Application of reduced-order models based on PCA & Kriging for the development of digital twins of reacting flow applications
•Accurate surrogate models (SMs) for reacting CFD simulations are built by combining PCA and Kriging.•The use of variations of PCA, namely Constrained PCA (CPCA) and Local PCA, is also investigated.•Local PCA better dealt with the non-linearities of the original system in comparison with PCA.•CPCA g...
Gespeichert in:
Veröffentlicht in: | Computers & chemical engineering 2019-02, Vol.121, p.422-441 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 441 |
---|---|
container_issue | |
container_start_page | 422 |
container_title | Computers & chemical engineering |
container_volume | 121 |
creator | Aversano, Gianmarco Bellemans, Aurélie Li, Zhiyi Coussement, Axel Gicquel, Olivier Parente, Alessandro |
description | •Accurate surrogate models (SMs) for reacting CFD simulations are built by combining PCA and Kriging.•The use of variations of PCA, namely Constrained PCA (CPCA) and Local PCA, is also investigated.•Local PCA better dealt with the non-linearities of the original system in comparison with PCA.•CPCA guaranteed the non-violation of physical constraints (positive recovered mass fractions).•The developed SM performed with prediction errors within 10% over a wide range of input parameters.
Detailed numerical simulations of detailed combustion systems require substantial computational resources, which limit their use for optimization and uncertainty quantification studies. Starting from a limited number of CFD simulations, reduced-order models can be derived using a few detailed function evaluations. In this work, the combination of Principal Component Analysis (PCA) with Kriging is considered to identify accurate low-order models. PCA is used to identify and separate invariants of the system, the PCA modes, from the coefficients that are instead related to the characteristic operating conditions. Kriging is then used to find a response surface for these coefficients. This leads to a surrogate model that allows performing parameter exploration with reduced computational cost. Variations of the classical PCA approach, namely Local and Constrained PCA, are also presented. This methodology is demonstrated on 1D and 2D flames produced by OpenSmoke++ and OpenFoam, respectively, for which accurate surrogate models have been developed. |
doi_str_mv | 10.1016/j.compchemeng.2018.09.022 |
format | Article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02398470v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0098135418305891</els_id><sourcerecordid>oai_HAL_hal_02398470v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-b05d25d15fd1e58ebc1bc67ee5a596ab2a4f5646eb7323a54f2b0011e3c04ae13</originalsourceid><addsrcrecordid>eNqNkE1P4zAQhi20SHQL_8FckDgkjB07H8eq2t0iKsEBzpZjT1pXaRzZodUe-O-bUMRy5GRp_L7PjB5CrhmkDFh-t0uN3_dmi3vsNikHVqZQpcD5GZmxssgSkRXyB5kBVGXCMikuyM8YdwDARVnOyNui71tn9OB8R31DA9pXgzbxwWKge2-xjbTWES0dA0_LBb2hD8FtXLehjQ902CK1eMDW9-MFw4Sw4--gWzocXRdPTG2G90Lrj1T_XxgvyXmj24hXH--cvPz-9bxcJevHP_fLxToxAvIhqUFaLi2TjWUoS6wNq01eIEotq1zXXItG5iLHush4pqVoeA3AGGYGhEaWzcntibvVreqD2-vwV3nt1GqxVtMMeFaVooDDlK1OWRN8jAGbzwIDNTlXO_XFuZqcK6hGBB-7y1N3tIYHh0FF47AbhbqAZlDWu29Q_gGOeJIs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Application of reduced-order models based on PCA & Kriging for the development of digital twins of reacting flow applications</title><source>Elsevier ScienceDirect Journals</source><creator>Aversano, Gianmarco ; Bellemans, Aurélie ; Li, Zhiyi ; Coussement, Axel ; Gicquel, Olivier ; Parente, Alessandro</creator><creatorcontrib>Aversano, Gianmarco ; Bellemans, Aurélie ; Li, Zhiyi ; Coussement, Axel ; Gicquel, Olivier ; Parente, Alessandro</creatorcontrib><description>•Accurate surrogate models (SMs) for reacting CFD simulations are built by combining PCA and Kriging.•The use of variations of PCA, namely Constrained PCA (CPCA) and Local PCA, is also investigated.•Local PCA better dealt with the non-linearities of the original system in comparison with PCA.•CPCA guaranteed the non-violation of physical constraints (positive recovered mass fractions).•The developed SM performed with prediction errors within 10% over a wide range of input parameters.
Detailed numerical simulations of detailed combustion systems require substantial computational resources, which limit their use for optimization and uncertainty quantification studies. Starting from a limited number of CFD simulations, reduced-order models can be derived using a few detailed function evaluations. In this work, the combination of Principal Component Analysis (PCA) with Kriging is considered to identify accurate low-order models. PCA is used to identify and separate invariants of the system, the PCA modes, from the coefficients that are instead related to the characteristic operating conditions. Kriging is then used to find a response surface for these coefficients. This leads to a surrogate model that allows performing parameter exploration with reduced computational cost. Variations of the classical PCA approach, namely Local and Constrained PCA, are also presented. This methodology is demonstrated on 1D and 2D flames produced by OpenSmoke++ and OpenFoam, respectively, for which accurate surrogate models have been developed.</description><identifier>ISSN: 0098-1354</identifier><identifier>EISSN: 1873-4375</identifier><identifier>DOI: 10.1016/j.compchemeng.2018.09.022</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Applications ; Chemical engineering ; Chemical Sciences ; Engineering Sciences ; Kriging ; Principal component analysis ; Reactive fluid environment ; Statistics ; Surrogate models</subject><ispartof>Computers & chemical engineering, 2019-02, Vol.121, p.422-441</ispartof><rights>2018 The Authors</rights><rights>Attribution - NonCommercial - NoDerivatives</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-b05d25d15fd1e58ebc1bc67ee5a596ab2a4f5646eb7323a54f2b0011e3c04ae13</citedby><cites>FETCH-LOGICAL-c406t-b05d25d15fd1e58ebc1bc67ee5a596ab2a4f5646eb7323a54f2b0011e3c04ae13</cites><orcidid>0000-0002-2720-7314 ; 0000-0002-7919-7795 ; 0000-0002-7260-7026</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0098135418305891$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://centralesupelec.hal.science/hal-02398470$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Aversano, Gianmarco</creatorcontrib><creatorcontrib>Bellemans, Aurélie</creatorcontrib><creatorcontrib>Li, Zhiyi</creatorcontrib><creatorcontrib>Coussement, Axel</creatorcontrib><creatorcontrib>Gicquel, Olivier</creatorcontrib><creatorcontrib>Parente, Alessandro</creatorcontrib><title>Application of reduced-order models based on PCA & Kriging for the development of digital twins of reacting flow applications</title><title>Computers & chemical engineering</title><description>•Accurate surrogate models (SMs) for reacting CFD simulations are built by combining PCA and Kriging.•The use of variations of PCA, namely Constrained PCA (CPCA) and Local PCA, is also investigated.•Local PCA better dealt with the non-linearities of the original system in comparison with PCA.•CPCA guaranteed the non-violation of physical constraints (positive recovered mass fractions).•The developed SM performed with prediction errors within 10% over a wide range of input parameters.
Detailed numerical simulations of detailed combustion systems require substantial computational resources, which limit their use for optimization and uncertainty quantification studies. Starting from a limited number of CFD simulations, reduced-order models can be derived using a few detailed function evaluations. In this work, the combination of Principal Component Analysis (PCA) with Kriging is considered to identify accurate low-order models. PCA is used to identify and separate invariants of the system, the PCA modes, from the coefficients that are instead related to the characteristic operating conditions. Kriging is then used to find a response surface for these coefficients. This leads to a surrogate model that allows performing parameter exploration with reduced computational cost. Variations of the classical PCA approach, namely Local and Constrained PCA, are also presented. This methodology is demonstrated on 1D and 2D flames produced by OpenSmoke++ and OpenFoam, respectively, for which accurate surrogate models have been developed.</description><subject>Applications</subject><subject>Chemical engineering</subject><subject>Chemical Sciences</subject><subject>Engineering Sciences</subject><subject>Kriging</subject><subject>Principal component analysis</subject><subject>Reactive fluid environment</subject><subject>Statistics</subject><subject>Surrogate models</subject><issn>0098-1354</issn><issn>1873-4375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqNkE1P4zAQhi20SHQL_8FckDgkjB07H8eq2t0iKsEBzpZjT1pXaRzZodUe-O-bUMRy5GRp_L7PjB5CrhmkDFh-t0uN3_dmi3vsNikHVqZQpcD5GZmxssgSkRXyB5kBVGXCMikuyM8YdwDARVnOyNui71tn9OB8R31DA9pXgzbxwWKge2-xjbTWES0dA0_LBb2hD8FtXLehjQ902CK1eMDW9-MFw4Sw4--gWzocXRdPTG2G90Lrj1T_XxgvyXmj24hXH--cvPz-9bxcJevHP_fLxToxAvIhqUFaLi2TjWUoS6wNq01eIEotq1zXXItG5iLHush4pqVoeA3AGGYGhEaWzcntibvVreqD2-vwV3nt1GqxVtMMeFaVooDDlK1OWRN8jAGbzwIDNTlXO_XFuZqcK6hGBB-7y1N3tIYHh0FF47AbhbqAZlDWu29Q_gGOeJIs</recordid><startdate>20190202</startdate><enddate>20190202</enddate><creator>Aversano, Gianmarco</creator><creator>Bellemans, Aurélie</creator><creator>Li, Zhiyi</creator><creator>Coussement, Axel</creator><creator>Gicquel, Olivier</creator><creator>Parente, Alessandro</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-2720-7314</orcidid><orcidid>https://orcid.org/0000-0002-7919-7795</orcidid><orcidid>https://orcid.org/0000-0002-7260-7026</orcidid></search><sort><creationdate>20190202</creationdate><title>Application of reduced-order models based on PCA & Kriging for the development of digital twins of reacting flow applications</title><author>Aversano, Gianmarco ; Bellemans, Aurélie ; Li, Zhiyi ; Coussement, Axel ; Gicquel, Olivier ; Parente, Alessandro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-b05d25d15fd1e58ebc1bc67ee5a596ab2a4f5646eb7323a54f2b0011e3c04ae13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Applications</topic><topic>Chemical engineering</topic><topic>Chemical Sciences</topic><topic>Engineering Sciences</topic><topic>Kriging</topic><topic>Principal component analysis</topic><topic>Reactive fluid environment</topic><topic>Statistics</topic><topic>Surrogate models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aversano, Gianmarco</creatorcontrib><creatorcontrib>Bellemans, Aurélie</creatorcontrib><creatorcontrib>Li, Zhiyi</creatorcontrib><creatorcontrib>Coussement, Axel</creatorcontrib><creatorcontrib>Gicquel, Olivier</creatorcontrib><creatorcontrib>Parente, Alessandro</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Computers & chemical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aversano, Gianmarco</au><au>Bellemans, Aurélie</au><au>Li, Zhiyi</au><au>Coussement, Axel</au><au>Gicquel, Olivier</au><au>Parente, Alessandro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of reduced-order models based on PCA & Kriging for the development of digital twins of reacting flow applications</atitle><jtitle>Computers & chemical engineering</jtitle><date>2019-02-02</date><risdate>2019</risdate><volume>121</volume><spage>422</spage><epage>441</epage><pages>422-441</pages><issn>0098-1354</issn><eissn>1873-4375</eissn><abstract>•Accurate surrogate models (SMs) for reacting CFD simulations are built by combining PCA and Kriging.•The use of variations of PCA, namely Constrained PCA (CPCA) and Local PCA, is also investigated.•Local PCA better dealt with the non-linearities of the original system in comparison with PCA.•CPCA guaranteed the non-violation of physical constraints (positive recovered mass fractions).•The developed SM performed with prediction errors within 10% over a wide range of input parameters.
Detailed numerical simulations of detailed combustion systems require substantial computational resources, which limit their use for optimization and uncertainty quantification studies. Starting from a limited number of CFD simulations, reduced-order models can be derived using a few detailed function evaluations. In this work, the combination of Principal Component Analysis (PCA) with Kriging is considered to identify accurate low-order models. PCA is used to identify and separate invariants of the system, the PCA modes, from the coefficients that are instead related to the characteristic operating conditions. Kriging is then used to find a response surface for these coefficients. This leads to a surrogate model that allows performing parameter exploration with reduced computational cost. Variations of the classical PCA approach, namely Local and Constrained PCA, are also presented. This methodology is demonstrated on 1D and 2D flames produced by OpenSmoke++ and OpenFoam, respectively, for which accurate surrogate models have been developed.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.compchemeng.2018.09.022</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-2720-7314</orcidid><orcidid>https://orcid.org/0000-0002-7919-7795</orcidid><orcidid>https://orcid.org/0000-0002-7260-7026</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0098-1354 |
ispartof | Computers & chemical engineering, 2019-02, Vol.121, p.422-441 |
issn | 0098-1354 1873-4375 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02398470v1 |
source | Elsevier ScienceDirect Journals |
subjects | Applications Chemical engineering Chemical Sciences Engineering Sciences Kriging Principal component analysis Reactive fluid environment Statistics Surrogate models |
title | Application of reduced-order models based on PCA & Kriging for the development of digital twins of reacting flow applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T05%3A13%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20reduced-order%20models%20based%20on%20PCA%20&%20Kriging%20for%20the%20development%20of%20digital%20twins%20of%20reacting%20flow%20applications&rft.jtitle=Computers%20&%20chemical%20engineering&rft.au=Aversano,%20Gianmarco&rft.date=2019-02-02&rft.volume=121&rft.spage=422&rft.epage=441&rft.pages=422-441&rft.issn=0098-1354&rft.eissn=1873-4375&rft_id=info:doi/10.1016/j.compchemeng.2018.09.022&rft_dat=%3Chal_cross%3Eoai_HAL_hal_02398470v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0098135418305891&rfr_iscdi=true |