Fluid‐structure interaction in two‐phase flow using a discrete forcing method

Summary The numerical simulation of interaction between structures and two‐phase flows is a major concern for many industrial applications. Using a discrete forcing method (see the work of Benguigui et al) (implemented in a multiphase CFD code based on a two‐fluid approach) to track the solid motion...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal for numerical methods in fluids 2019-10, Vol.91 (5), p.247-261
Hauptverfasser: Benguigui, W., Laviéville, J., Merigoux, N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 261
container_issue 5
container_start_page 247
container_title International journal for numerical methods in fluids
container_volume 91
creator Benguigui, W.
Laviéville, J.
Merigoux, N.
description Summary The numerical simulation of interaction between structures and two‐phase flows is a major concern for many industrial applications. Using a discrete forcing method (see the work of Benguigui et al) (implemented in a multiphase CFD code based on a two‐fluid approach) to track the solid motion in two‐phase flow, an iterative fluid‐structure coupling is developed to allow free‐motion of multiple solids (with any kind of geometry) due to two‐phase fluid forces. As the fluid‐structure interface is located thanks to a time and space dependent porosity on a cartesian grid, the fluid force computation is accommodated to the interface tracking method. A Newmark algorithm is used to estimate the solid motion. The iterative coupling is addressed in detail going from the algorithm to the determination of its convergence parameter. Three application cases are proposed to validate the method from motion under a single‐ to a two‐phase flow. The numerical simulation of interaction between structures and two‐phase flows is a major concern for many industrial applications. In this article, an iterative fluid‐structure coupling using a discrete forcing method to follow solid motions in two‐phase flow is proposed and validated.
doi_str_mv 10.1002/fld.4753
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02401208v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2287220888</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3983-31b78b98aa18298e4f0e47d13378a22f8a2e80e6267693b442b3b2c91ce9b2ee3</originalsourceid><addsrcrecordid>eNp10MFKwzAYB_AgCs4p-AgFL3roTL7UJjmO6ZxQEEHPIW1Tl9E1M0kdu_kIPqNPYurEm5ck_PPj4-OP0DnBE4IxXDdtPcnYDT1AI4IFSzHN6SEaYWAkBSzIMTrxfoUxFsDpCD3N297UXx-fPri-Cr3TiemCdqoKxnbxnYStjd-bpfI6aVq7TXpvutdEJbXxldMhptZVQ7TWYWnrU3TUqNbrs997jF7md8-zRVo83j_MpkVaUcFpSknJeCm4UoSD4DprsM5YTShlXAE08dAc6xxylgtaZhmUtIRKkEqLErSmY3S1n7tUrdw4s1ZuJ60ycjEt5JBhyDABzN9JtBd7u3H2rdc-yJXtXRfXkwCcQVScR3W5V5Wz3jvd_I0lWA7lyliuHMqNNN3TrWn17l8n58Xtj_8GzVt7ag</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2287220888</pqid></control><display><type>article</type><title>Fluid‐structure interaction in two‐phase flow using a discrete forcing method</title><source>Wiley Online Library All Journals</source><creator>Benguigui, W. ; Laviéville, J. ; Merigoux, N.</creator><creatorcontrib>Benguigui, W. ; Laviéville, J. ; Merigoux, N.</creatorcontrib><description>Summary The numerical simulation of interaction between structures and two‐phase flows is a major concern for many industrial applications. Using a discrete forcing method (see the work of Benguigui et al) (implemented in a multiphase CFD code based on a two‐fluid approach) to track the solid motion in two‐phase flow, an iterative fluid‐structure coupling is developed to allow free‐motion of multiple solids (with any kind of geometry) due to two‐phase fluid forces. As the fluid‐structure interface is located thanks to a time and space dependent porosity on a cartesian grid, the fluid force computation is accommodated to the interface tracking method. A Newmark algorithm is used to estimate the solid motion. The iterative coupling is addressed in detail going from the algorithm to the determination of its convergence parameter. Three application cases are proposed to validate the method from motion under a single‐ to a two‐phase flow. The numerical simulation of interaction between structures and two‐phase flows is a major concern for many industrial applications. In this article, an iterative fluid‐structure coupling using a discrete forcing method to follow solid motions in two‐phase flow is proposed and validated.</description><identifier>ISSN: 0271-2091</identifier><identifier>EISSN: 1097-0363</identifier><identifier>DOI: 10.1002/fld.4753</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Algorithms ; Cartesian coordinates ; CFD ; Computation ; Computer simulation ; Coupling ; Engineering Sciences ; Fluid flow ; Fluid-structure interaction ; Fluids mechanics ; immersed boundary ; Industrial applications ; Iterative methods ; Mathematical models ; Mechanics ; Movement ; Porosity ; Time dependence ; Tracking ; two‐phase flow</subject><ispartof>International journal for numerical methods in fluids, 2019-10, Vol.91 (5), p.247-261</ispartof><rights>2019 John Wiley &amp; Sons, Ltd.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3983-31b78b98aa18298e4f0e47d13378a22f8a2e80e6267693b442b3b2c91ce9b2ee3</citedby><cites>FETCH-LOGICAL-c3983-31b78b98aa18298e4f0e47d13378a22f8a2e80e6267693b442b3b2c91ce9b2ee3</cites><orcidid>0000-0001-5203-7401</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Ffld.4753$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Ffld.4753$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02401208$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Benguigui, W.</creatorcontrib><creatorcontrib>Laviéville, J.</creatorcontrib><creatorcontrib>Merigoux, N.</creatorcontrib><title>Fluid‐structure interaction in two‐phase flow using a discrete forcing method</title><title>International journal for numerical methods in fluids</title><description>Summary The numerical simulation of interaction between structures and two‐phase flows is a major concern for many industrial applications. Using a discrete forcing method (see the work of Benguigui et al) (implemented in a multiphase CFD code based on a two‐fluid approach) to track the solid motion in two‐phase flow, an iterative fluid‐structure coupling is developed to allow free‐motion of multiple solids (with any kind of geometry) due to two‐phase fluid forces. As the fluid‐structure interface is located thanks to a time and space dependent porosity on a cartesian grid, the fluid force computation is accommodated to the interface tracking method. A Newmark algorithm is used to estimate the solid motion. The iterative coupling is addressed in detail going from the algorithm to the determination of its convergence parameter. Three application cases are proposed to validate the method from motion under a single‐ to a two‐phase flow. The numerical simulation of interaction between structures and two‐phase flows is a major concern for many industrial applications. In this article, an iterative fluid‐structure coupling using a discrete forcing method to follow solid motions in two‐phase flow is proposed and validated.</description><subject>Algorithms</subject><subject>Cartesian coordinates</subject><subject>CFD</subject><subject>Computation</subject><subject>Computer simulation</subject><subject>Coupling</subject><subject>Engineering Sciences</subject><subject>Fluid flow</subject><subject>Fluid-structure interaction</subject><subject>Fluids mechanics</subject><subject>immersed boundary</subject><subject>Industrial applications</subject><subject>Iterative methods</subject><subject>Mathematical models</subject><subject>Mechanics</subject><subject>Movement</subject><subject>Porosity</subject><subject>Time dependence</subject><subject>Tracking</subject><subject>two‐phase flow</subject><issn>0271-2091</issn><issn>1097-0363</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp10MFKwzAYB_AgCs4p-AgFL3roTL7UJjmO6ZxQEEHPIW1Tl9E1M0kdu_kIPqNPYurEm5ck_PPj4-OP0DnBE4IxXDdtPcnYDT1AI4IFSzHN6SEaYWAkBSzIMTrxfoUxFsDpCD3N297UXx-fPri-Cr3TiemCdqoKxnbxnYStjd-bpfI6aVq7TXpvutdEJbXxldMhptZVQ7TWYWnrU3TUqNbrs997jF7md8-zRVo83j_MpkVaUcFpSknJeCm4UoSD4DprsM5YTShlXAE08dAc6xxylgtaZhmUtIRKkEqLErSmY3S1n7tUrdw4s1ZuJ60ycjEt5JBhyDABzN9JtBd7u3H2rdc-yJXtXRfXkwCcQVScR3W5V5Wz3jvd_I0lWA7lyliuHMqNNN3TrWn17l8n58Xtj_8GzVt7ag</recordid><startdate>20191020</startdate><enddate>20191020</enddate><creator>Benguigui, W.</creator><creator>Laviéville, J.</creator><creator>Merigoux, N.</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-5203-7401</orcidid></search><sort><creationdate>20191020</creationdate><title>Fluid‐structure interaction in two‐phase flow using a discrete forcing method</title><author>Benguigui, W. ; Laviéville, J. ; Merigoux, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3983-31b78b98aa18298e4f0e47d13378a22f8a2e80e6267693b442b3b2c91ce9b2ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Cartesian coordinates</topic><topic>CFD</topic><topic>Computation</topic><topic>Computer simulation</topic><topic>Coupling</topic><topic>Engineering Sciences</topic><topic>Fluid flow</topic><topic>Fluid-structure interaction</topic><topic>Fluids mechanics</topic><topic>immersed boundary</topic><topic>Industrial applications</topic><topic>Iterative methods</topic><topic>Mathematical models</topic><topic>Mechanics</topic><topic>Movement</topic><topic>Porosity</topic><topic>Time dependence</topic><topic>Tracking</topic><topic>two‐phase flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Benguigui, W.</creatorcontrib><creatorcontrib>Laviéville, J.</creatorcontrib><creatorcontrib>Merigoux, N.</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>International journal for numerical methods in fluids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Benguigui, W.</au><au>Laviéville, J.</au><au>Merigoux, N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fluid‐structure interaction in two‐phase flow using a discrete forcing method</atitle><jtitle>International journal for numerical methods in fluids</jtitle><date>2019-10-20</date><risdate>2019</risdate><volume>91</volume><issue>5</issue><spage>247</spage><epage>261</epage><pages>247-261</pages><issn>0271-2091</issn><eissn>1097-0363</eissn><abstract>Summary The numerical simulation of interaction between structures and two‐phase flows is a major concern for many industrial applications. Using a discrete forcing method (see the work of Benguigui et al) (implemented in a multiphase CFD code based on a two‐fluid approach) to track the solid motion in two‐phase flow, an iterative fluid‐structure coupling is developed to allow free‐motion of multiple solids (with any kind of geometry) due to two‐phase fluid forces. As the fluid‐structure interface is located thanks to a time and space dependent porosity on a cartesian grid, the fluid force computation is accommodated to the interface tracking method. A Newmark algorithm is used to estimate the solid motion. The iterative coupling is addressed in detail going from the algorithm to the determination of its convergence parameter. Three application cases are proposed to validate the method from motion under a single‐ to a two‐phase flow. The numerical simulation of interaction between structures and two‐phase flows is a major concern for many industrial applications. In this article, an iterative fluid‐structure coupling using a discrete forcing method to follow solid motions in two‐phase flow is proposed and validated.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/fld.4753</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-5203-7401</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0271-2091
ispartof International journal for numerical methods in fluids, 2019-10, Vol.91 (5), p.247-261
issn 0271-2091
1097-0363
language eng
recordid cdi_hal_primary_oai_HAL_hal_02401208v1
source Wiley Online Library All Journals
subjects Algorithms
Cartesian coordinates
CFD
Computation
Computer simulation
Coupling
Engineering Sciences
Fluid flow
Fluid-structure interaction
Fluids mechanics
immersed boundary
Industrial applications
Iterative methods
Mathematical models
Mechanics
Movement
Porosity
Time dependence
Tracking
two‐phase flow
title Fluid‐structure interaction in two‐phase flow using a discrete forcing method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T01%3A19%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fluid%E2%80%90structure%20interaction%20in%20two%E2%80%90phase%20flow%20using%20a%20discrete%20forcing%20method&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20fluids&rft.au=Benguigui,%20W.&rft.date=2019-10-20&rft.volume=91&rft.issue=5&rft.spage=247&rft.epage=261&rft.pages=247-261&rft.issn=0271-2091&rft.eissn=1097-0363&rft_id=info:doi/10.1002/fld.4753&rft_dat=%3Cproquest_hal_p%3E2287220888%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2287220888&rft_id=info:pmid/&rfr_iscdi=true