Fluid‐structure interaction in two‐phase flow using a discrete forcing method
Summary The numerical simulation of interaction between structures and two‐phase flows is a major concern for many industrial applications. Using a discrete forcing method (see the work of Benguigui et al) (implemented in a multiphase CFD code based on a two‐fluid approach) to track the solid motion...
Gespeichert in:
Veröffentlicht in: | International journal for numerical methods in fluids 2019-10, Vol.91 (5), p.247-261 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 261 |
---|---|
container_issue | 5 |
container_start_page | 247 |
container_title | International journal for numerical methods in fluids |
container_volume | 91 |
creator | Benguigui, W. Laviéville, J. Merigoux, N. |
description | Summary
The numerical simulation of interaction between structures and two‐phase flows is a major concern for many industrial applications. Using a discrete forcing method (see the work of Benguigui et al) (implemented in a multiphase CFD code based on a two‐fluid approach) to track the solid motion in two‐phase flow, an iterative fluid‐structure coupling is developed to allow free‐motion of multiple solids (with any kind of geometry) due to two‐phase fluid forces. As the fluid‐structure interface is located thanks to a time and space dependent porosity on a cartesian grid, the fluid force computation is accommodated to the interface tracking method. A Newmark algorithm is used to estimate the solid motion. The iterative coupling is addressed in detail going from the algorithm to the determination of its convergence parameter. Three application cases are proposed to validate the method from motion under a single‐ to a two‐phase flow.
The numerical simulation of interaction between structures and two‐phase flows is a major concern for many industrial applications. In this article, an iterative fluid‐structure coupling using a discrete forcing method to follow solid motions in two‐phase flow is proposed and validated. |
doi_str_mv | 10.1002/fld.4753 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02401208v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2287220888</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3983-31b78b98aa18298e4f0e47d13378a22f8a2e80e6267693b442b3b2c91ce9b2ee3</originalsourceid><addsrcrecordid>eNp10MFKwzAYB_AgCs4p-AgFL3roTL7UJjmO6ZxQEEHPIW1Tl9E1M0kdu_kIPqNPYurEm5ck_PPj4-OP0DnBE4IxXDdtPcnYDT1AI4IFSzHN6SEaYWAkBSzIMTrxfoUxFsDpCD3N297UXx-fPri-Cr3TiemCdqoKxnbxnYStjd-bpfI6aVq7TXpvutdEJbXxldMhptZVQ7TWYWnrU3TUqNbrs997jF7md8-zRVo83j_MpkVaUcFpSknJeCm4UoSD4DprsM5YTShlXAE08dAc6xxylgtaZhmUtIRKkEqLErSmY3S1n7tUrdw4s1ZuJ60ycjEt5JBhyDABzN9JtBd7u3H2rdc-yJXtXRfXkwCcQVScR3W5V5Wz3jvd_I0lWA7lyliuHMqNNN3TrWn17l8n58Xtj_8GzVt7ag</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2287220888</pqid></control><display><type>article</type><title>Fluid‐structure interaction in two‐phase flow using a discrete forcing method</title><source>Wiley Online Library All Journals</source><creator>Benguigui, W. ; Laviéville, J. ; Merigoux, N.</creator><creatorcontrib>Benguigui, W. ; Laviéville, J. ; Merigoux, N.</creatorcontrib><description>Summary
The numerical simulation of interaction between structures and two‐phase flows is a major concern for many industrial applications. Using a discrete forcing method (see the work of Benguigui et al) (implemented in a multiphase CFD code based on a two‐fluid approach) to track the solid motion in two‐phase flow, an iterative fluid‐structure coupling is developed to allow free‐motion of multiple solids (with any kind of geometry) due to two‐phase fluid forces. As the fluid‐structure interface is located thanks to a time and space dependent porosity on a cartesian grid, the fluid force computation is accommodated to the interface tracking method. A Newmark algorithm is used to estimate the solid motion. The iterative coupling is addressed in detail going from the algorithm to the determination of its convergence parameter. Three application cases are proposed to validate the method from motion under a single‐ to a two‐phase flow.
The numerical simulation of interaction between structures and two‐phase flows is a major concern for many industrial applications. In this article, an iterative fluid‐structure coupling using a discrete forcing method to follow solid motions in two‐phase flow is proposed and validated.</description><identifier>ISSN: 0271-2091</identifier><identifier>EISSN: 1097-0363</identifier><identifier>DOI: 10.1002/fld.4753</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Algorithms ; Cartesian coordinates ; CFD ; Computation ; Computer simulation ; Coupling ; Engineering Sciences ; Fluid flow ; Fluid-structure interaction ; Fluids mechanics ; immersed boundary ; Industrial applications ; Iterative methods ; Mathematical models ; Mechanics ; Movement ; Porosity ; Time dependence ; Tracking ; two‐phase flow</subject><ispartof>International journal for numerical methods in fluids, 2019-10, Vol.91 (5), p.247-261</ispartof><rights>2019 John Wiley & Sons, Ltd.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3983-31b78b98aa18298e4f0e47d13378a22f8a2e80e6267693b442b3b2c91ce9b2ee3</citedby><cites>FETCH-LOGICAL-c3983-31b78b98aa18298e4f0e47d13378a22f8a2e80e6267693b442b3b2c91ce9b2ee3</cites><orcidid>0000-0001-5203-7401</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Ffld.4753$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Ffld.4753$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02401208$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Benguigui, W.</creatorcontrib><creatorcontrib>Laviéville, J.</creatorcontrib><creatorcontrib>Merigoux, N.</creatorcontrib><title>Fluid‐structure interaction in two‐phase flow using a discrete forcing method</title><title>International journal for numerical methods in fluids</title><description>Summary
The numerical simulation of interaction between structures and two‐phase flows is a major concern for many industrial applications. Using a discrete forcing method (see the work of Benguigui et al) (implemented in a multiphase CFD code based on a two‐fluid approach) to track the solid motion in two‐phase flow, an iterative fluid‐structure coupling is developed to allow free‐motion of multiple solids (with any kind of geometry) due to two‐phase fluid forces. As the fluid‐structure interface is located thanks to a time and space dependent porosity on a cartesian grid, the fluid force computation is accommodated to the interface tracking method. A Newmark algorithm is used to estimate the solid motion. The iterative coupling is addressed in detail going from the algorithm to the determination of its convergence parameter. Three application cases are proposed to validate the method from motion under a single‐ to a two‐phase flow.
The numerical simulation of interaction between structures and two‐phase flows is a major concern for many industrial applications. In this article, an iterative fluid‐structure coupling using a discrete forcing method to follow solid motions in two‐phase flow is proposed and validated.</description><subject>Algorithms</subject><subject>Cartesian coordinates</subject><subject>CFD</subject><subject>Computation</subject><subject>Computer simulation</subject><subject>Coupling</subject><subject>Engineering Sciences</subject><subject>Fluid flow</subject><subject>Fluid-structure interaction</subject><subject>Fluids mechanics</subject><subject>immersed boundary</subject><subject>Industrial applications</subject><subject>Iterative methods</subject><subject>Mathematical models</subject><subject>Mechanics</subject><subject>Movement</subject><subject>Porosity</subject><subject>Time dependence</subject><subject>Tracking</subject><subject>two‐phase flow</subject><issn>0271-2091</issn><issn>1097-0363</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp10MFKwzAYB_AgCs4p-AgFL3roTL7UJjmO6ZxQEEHPIW1Tl9E1M0kdu_kIPqNPYurEm5ck_PPj4-OP0DnBE4IxXDdtPcnYDT1AI4IFSzHN6SEaYWAkBSzIMTrxfoUxFsDpCD3N297UXx-fPri-Cr3TiemCdqoKxnbxnYStjd-bpfI6aVq7TXpvutdEJbXxldMhptZVQ7TWYWnrU3TUqNbrs997jF7md8-zRVo83j_MpkVaUcFpSknJeCm4UoSD4DprsM5YTShlXAE08dAc6xxylgtaZhmUtIRKkEqLErSmY3S1n7tUrdw4s1ZuJ60ycjEt5JBhyDABzN9JtBd7u3H2rdc-yJXtXRfXkwCcQVScR3W5V5Wz3jvd_I0lWA7lyliuHMqNNN3TrWn17l8n58Xtj_8GzVt7ag</recordid><startdate>20191020</startdate><enddate>20191020</enddate><creator>Benguigui, W.</creator><creator>Laviéville, J.</creator><creator>Merigoux, N.</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-5203-7401</orcidid></search><sort><creationdate>20191020</creationdate><title>Fluid‐structure interaction in two‐phase flow using a discrete forcing method</title><author>Benguigui, W. ; Laviéville, J. ; Merigoux, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3983-31b78b98aa18298e4f0e47d13378a22f8a2e80e6267693b442b3b2c91ce9b2ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Cartesian coordinates</topic><topic>CFD</topic><topic>Computation</topic><topic>Computer simulation</topic><topic>Coupling</topic><topic>Engineering Sciences</topic><topic>Fluid flow</topic><topic>Fluid-structure interaction</topic><topic>Fluids mechanics</topic><topic>immersed boundary</topic><topic>Industrial applications</topic><topic>Iterative methods</topic><topic>Mathematical models</topic><topic>Mechanics</topic><topic>Movement</topic><topic>Porosity</topic><topic>Time dependence</topic><topic>Tracking</topic><topic>two‐phase flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Benguigui, W.</creatorcontrib><creatorcontrib>Laviéville, J.</creatorcontrib><creatorcontrib>Merigoux, N.</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>International journal for numerical methods in fluids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Benguigui, W.</au><au>Laviéville, J.</au><au>Merigoux, N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fluid‐structure interaction in two‐phase flow using a discrete forcing method</atitle><jtitle>International journal for numerical methods in fluids</jtitle><date>2019-10-20</date><risdate>2019</risdate><volume>91</volume><issue>5</issue><spage>247</spage><epage>261</epage><pages>247-261</pages><issn>0271-2091</issn><eissn>1097-0363</eissn><abstract>Summary
The numerical simulation of interaction between structures and two‐phase flows is a major concern for many industrial applications. Using a discrete forcing method (see the work of Benguigui et al) (implemented in a multiphase CFD code based on a two‐fluid approach) to track the solid motion in two‐phase flow, an iterative fluid‐structure coupling is developed to allow free‐motion of multiple solids (with any kind of geometry) due to two‐phase fluid forces. As the fluid‐structure interface is located thanks to a time and space dependent porosity on a cartesian grid, the fluid force computation is accommodated to the interface tracking method. A Newmark algorithm is used to estimate the solid motion. The iterative coupling is addressed in detail going from the algorithm to the determination of its convergence parameter. Three application cases are proposed to validate the method from motion under a single‐ to a two‐phase flow.
The numerical simulation of interaction between structures and two‐phase flows is a major concern for many industrial applications. In this article, an iterative fluid‐structure coupling using a discrete forcing method to follow solid motions in two‐phase flow is proposed and validated.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/fld.4753</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-5203-7401</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0271-2091 |
ispartof | International journal for numerical methods in fluids, 2019-10, Vol.91 (5), p.247-261 |
issn | 0271-2091 1097-0363 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02401208v1 |
source | Wiley Online Library All Journals |
subjects | Algorithms Cartesian coordinates CFD Computation Computer simulation Coupling Engineering Sciences Fluid flow Fluid-structure interaction Fluids mechanics immersed boundary Industrial applications Iterative methods Mathematical models Mechanics Movement Porosity Time dependence Tracking two‐phase flow |
title | Fluid‐structure interaction in two‐phase flow using a discrete forcing method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T01%3A19%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fluid%E2%80%90structure%20interaction%20in%20two%E2%80%90phase%20flow%20using%20a%20discrete%20forcing%20method&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20fluids&rft.au=Benguigui,%20W.&rft.date=2019-10-20&rft.volume=91&rft.issue=5&rft.spage=247&rft.epage=261&rft.pages=247-261&rft.issn=0271-2091&rft.eissn=1097-0363&rft_id=info:doi/10.1002/fld.4753&rft_dat=%3Cproquest_hal_p%3E2287220888%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2287220888&rft_id=info:pmid/&rfr_iscdi=true |