A simple and tailor‐made fabrication of porous silicon carbide from functionalized kraft pulp paper
Porous silicon carbide (SiC) materials were fabricated using the polymer‐derived ceramics method with kraft pulp papers (KPP) and a commercial polycarbosilane, the allylhydridopolycarbosilane (AHPCS), as starting materials. For this, KPP, propargylated KPP, or phosphorylated KPP were used to be impr...
Gespeichert in:
Veröffentlicht in: | Polymers for advanced technologies 2020-02, Vol.31 (2), p.319-327 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 327 |
---|---|
container_issue | 2 |
container_start_page | 319 |
container_title | Polymers for advanced technologies |
container_volume | 31 |
creator | Bernard, Mégane Lucas, Romain Laadoua, Hatim Khaldi, Zineb Pradeilles, Nicolas Rapaud, Olivier Foucaud, Sylvie Zerrouki, Rachida Brouillette, François |
description | Porous silicon carbide (SiC) materials were fabricated using the polymer‐derived ceramics method with kraft pulp papers (KPP) and a commercial polycarbosilane, the allylhydridopolycarbosilane (AHPCS), as starting materials. For this, KPP, propargylated KPP, or phosphorylated KPP were used to be impregnated by the AHPCS, with or without Karstedt catalyst. The pyrolysed materials were characterized at different stages, by using thermogravimetric analysis (TGA) coupled with mass spectrometry, X‐ray diffraction (XRD), and scanning electron microscopy (SEM). Depending on the nature of the initial template, various architectured SiC ceramics were successfully obtained with adjustable porosities. The key role of the previous functionalization of the papers was highlighted in terms of interactions at the interface between the polymer and the lignocellulosic handsheets. It led to either replica or sacrificial template methods. Thus, it was possible to tune the open porosity of the porous carbon and β‐SiC materials between 14.8% and 92.9%, with ceramic yields varying from 12% to 71%. |
doi_str_mv | 10.1002/pat.4771 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02396884v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2337680641</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3641-80b211ac5897481532edf671ae9bc5923501769a5fbc763b4349e1cc2003de473</originalsourceid><addsrcrecordid>eNp10MFKxDAQBuAiCq6r4CMEvOiha9KkTXNcRF1hQQ_rOUzTFLO2m5i0ynryEXxGn8TUFW-eJkw-hpk_SU4JnhGMs0sH_YxxTvaSCcFCpCQvyf74ZlnKCeOHyVEIa4zjn-CTRM9RMJ1rNYJNjXowrfVfH58d1Bo1UHmjoDd2g2yDnPV2CJG3RsWOAl-ZUXnboWbYqNFBa951jZ49ND1yQ-uQA6f9cXLQQBv0yW-dJo8316urRbq8v727mi9TRQtG0hJXGSGg8lJwVpKcZrpuCk5Ai0rlIqM5JrwQkDeV4gWtGGVCE6UyjGmtGafT5GI39wla6bzpwG-lBSMX86UcezijoihL9kqiPdtZ5-3LoEMv13bw8YIgM0p5UeK4UlTnO6W8DcHr5m8swXIMXMbA5Rh4pOmOvplWb_918mG--vHfq6CBkw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2337680641</pqid></control><display><type>article</type><title>A simple and tailor‐made fabrication of porous silicon carbide from functionalized kraft pulp paper</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Bernard, Mégane ; Lucas, Romain ; Laadoua, Hatim ; Khaldi, Zineb ; Pradeilles, Nicolas ; Rapaud, Olivier ; Foucaud, Sylvie ; Zerrouki, Rachida ; Brouillette, François</creator><creatorcontrib>Bernard, Mégane ; Lucas, Romain ; Laadoua, Hatim ; Khaldi, Zineb ; Pradeilles, Nicolas ; Rapaud, Olivier ; Foucaud, Sylvie ; Zerrouki, Rachida ; Brouillette, François</creatorcontrib><description>Porous silicon carbide (SiC) materials were fabricated using the polymer‐derived ceramics method with kraft pulp papers (KPP) and a commercial polycarbosilane, the allylhydridopolycarbosilane (AHPCS), as starting materials. For this, KPP, propargylated KPP, or phosphorylated KPP were used to be impregnated by the AHPCS, with or without Karstedt catalyst. The pyrolysed materials were characterized at different stages, by using thermogravimetric analysis (TGA) coupled with mass spectrometry, X‐ray diffraction (XRD), and scanning electron microscopy (SEM). Depending on the nature of the initial template, various architectured SiC ceramics were successfully obtained with adjustable porosities. The key role of the previous functionalization of the papers was highlighted in terms of interactions at the interface between the polymer and the lignocellulosic handsheets. It led to either replica or sacrificial template methods. Thus, it was possible to tune the open porosity of the porous carbon and β‐SiC materials between 14.8% and 92.9%, with ceramic yields varying from 12% to 71%.</description><identifier>ISSN: 1042-7147</identifier><identifier>EISSN: 1099-1581</identifier><identifier>DOI: 10.1002/pat.4771</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Ceramics ; Ceramics industry ; Chemical Sciences ; Engineering Sciences ; functionalization ; hydrosilylation ; Kraft pulp ; kraft pulp paper ; Lignocellulose ; Mass spectrometry ; Material chemistry ; Materials ; Porosity ; Porous materials ; Porous silicon ; preceramic polymer processing ; SiC ; Silicon carbide ; Thermogravimetric analysis</subject><ispartof>Polymers for advanced technologies, 2020-02, Vol.31 (2), p.319-327</ispartof><rights>2019 John Wiley & Sons, Ltd.</rights><rights>2020 John Wiley & Sons, Ltd.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3641-80b211ac5897481532edf671ae9bc5923501769a5fbc763b4349e1cc2003de473</citedby><cites>FETCH-LOGICAL-c3641-80b211ac5897481532edf671ae9bc5923501769a5fbc763b4349e1cc2003de473</cites><orcidid>0000-0002-2311-7901 ; 0000-0002-4534-9236 ; 0000-0002-4426-760X ; 0000-0001-7622-5124</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpat.4771$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpat.4771$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://unilim.hal.science/hal-02396884$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bernard, Mégane</creatorcontrib><creatorcontrib>Lucas, Romain</creatorcontrib><creatorcontrib>Laadoua, Hatim</creatorcontrib><creatorcontrib>Khaldi, Zineb</creatorcontrib><creatorcontrib>Pradeilles, Nicolas</creatorcontrib><creatorcontrib>Rapaud, Olivier</creatorcontrib><creatorcontrib>Foucaud, Sylvie</creatorcontrib><creatorcontrib>Zerrouki, Rachida</creatorcontrib><creatorcontrib>Brouillette, François</creatorcontrib><title>A simple and tailor‐made fabrication of porous silicon carbide from functionalized kraft pulp paper</title><title>Polymers for advanced technologies</title><description>Porous silicon carbide (SiC) materials were fabricated using the polymer‐derived ceramics method with kraft pulp papers (KPP) and a commercial polycarbosilane, the allylhydridopolycarbosilane (AHPCS), as starting materials. For this, KPP, propargylated KPP, or phosphorylated KPP were used to be impregnated by the AHPCS, with or without Karstedt catalyst. The pyrolysed materials were characterized at different stages, by using thermogravimetric analysis (TGA) coupled with mass spectrometry, X‐ray diffraction (XRD), and scanning electron microscopy (SEM). Depending on the nature of the initial template, various architectured SiC ceramics were successfully obtained with adjustable porosities. The key role of the previous functionalization of the papers was highlighted in terms of interactions at the interface between the polymer and the lignocellulosic handsheets. It led to either replica or sacrificial template methods. Thus, it was possible to tune the open porosity of the porous carbon and β‐SiC materials between 14.8% and 92.9%, with ceramic yields varying from 12% to 71%.</description><subject>Ceramics</subject><subject>Ceramics industry</subject><subject>Chemical Sciences</subject><subject>Engineering Sciences</subject><subject>functionalization</subject><subject>hydrosilylation</subject><subject>Kraft pulp</subject><subject>kraft pulp paper</subject><subject>Lignocellulose</subject><subject>Mass spectrometry</subject><subject>Material chemistry</subject><subject>Materials</subject><subject>Porosity</subject><subject>Porous materials</subject><subject>Porous silicon</subject><subject>preceramic polymer processing</subject><subject>SiC</subject><subject>Silicon carbide</subject><subject>Thermogravimetric analysis</subject><issn>1042-7147</issn><issn>1099-1581</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp10MFKxDAQBuAiCq6r4CMEvOiha9KkTXNcRF1hQQ_rOUzTFLO2m5i0ynryEXxGn8TUFW-eJkw-hpk_SU4JnhGMs0sH_YxxTvaSCcFCpCQvyf74ZlnKCeOHyVEIa4zjn-CTRM9RMJ1rNYJNjXowrfVfH58d1Bo1UHmjoDd2g2yDnPV2CJG3RsWOAl-ZUXnboWbYqNFBa951jZ49ND1yQ-uQA6f9cXLQQBv0yW-dJo8316urRbq8v727mi9TRQtG0hJXGSGg8lJwVpKcZrpuCk5Ai0rlIqM5JrwQkDeV4gWtGGVCE6UyjGmtGafT5GI39wla6bzpwG-lBSMX86UcezijoihL9kqiPdtZ5-3LoEMv13bw8YIgM0p5UeK4UlTnO6W8DcHr5m8swXIMXMbA5Rh4pOmOvplWb_918mG--vHfq6CBkw</recordid><startdate>202002</startdate><enddate>202002</enddate><creator>Bernard, Mégane</creator><creator>Lucas, Romain</creator><creator>Laadoua, Hatim</creator><creator>Khaldi, Zineb</creator><creator>Pradeilles, Nicolas</creator><creator>Rapaud, Olivier</creator><creator>Foucaud, Sylvie</creator><creator>Zerrouki, Rachida</creator><creator>Brouillette, François</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-2311-7901</orcidid><orcidid>https://orcid.org/0000-0002-4534-9236</orcidid><orcidid>https://orcid.org/0000-0002-4426-760X</orcidid><orcidid>https://orcid.org/0000-0001-7622-5124</orcidid></search><sort><creationdate>202002</creationdate><title>A simple and tailor‐made fabrication of porous silicon carbide from functionalized kraft pulp paper</title><author>Bernard, Mégane ; Lucas, Romain ; Laadoua, Hatim ; Khaldi, Zineb ; Pradeilles, Nicolas ; Rapaud, Olivier ; Foucaud, Sylvie ; Zerrouki, Rachida ; Brouillette, François</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3641-80b211ac5897481532edf671ae9bc5923501769a5fbc763b4349e1cc2003de473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Ceramics</topic><topic>Ceramics industry</topic><topic>Chemical Sciences</topic><topic>Engineering Sciences</topic><topic>functionalization</topic><topic>hydrosilylation</topic><topic>Kraft pulp</topic><topic>kraft pulp paper</topic><topic>Lignocellulose</topic><topic>Mass spectrometry</topic><topic>Material chemistry</topic><topic>Materials</topic><topic>Porosity</topic><topic>Porous materials</topic><topic>Porous silicon</topic><topic>preceramic polymer processing</topic><topic>SiC</topic><topic>Silicon carbide</topic><topic>Thermogravimetric analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bernard, Mégane</creatorcontrib><creatorcontrib>Lucas, Romain</creatorcontrib><creatorcontrib>Laadoua, Hatim</creatorcontrib><creatorcontrib>Khaldi, Zineb</creatorcontrib><creatorcontrib>Pradeilles, Nicolas</creatorcontrib><creatorcontrib>Rapaud, Olivier</creatorcontrib><creatorcontrib>Foucaud, Sylvie</creatorcontrib><creatorcontrib>Zerrouki, Rachida</creatorcontrib><creatorcontrib>Brouillette, François</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Polymers for advanced technologies</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bernard, Mégane</au><au>Lucas, Romain</au><au>Laadoua, Hatim</au><au>Khaldi, Zineb</au><au>Pradeilles, Nicolas</au><au>Rapaud, Olivier</au><au>Foucaud, Sylvie</au><au>Zerrouki, Rachida</au><au>Brouillette, François</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A simple and tailor‐made fabrication of porous silicon carbide from functionalized kraft pulp paper</atitle><jtitle>Polymers for advanced technologies</jtitle><date>2020-02</date><risdate>2020</risdate><volume>31</volume><issue>2</issue><spage>319</spage><epage>327</epage><pages>319-327</pages><issn>1042-7147</issn><eissn>1099-1581</eissn><abstract>Porous silicon carbide (SiC) materials were fabricated using the polymer‐derived ceramics method with kraft pulp papers (KPP) and a commercial polycarbosilane, the allylhydridopolycarbosilane (AHPCS), as starting materials. For this, KPP, propargylated KPP, or phosphorylated KPP were used to be impregnated by the AHPCS, with or without Karstedt catalyst. The pyrolysed materials were characterized at different stages, by using thermogravimetric analysis (TGA) coupled with mass spectrometry, X‐ray diffraction (XRD), and scanning electron microscopy (SEM). Depending on the nature of the initial template, various architectured SiC ceramics were successfully obtained with adjustable porosities. The key role of the previous functionalization of the papers was highlighted in terms of interactions at the interface between the polymer and the lignocellulosic handsheets. It led to either replica or sacrificial template methods. Thus, it was possible to tune the open porosity of the porous carbon and β‐SiC materials between 14.8% and 92.9%, with ceramic yields varying from 12% to 71%.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/pat.4771</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-2311-7901</orcidid><orcidid>https://orcid.org/0000-0002-4534-9236</orcidid><orcidid>https://orcid.org/0000-0002-4426-760X</orcidid><orcidid>https://orcid.org/0000-0001-7622-5124</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1042-7147 |
ispartof | Polymers for advanced technologies, 2020-02, Vol.31 (2), p.319-327 |
issn | 1042-7147 1099-1581 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02396884v1 |
source | Wiley Online Library - AutoHoldings Journals |
subjects | Ceramics Ceramics industry Chemical Sciences Engineering Sciences functionalization hydrosilylation Kraft pulp kraft pulp paper Lignocellulose Mass spectrometry Material chemistry Materials Porosity Porous materials Porous silicon preceramic polymer processing SiC Silicon carbide Thermogravimetric analysis |
title | A simple and tailor‐made fabrication of porous silicon carbide from functionalized kraft pulp paper |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T10%3A58%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20simple%20and%20tailor%E2%80%90made%20fabrication%20of%20porous%20silicon%20carbide%20from%20functionalized%20kraft%20pulp%20paper&rft.jtitle=Polymers%20for%20advanced%20technologies&rft.au=Bernard,%20M%C3%A9gane&rft.date=2020-02&rft.volume=31&rft.issue=2&rft.spage=319&rft.epage=327&rft.pages=319-327&rft.issn=1042-7147&rft.eissn=1099-1581&rft_id=info:doi/10.1002/pat.4771&rft_dat=%3Cproquest_hal_p%3E2337680641%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2337680641&rft_id=info:pmid/&rfr_iscdi=true |