salinity and turbidity gradients, which strongly influenced cells physiology and photoacclimatation. The number of electrons required to fix 1 mol of carbon (C) was ranged between 1.6 and 25 mol electron mol C⁻¹ with a mean annual value of 8±5 mol electron mol C⁻¹. This optimum value suggests that in nutrient replete conditions like estuaries, alternative electron flows are low, while electrons transfer from photosystem II to carbon fixation is highly efficient. A statistical model was used to improve the estimation of primary production from electron transport rate as a function of significant environmental parameters. Based on this model, daily carbon production in the Seine estuary (France) was estimated by considering light and photic zone variability. A mean annual daily primary production of 0.12±0.18 g C m⁻² day⁻¹ with a maximum of 1.18 g C m⁻² day⁻¹ in summer was estimated which lead to an annual mean of 64.75 g C m⁻² year⁻¹. This approach should be applied more frequently in dynamic ecosystems such as estuaries or coastal waters to accurately estimate primary production in those valuable ecosystems. |
doi_str_mv | 10.1007/s12237-018-0369-8 |
format | Article |
fullrecord | <record><control><sourceid>jstor_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02410790v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>44858114</jstor_id><sourcerecordid>44858114</sourcerecordid><originalsourceid>FETCH-LOGICAL-c481t-f3b11cfa6e83ec88ba423551ddad75152fb7979fceb5851a72112cf5e855d1163</originalsourceid><addsrcrecordid>eNp9kT9PwzAQxSMEElD4AAxIkZgYAj7_aZyxqgqt1IoOZbacxGlTgh1sB6l8ehyCysZ0p_P7vbP9ougG0AMglD46wJikCQKeIDLOEn4SXQBjWYJTAqfHHpPz6NK5PUKUMUQvoq-J1p1s4vXu4E3bSP3mjY7Xtn6X9hCqKbvC12E0cz7MftpaxzLeqPdWWelVf9L14vwQT03XNrXexuvJKpa6jKfS5oFY6MLY1tiBXym_M6W7is4q2Th1_VtH0evTbDOdJ8uX58V0skwKysEnFckBikqOFSeq4DyXFBPGoCxlmTJguMrTLM2qQuWMM5ApBsBFxRRnrAQYk1F0P_juZCPa4WXCyFrMJ0vRzxCmgNIMfULQ3g3a1pqPTjkv9qazOlxPYIRw-FmKeVDBoCqscc6q6mgLSPRxiCEOEeIQfRyiZ_DAuKDVW2X_nP-Dbgdo77yxxy2UcsYBKPkGVqiXSw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2002369428</pqid></control><display><type>article</type><title>Annual Phytoplankton Primary Production Estimation in a Temperate Estuary by Coupling PAM and Carbon Incorporation Methods</title><source>Jstor Complete Legacy</source><source>Springer Nature - Complete Springer Journals</source><creator>Morelle, Jérôme ; Schapira, Mathilde ; Orvain, Francis ; Riou, Philippe ; Lopez, Pascal Jean ; Pierre-Duplessix, Olivier ; Rabiller, Emilie ; Maheux, Frank ; Simon, Benjamin ; Claquin, Pascal</creator><creatorcontrib>Morelle, Jérôme ; Schapira, Mathilde ; Orvain, Francis ; Riou, Philippe ; Lopez, Pascal Jean ; Pierre-Duplessix, Olivier ; Rabiller, Emilie ; Maheux, Frank ; Simon, Benjamin ; Claquin, Pascal</creatorcontrib><description>Phytoplankton primary production varies considerably with environmental parameters especially in dynamic ecosystems like estuaries. The aim of this study was to investigate short-term primary production along the salinity gradient of a temperate estuary over the course of 1 year. The combination of carbon incorporation and fluorescence methods enabled primary production estimation at short spatial and temporal scales. The electron requirement for carbon fixation was investigated in relation with physical-chemical parameters to accurately estimate primary production at high frequency. These results combined with the variability of the photic layer allowed the annual estimation of primary production along the estuary. Phytoplankton dynamics was closely related to salinity and turbidity gradients, which strongly influenced cells physiology and photoacclimatation. The number of electrons required to fix 1 mol of carbon (C) was ranged between 1.6 and 25 mol electron mol C⁻¹ with a mean annual value of 8±5 mol electron mol C⁻¹. This optimum value suggests that in nutrient replete conditions like estuaries, alternative electron flows are low, while electrons transfer from photosystem II to carbon fixation is highly efficient. A statistical model was used to improve the estimation of primary production from electron transport rate as a function of significant environmental parameters. Based on this model, daily carbon production in the Seine estuary (France) was estimated by considering light and photic zone variability. A mean annual daily primary production of 0.12±0.18 g C m⁻² day⁻¹ with a maximum of 1.18 g C m⁻² day⁻¹ in summer was estimated which lead to an annual mean of 64.75 g C m⁻² year⁻¹. This approach should be applied more frequently in dynamic ecosystems such as estuaries or coastal waters to accurately estimate primary production in those valuable ecosystems.</description><identifier>ISSN: 1559-2723</identifier><identifier>EISSN: 1559-2731</identifier><identifier>DOI: 10.1007/s12237-018-0369-8</identifier><language>eng</language><publisher>New York: Springer Science+Business Media</publisher><subject>Annual ; Carbon ; Carbon fixation ; Coastal Sciences ; Coastal waters ; Dynamics ; Earth and Environmental Science ; Ecology ; Ecosystems ; Electron transport ; Electrons ; Environment ; Environmental factors ; Environmental Management ; Environmental Sciences ; Estuaries ; Estuarine dynamics ; Estuarine ecosystems ; Estuarine environments ; Fluorescence ; Freshwater & Marine Ecology ; Global Changes ; High frequency ; Mathematical models ; Mineral nutrients ; Parameter estimation ; Parameters ; Photosystem II ; Phytoplankton ; Primary production ; Production methods ; Salinity ; Salinity effects ; Salinity gradients ; Statistical models ; Studies ; Turbidity ; Variability ; Water and Health</subject><ispartof>Estuaries and coasts, 2018-07, Vol.41 (5), p.1337-1355</ispartof><rights>Coastal and Estuarine Research Federation 2018</rights><rights>Estuaries and Coasts is a copyright of Springer, (2018). All Rights Reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c481t-f3b11cfa6e83ec88ba423551ddad75152fb7979fceb5851a72112cf5e855d1163</citedby><cites>FETCH-LOGICAL-c481t-f3b11cfa6e83ec88ba423551ddad75152fb7979fceb5851a72112cf5e855d1163</cites><orcidid>0000-0002-5183-203X ; 0000-0002-8792-6150 ; 0000-0002-9914-4252</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/44858114$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/44858114$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,881,27903,27904,41467,42536,51297,57995,58228</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02410790$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Morelle, Jérôme</creatorcontrib><creatorcontrib>Schapira, Mathilde</creatorcontrib><creatorcontrib>Orvain, Francis</creatorcontrib><creatorcontrib>Riou, Philippe</creatorcontrib><creatorcontrib>Lopez, Pascal Jean</creatorcontrib><creatorcontrib>Pierre-Duplessix, Olivier</creatorcontrib><creatorcontrib>Rabiller, Emilie</creatorcontrib><creatorcontrib>Maheux, Frank</creatorcontrib><creatorcontrib>Simon, Benjamin</creatorcontrib><creatorcontrib>Claquin, Pascal</creatorcontrib><title>Annual Phytoplankton Primary Production Estimation in a Temperate Estuary by Coupling PAM and Carbon Incorporation Methods</title><title>Estuaries and coasts</title><addtitle>Estuaries and Coasts</addtitle><description>Phytoplankton primary production varies considerably with environmental parameters especially in dynamic ecosystems like estuaries. The aim of this study was to investigate short-term primary production along the salinity gradient of a temperate estuary over the course of 1 year. The combination of carbon incorporation and fluorescence methods enabled primary production estimation at short spatial and temporal scales. The electron requirement for carbon fixation was investigated in relation with physical-chemical parameters to accurately estimate primary production at high frequency. These results combined with the variability of the photic layer allowed the annual estimation of primary production along the estuary. Phytoplankton dynamics was closely related to salinity and turbidity gradients, which strongly influenced cells physiology and photoacclimatation. The number of electrons required to fix 1 mol of carbon (C) was ranged between 1.6 and 25 mol electron mol C⁻¹ with a mean annual value of 8±5 mol electron mol C⁻¹. This optimum value suggests that in nutrient replete conditions like estuaries, alternative electron flows are low, while electrons transfer from photosystem II to carbon fixation is highly efficient. A statistical model was used to improve the estimation of primary production from electron transport rate as a function of significant environmental parameters. Based on this model, daily carbon production in the Seine estuary (France) was estimated by considering light and photic zone variability. A mean annual daily primary production of 0.12±0.18 g C m⁻² day⁻¹ with a maximum of 1.18 g C m⁻² day⁻¹ in summer was estimated which lead to an annual mean of 64.75 g C m⁻² year⁻¹. This approach should be applied more frequently in dynamic ecosystems such as estuaries or coastal waters to accurately estimate primary production in those valuable ecosystems.</description><subject>Annual</subject><subject>Carbon</subject><subject>Carbon fixation</subject><subject>Coastal Sciences</subject><subject>Coastal waters</subject><subject>Dynamics</subject><subject>Earth and Environmental Science</subject><subject>Ecology</subject><subject>Ecosystems</subject><subject>Electron transport</subject><subject>Electrons</subject><subject>Environment</subject><subject>Environmental factors</subject><subject>Environmental Management</subject><subject>Environmental Sciences</subject><subject>Estuaries</subject><subject>Estuarine dynamics</subject><subject>Estuarine ecosystems</subject><subject>Estuarine environments</subject><subject>Fluorescence</subject><subject>Freshwater & Marine Ecology</subject><subject>Global Changes</subject><subject>High frequency</subject><subject>Mathematical models</subject><subject>Mineral nutrients</subject><subject>Parameter estimation</subject><subject>Parameters</subject><subject>Photosystem II</subject><subject>Phytoplankton</subject><subject>Primary production</subject><subject>Production methods</subject><subject>Salinity</subject><subject>Salinity effects</subject><subject>Salinity gradients</subject><subject>Statistical models</subject><subject>Studies</subject><subject>Turbidity</subject><subject>Variability</subject><subject>Water and Health</subject><issn>1559-2723</issn><issn>1559-2731</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kT9PwzAQxSMEElD4AAxIkZgYAj7_aZyxqgqt1IoOZbacxGlTgh1sB6l8ehyCysZ0p_P7vbP9ougG0AMglD46wJikCQKeIDLOEn4SXQBjWYJTAqfHHpPz6NK5PUKUMUQvoq-J1p1s4vXu4E3bSP3mjY7Xtn6X9hCqKbvC12E0cz7MftpaxzLeqPdWWelVf9L14vwQT03XNrXexuvJKpa6jKfS5oFY6MLY1tiBXym_M6W7is4q2Th1_VtH0evTbDOdJ8uX58V0skwKysEnFckBikqOFSeq4DyXFBPGoCxlmTJguMrTLM2qQuWMM5ApBsBFxRRnrAQYk1F0P_juZCPa4WXCyFrMJ0vRzxCmgNIMfULQ3g3a1pqPTjkv9qazOlxPYIRw-FmKeVDBoCqscc6q6mgLSPRxiCEOEeIQfRyiZ_DAuKDVW2X_nP-Dbgdo77yxxy2UcsYBKPkGVqiXSw</recordid><startdate>20180701</startdate><enddate>20180701</enddate><creator>Morelle, Jérôme</creator><creator>Schapira, Mathilde</creator><creator>Orvain, Francis</creator><creator>Riou, Philippe</creator><creator>Lopez, Pascal Jean</creator><creator>Pierre-Duplessix, Olivier</creator><creator>Rabiller, Emilie</creator><creator>Maheux, Frank</creator><creator>Simon, Benjamin</creator><creator>Claquin, Pascal</creator><general>Springer Science+Business Media</general><general>Springer US</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7SN</scope><scope>7TN</scope><scope>7U7</scope><scope>7UA</scope><scope>7XB</scope><scope>8AO</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H95</scope><scope>H96</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>M2O</scope><scope>M7N</scope><scope>MBDVC</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-5183-203X</orcidid><orcidid>https://orcid.org/0000-0002-8792-6150</orcidid><orcidid>https://orcid.org/0000-0002-9914-4252</orcidid></search><sort><creationdate>20180701</creationdate><title>Annual Phytoplankton Primary Production Estimation in a Temperate Estuary by Coupling PAM and Carbon Incorporation Methods</title><author>Morelle, Jérôme ; Schapira, Mathilde ; Orvain, Francis ; Riou, Philippe ; Lopez, Pascal Jean ; Pierre-Duplessix, Olivier ; Rabiller, Emilie ; Maheux, Frank ; Simon, Benjamin ; Claquin, Pascal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c481t-f3b11cfa6e83ec88ba423551ddad75152fb7979fceb5851a72112cf5e855d1163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Annual</topic><topic>Carbon</topic><topic>Carbon fixation</topic><topic>Coastal Sciences</topic><topic>Coastal waters</topic><topic>Dynamics</topic><topic>Earth and Environmental Science</topic><topic>Ecology</topic><topic>Ecosystems</topic><topic>Electron transport</topic><topic>Electrons</topic><topic>Environment</topic><topic>Environmental factors</topic><topic>Environmental Management</topic><topic>Environmental Sciences</topic><topic>Estuaries</topic><topic>Estuarine dynamics</topic><topic>Estuarine ecosystems</topic><topic>Estuarine environments</topic><topic>Fluorescence</topic><topic>Freshwater & Marine Ecology</topic><topic>Global Changes</topic><topic>High frequency</topic><topic>Mathematical models</topic><topic>Mineral nutrients</topic><topic>Parameter estimation</topic><topic>Parameters</topic><topic>Photosystem II</topic><topic>Phytoplankton</topic><topic>Primary production</topic><topic>Production methods</topic><topic>Salinity</topic><topic>Salinity effects</topic><topic>Salinity gradients</topic><topic>Statistical models</topic><topic>Studies</topic><topic>Turbidity</topic><topic>Variability</topic><topic>Water and Health</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morelle, Jérôme</creatorcontrib><creatorcontrib>Schapira, Mathilde</creatorcontrib><creatorcontrib>Orvain, Francis</creatorcontrib><creatorcontrib>Riou, Philippe</creatorcontrib><creatorcontrib>Lopez, Pascal Jean</creatorcontrib><creatorcontrib>Pierre-Duplessix, Olivier</creatorcontrib><creatorcontrib>Rabiller, Emilie</creatorcontrib><creatorcontrib>Maheux, Frank</creatorcontrib><creatorcontrib>Simon, Benjamin</creatorcontrib><creatorcontrib>Claquin, Pascal</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Ecology Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Research Library (Corporate)</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Estuaries and coasts</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morelle, Jérôme</au><au>Schapira, Mathilde</au><au>Orvain, Francis</au><au>Riou, Philippe</au><au>Lopez, Pascal Jean</au><au>Pierre-Duplessix, Olivier</au><au>Rabiller, Emilie</au><au>Maheux, Frank</au><au>Simon, Benjamin</au><au>Claquin, Pascal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Annual Phytoplankton Primary Production Estimation in a Temperate Estuary by Coupling PAM and Carbon Incorporation Methods</atitle><jtitle>Estuaries and coasts</jtitle><stitle>Estuaries and Coasts</stitle><date>2018-07-01</date><risdate>2018</risdate><volume>41</volume><issue>5</issue><spage>1337</spage><epage>1355</epage><pages>1337-1355</pages><issn>1559-2723</issn><eissn>1559-2731</eissn><abstract>Phytoplankton primary production varies considerably with environmental parameters especially in dynamic ecosystems like estuaries. The aim of this study was to investigate short-term primary production along the salinity gradient of a temperate estuary over the course of 1 year. The combination of carbon incorporation and fluorescence methods enabled primary production estimation at short spatial and temporal scales. The electron requirement for carbon fixation was investigated in relation with physical-chemical parameters to accurately estimate primary production at high frequency. These results combined with the variability of the photic layer allowed the annual estimation of primary production along the estuary. Phytoplankton dynamics was closely related to salinity and turbidity gradients, which strongly influenced cells physiology and photoacclimatation. The number of electrons required to fix 1 mol of carbon (C) was ranged between 1.6 and 25 mol electron mol C⁻¹ with a mean annual value of 8±5 mol electron mol C⁻¹. This optimum value suggests that in nutrient replete conditions like estuaries, alternative electron flows are low, while electrons transfer from photosystem II to carbon fixation is highly efficient. A statistical model was used to improve the estimation of primary production from electron transport rate as a function of significant environmental parameters. Based on this model, daily carbon production in the Seine estuary (France) was estimated by considering light and photic zone variability. A mean annual daily primary production of 0.12±0.18 g C m⁻² day⁻¹ with a maximum of 1.18 g C m⁻² day⁻¹ in summer was estimated which lead to an annual mean of 64.75 g C m⁻² year⁻¹. This approach should be applied more frequently in dynamic ecosystems such as estuaries or coastal waters to accurately estimate primary production in those valuable ecosystems.</abstract><cop>New York</cop><pub>Springer Science+Business Media</pub><doi>10.1007/s12237-018-0369-8</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-5183-203X</orcidid><orcidid>https://orcid.org/0000-0002-8792-6150</orcidid><orcidid>https://orcid.org/0000-0002-9914-4252</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1559-2723 |
ispartof | Estuaries and coasts, 2018-07, Vol.41 (5), p.1337-1355 |
issn | 1559-2723 1559-2731 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02410790v1 |
source | Jstor Complete Legacy; Springer Nature - Complete Springer Journals |
subjects | Annual Carbon Carbon fixation Coastal Sciences Coastal waters Dynamics Earth and Environmental Science Ecology Ecosystems Electron transport Electrons Environment Environmental factors Environmental Management Environmental Sciences Estuaries Estuarine dynamics Estuarine ecosystems Estuarine environments Fluorescence Freshwater & Marine Ecology Global Changes High frequency Mathematical models Mineral nutrients Parameter estimation Parameters Photosystem II Phytoplankton Primary production Production methods Salinity Salinity effects Salinity gradients Statistical models Studies Turbidity Variability Water and Health |
title | Annual Phytoplankton Primary Production Estimation in a Temperate Estuary by Coupling PAM and Carbon Incorporation Methods |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T18%3A17%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Annual%20Phytoplankton%20Primary%20Production%20Estimation%20in%20a%20Temperate%20Estuary%20by%20Coupling%20PAM%20and%20Carbon%20Incorporation%20Methods&rft.jtitle=Estuaries%20and%20coasts&rft.au=Morelle,%20J%C3%A9r%C3%B4me&rft.date=2018-07-01&rft.volume=41&rft.issue=5&rft.spage=1337&rft.epage=1355&rft.pages=1337-1355&rft.issn=1559-2723&rft.eissn=1559-2731&rft_id=info:doi/10.1007/s12237-018-0369-8&rft_dat=%3Cjstor_hal_p%3E44858114%3C/jstor_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2002369428&rft_id=info:pmid/&rft_jstor_id=44858114&rfr_iscdi=true |