Hyperfine Interactions and Slow Spin Dynamics in Quasi-isotropic InP-based Core/Shell Colloidal Nanocrystals

Colloidal InP core nanocrystals are taking over CdSe-based nanocrystals, notably in optoelectronic applications. Despite their use in commercial devices, such as display screens, the optical properties of InP nanocrystals and especially their relation to the exciton fine structures remain poorly und...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2019-09, Vol.13 (9), p.10201-10209
Hauptverfasser: Brodu, Annalisa, Tessier, Mickael D, Canneson, Damien, Dupont, Dorian, Ballottin, Mariana V, Christianen, Peter C. M, de Mello Donega, Celso, Hens, Zeger, Yakovlev, Dmitri R, Bayer, Manfred, Vanmaekelbergh, Daniel, Biadala, Louis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Colloidal InP core nanocrystals are taking over CdSe-based nanocrystals, notably in optoelectronic applications. Despite their use in commercial devices, such as display screens, the optical properties of InP nanocrystals and especially their relation to the exciton fine structures remain poorly understood. In this work, we show that the ensemble magneto-optical properties of InP-based core/shell nanocrystals investigated in strong magnetic fields up to 30 T are strikingly different from other colloidal nanostructures. Notably, the mixing of the lowest spin-forbidden dark exciton state with the nearest spin-allowed bright state does not occur up to the highest magnetic fields applied. This lack of mixing in an ensemble of nanocrystals suggests an anisotropy tolerance of InP nanocrystals. This striking property allowed us to unveil the slow spin dynamics between Zeeman sublevels (up to 400 ns at 15 T). Furthermore, we show that the unexpected magnetic-field-induced lengthening of the dark exciton lifetime results from the hyperfine interaction between the spin of the electron in the dark exciton with the nuclear magnetic moments. Our results demonstrate the richness of the spin physics in InP quantum dots and stress the large potential of InP nanostructures for spin-based applications.
ISSN:1936-0851
1936-086X
DOI:10.1021/acsnano.9b03384