Pre-steady-state kinetic analysis of damage recognition by human single-strand selective monofunctional uracil-DNA glycosylase SMUG1
In all organisms, DNA glycosylases initiate base excision repair pathways resulting in removal of aberrant bases from DNA. Human SMUG1 belongs to the superfamily of uracil-DNA glycosylases catalyzing the hydrolysis of the N-glycosidic bond of uridine and uridine lesions bearing oxidized groups at C5...
Gespeichert in:
Veröffentlicht in: | Molecular bioSystems 2017, Vol.13 (12), p.2638-2649 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2649 |
---|---|
container_issue | 12 |
container_start_page | 2638 |
container_title | Molecular bioSystems |
container_volume | 13 |
creator | Kuznetsova, Alexandra A Iakovlev, Danila A Misovets, Inna V Ishchenko, Alexander A Saparbaev, Murat K Kuznetsov, Nikita A Fedorova, Olga S |
description | In all organisms, DNA glycosylases initiate base excision repair pathways resulting in removal of aberrant bases from DNA. Human SMUG1 belongs to the superfamily of uracil-DNA glycosylases catalyzing the hydrolysis of the N-glycosidic bond of uridine and uridine lesions bearing oxidized groups at C5: 5-hydroxymethyluridine (5hmU), 5-formyluridine (5fU), and 5-hydroxyuridine (5hoU). An apurinic/apyrimidinic (AP) site formed as the product of an N-glycosylase reaction is tightly bound to hSMUG1, thus inhibiting the downstream action of AP-endonuclease APE1. The steady-state kinetic parameters (k
and K
; obtained from the literature) correspond to the enzyme turnover process limited by the release of hSMUG1 from the complex with the AP-site. In the present study, our objective was to carry out a stopped-flow fluorescence analysis of the interaction of hSMUG1 with a DNA substrate containing a dU:dG base pair to follow the pre-steady-state kinetics of conformational changes in both molecules. A comparison of kinetic data obtained by means of Trp and 2-aminopurine fluorescence and Förster resonance energy transfer (FRET) detection allowed us to elucidate the stages of specific and nonspecific DNA binding, to propose the mechanism of damaged base recognition by hSMUG1, and to determine the true rate of the catalytic step. Our results shed light on the kinetic mechanism underlying the initiation of base excision repair by hSMUG1 using the "wedge" strategy for DNA lesion search. |
doi_str_mv | 10.1039/c7mb00457e |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02393555v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2010873587</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-f54eb6f5736222b9b2e64c92781925fb6985d3ed107f70bb7812ecafc019187c3</originalsourceid><addsrcrecordid>eNpdkU9v1DAQxS0EomXhwgdAlrgAUsB_4jg-LktpkbaABJW4RbYz3ro4drGTSrnzwcmyZQ8cRm80-ulpZh5Czyl5SwlX76wcDCG1kPAAnVJZs4oRQR8e--bHCXpSyg0hvK0peYxOmFoAVctT9PtrhqqMoPt5ET0C_ukjjN5iHXWYiy84OdzrQe8AZ7BpF_3oU8RmxtfToCMuPu7C3iPr2OMCAezo7wAPKSY3RbundcBT1taH6sPnNd6F2aYyB10Af7u8OqdP0SOnQ4Fn97pCVx_Pvm8uqu2X80-b9bayNWvGyokaTOOE5A1jzCjDoKmtYrKliglnGtWKnkNPiXSSGLPMGVjtLKGKttLyFXp98L3WobvNftB57pL23cV62-1nhHHFhRB3dGFfHdjbnH5NUMZu8MVCCDpCmkpHlahJI8Xy1BV6-R96k6a8HF06RihpJRdLrdCbA2VzKiWDO25ASbfPsdvIy_d_czxb4Bf3lpMZoD-i_4LjfwAbVJg6</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2010873587</pqid></control><display><type>article</type><title>Pre-steady-state kinetic analysis of damage recognition by human single-strand selective monofunctional uracil-DNA glycosylase SMUG1</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Kuznetsova, Alexandra A ; Iakovlev, Danila A ; Misovets, Inna V ; Ishchenko, Alexander A ; Saparbaev, Murat K ; Kuznetsov, Nikita A ; Fedorova, Olga S</creator><creatorcontrib>Kuznetsova, Alexandra A ; Iakovlev, Danila A ; Misovets, Inna V ; Ishchenko, Alexander A ; Saparbaev, Murat K ; Kuznetsov, Nikita A ; Fedorova, Olga S</creatorcontrib><description>In all organisms, DNA glycosylases initiate base excision repair pathways resulting in removal of aberrant bases from DNA. Human SMUG1 belongs to the superfamily of uracil-DNA glycosylases catalyzing the hydrolysis of the N-glycosidic bond of uridine and uridine lesions bearing oxidized groups at C5: 5-hydroxymethyluridine (5hmU), 5-formyluridine (5fU), and 5-hydroxyuridine (5hoU). An apurinic/apyrimidinic (AP) site formed as the product of an N-glycosylase reaction is tightly bound to hSMUG1, thus inhibiting the downstream action of AP-endonuclease APE1. The steady-state kinetic parameters (k
and K
; obtained from the literature) correspond to the enzyme turnover process limited by the release of hSMUG1 from the complex with the AP-site. In the present study, our objective was to carry out a stopped-flow fluorescence analysis of the interaction of hSMUG1 with a DNA substrate containing a dU:dG base pair to follow the pre-steady-state kinetics of conformational changes in both molecules. A comparison of kinetic data obtained by means of Trp and 2-aminopurine fluorescence and Förster resonance energy transfer (FRET) detection allowed us to elucidate the stages of specific and nonspecific DNA binding, to propose the mechanism of damaged base recognition by hSMUG1, and to determine the true rate of the catalytic step. Our results shed light on the kinetic mechanism underlying the initiation of base excision repair by hSMUG1 using the "wedge" strategy for DNA lesion search.</description><identifier>ISSN: 1742-206X</identifier><identifier>EISSN: 1742-2051</identifier><identifier>DOI: 10.1039/c7mb00457e</identifier><identifier>PMID: 29051947</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>2-Aminopurine ; Aberration ; Base excision repair ; Biochemistry ; Biochemistry, Molecular Biology ; Catalysis ; Deoxyribonucleic acid ; DNA ; DNA glycosylase ; DNA-(Apurinic or Apyrimidinic Site) Lyase - metabolism ; Endonuclease ; Energy transfer ; Fluorescence ; Fluorescence Resonance Energy Transfer ; Humans ; Kinetics ; Lesions ; Life Sciences ; N-Glycosylase ; Reaction kinetics ; Recognition ; Repair ; SMUG1 protein ; Steady state ; Structural Biology ; Substrates ; Uracil ; Uracil-DNA glycosidase ; Uracil-DNA Glycosidase - metabolism ; Uridine ; Uridine - analogs & derivatives ; Uridine - chemistry</subject><ispartof>Molecular bioSystems, 2017, Vol.13 (12), p.2638-2649</ispartof><rights>Copyright Royal Society of Chemistry 2017</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-f54eb6f5736222b9b2e64c92781925fb6985d3ed107f70bb7812ecafc019187c3</citedby><cites>FETCH-LOGICAL-c426t-f54eb6f5736222b9b2e64c92781925fb6985d3ed107f70bb7812ecafc019187c3</cites><orcidid>0000-0002-4001-7187 ; 0000-0002-4016-198X ; 0000-0002-0488-8858 ; 0000-0002-4630-1074</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,778,782,883,4012,27906,27907,27908</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29051947$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02393555$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Kuznetsova, Alexandra A</creatorcontrib><creatorcontrib>Iakovlev, Danila A</creatorcontrib><creatorcontrib>Misovets, Inna V</creatorcontrib><creatorcontrib>Ishchenko, Alexander A</creatorcontrib><creatorcontrib>Saparbaev, Murat K</creatorcontrib><creatorcontrib>Kuznetsov, Nikita A</creatorcontrib><creatorcontrib>Fedorova, Olga S</creatorcontrib><title>Pre-steady-state kinetic analysis of damage recognition by human single-strand selective monofunctional uracil-DNA glycosylase SMUG1</title><title>Molecular bioSystems</title><addtitle>Mol Biosyst</addtitle><description>In all organisms, DNA glycosylases initiate base excision repair pathways resulting in removal of aberrant bases from DNA. Human SMUG1 belongs to the superfamily of uracil-DNA glycosylases catalyzing the hydrolysis of the N-glycosidic bond of uridine and uridine lesions bearing oxidized groups at C5: 5-hydroxymethyluridine (5hmU), 5-formyluridine (5fU), and 5-hydroxyuridine (5hoU). An apurinic/apyrimidinic (AP) site formed as the product of an N-glycosylase reaction is tightly bound to hSMUG1, thus inhibiting the downstream action of AP-endonuclease APE1. The steady-state kinetic parameters (k
and K
; obtained from the literature) correspond to the enzyme turnover process limited by the release of hSMUG1 from the complex with the AP-site. In the present study, our objective was to carry out a stopped-flow fluorescence analysis of the interaction of hSMUG1 with a DNA substrate containing a dU:dG base pair to follow the pre-steady-state kinetics of conformational changes in both molecules. A comparison of kinetic data obtained by means of Trp and 2-aminopurine fluorescence and Förster resonance energy transfer (FRET) detection allowed us to elucidate the stages of specific and nonspecific DNA binding, to propose the mechanism of damaged base recognition by hSMUG1, and to determine the true rate of the catalytic step. Our results shed light on the kinetic mechanism underlying the initiation of base excision repair by hSMUG1 using the "wedge" strategy for DNA lesion search.</description><subject>2-Aminopurine</subject><subject>Aberration</subject><subject>Base excision repair</subject><subject>Biochemistry</subject><subject>Biochemistry, Molecular Biology</subject><subject>Catalysis</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA glycosylase</subject><subject>DNA-(Apurinic or Apyrimidinic Site) Lyase - metabolism</subject><subject>Endonuclease</subject><subject>Energy transfer</subject><subject>Fluorescence</subject><subject>Fluorescence Resonance Energy Transfer</subject><subject>Humans</subject><subject>Kinetics</subject><subject>Lesions</subject><subject>Life Sciences</subject><subject>N-Glycosylase</subject><subject>Reaction kinetics</subject><subject>Recognition</subject><subject>Repair</subject><subject>SMUG1 protein</subject><subject>Steady state</subject><subject>Structural Biology</subject><subject>Substrates</subject><subject>Uracil</subject><subject>Uracil-DNA glycosidase</subject><subject>Uracil-DNA Glycosidase - metabolism</subject><subject>Uridine</subject><subject>Uridine - analogs & derivatives</subject><subject>Uridine - chemistry</subject><issn>1742-206X</issn><issn>1742-2051</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkU9v1DAQxS0EomXhwgdAlrgAUsB_4jg-LktpkbaABJW4RbYz3ro4drGTSrnzwcmyZQ8cRm80-ulpZh5Czyl5SwlX76wcDCG1kPAAnVJZs4oRQR8e--bHCXpSyg0hvK0peYxOmFoAVctT9PtrhqqMoPt5ET0C_ukjjN5iHXWYiy84OdzrQe8AZ7BpF_3oU8RmxtfToCMuPu7C3iPr2OMCAezo7wAPKSY3RbundcBT1taH6sPnNd6F2aYyB10Af7u8OqdP0SOnQ4Fn97pCVx_Pvm8uqu2X80-b9bayNWvGyokaTOOE5A1jzCjDoKmtYrKliglnGtWKnkNPiXSSGLPMGVjtLKGKttLyFXp98L3WobvNftB57pL23cV62-1nhHHFhRB3dGFfHdjbnH5NUMZu8MVCCDpCmkpHlahJI8Xy1BV6-R96k6a8HF06RihpJRdLrdCbA2VzKiWDO25ASbfPsdvIy_d_czxb4Bf3lpMZoD-i_4LjfwAbVJg6</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>Kuznetsova, Alexandra A</creator><creator>Iakovlev, Danila A</creator><creator>Misovets, Inna V</creator><creator>Ishchenko, Alexander A</creator><creator>Saparbaev, Murat K</creator><creator>Kuznetsov, Nikita A</creator><creator>Fedorova, Olga S</creator><general>Royal Society of Chemistry</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-4001-7187</orcidid><orcidid>https://orcid.org/0000-0002-4016-198X</orcidid><orcidid>https://orcid.org/0000-0002-0488-8858</orcidid><orcidid>https://orcid.org/0000-0002-4630-1074</orcidid></search><sort><creationdate>2017</creationdate><title>Pre-steady-state kinetic analysis of damage recognition by human single-strand selective monofunctional uracil-DNA glycosylase SMUG1</title><author>Kuznetsova, Alexandra A ; Iakovlev, Danila A ; Misovets, Inna V ; Ishchenko, Alexander A ; Saparbaev, Murat K ; Kuznetsov, Nikita A ; Fedorova, Olga S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-f54eb6f5736222b9b2e64c92781925fb6985d3ed107f70bb7812ecafc019187c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>2-Aminopurine</topic><topic>Aberration</topic><topic>Base excision repair</topic><topic>Biochemistry</topic><topic>Biochemistry, Molecular Biology</topic><topic>Catalysis</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA glycosylase</topic><topic>DNA-(Apurinic or Apyrimidinic Site) Lyase - metabolism</topic><topic>Endonuclease</topic><topic>Energy transfer</topic><topic>Fluorescence</topic><topic>Fluorescence Resonance Energy Transfer</topic><topic>Humans</topic><topic>Kinetics</topic><topic>Lesions</topic><topic>Life Sciences</topic><topic>N-Glycosylase</topic><topic>Reaction kinetics</topic><topic>Recognition</topic><topic>Repair</topic><topic>SMUG1 protein</topic><topic>Steady state</topic><topic>Structural Biology</topic><topic>Substrates</topic><topic>Uracil</topic><topic>Uracil-DNA glycosidase</topic><topic>Uracil-DNA Glycosidase - metabolism</topic><topic>Uridine</topic><topic>Uridine - analogs & derivatives</topic><topic>Uridine - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kuznetsova, Alexandra A</creatorcontrib><creatorcontrib>Iakovlev, Danila A</creatorcontrib><creatorcontrib>Misovets, Inna V</creatorcontrib><creatorcontrib>Ishchenko, Alexander A</creatorcontrib><creatorcontrib>Saparbaev, Murat K</creatorcontrib><creatorcontrib>Kuznetsov, Nikita A</creatorcontrib><creatorcontrib>Fedorova, Olga S</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Molecular bioSystems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kuznetsova, Alexandra A</au><au>Iakovlev, Danila A</au><au>Misovets, Inna V</au><au>Ishchenko, Alexander A</au><au>Saparbaev, Murat K</au><au>Kuznetsov, Nikita A</au><au>Fedorova, Olga S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pre-steady-state kinetic analysis of damage recognition by human single-strand selective monofunctional uracil-DNA glycosylase SMUG1</atitle><jtitle>Molecular bioSystems</jtitle><addtitle>Mol Biosyst</addtitle><date>2017</date><risdate>2017</risdate><volume>13</volume><issue>12</issue><spage>2638</spage><epage>2649</epage><pages>2638-2649</pages><issn>1742-206X</issn><eissn>1742-2051</eissn><abstract>In all organisms, DNA glycosylases initiate base excision repair pathways resulting in removal of aberrant bases from DNA. Human SMUG1 belongs to the superfamily of uracil-DNA glycosylases catalyzing the hydrolysis of the N-glycosidic bond of uridine and uridine lesions bearing oxidized groups at C5: 5-hydroxymethyluridine (5hmU), 5-formyluridine (5fU), and 5-hydroxyuridine (5hoU). An apurinic/apyrimidinic (AP) site formed as the product of an N-glycosylase reaction is tightly bound to hSMUG1, thus inhibiting the downstream action of AP-endonuclease APE1. The steady-state kinetic parameters (k
and K
; obtained from the literature) correspond to the enzyme turnover process limited by the release of hSMUG1 from the complex with the AP-site. In the present study, our objective was to carry out a stopped-flow fluorescence analysis of the interaction of hSMUG1 with a DNA substrate containing a dU:dG base pair to follow the pre-steady-state kinetics of conformational changes in both molecules. A comparison of kinetic data obtained by means of Trp and 2-aminopurine fluorescence and Förster resonance energy transfer (FRET) detection allowed us to elucidate the stages of specific and nonspecific DNA binding, to propose the mechanism of damaged base recognition by hSMUG1, and to determine the true rate of the catalytic step. Our results shed light on the kinetic mechanism underlying the initiation of base excision repair by hSMUG1 using the "wedge" strategy for DNA lesion search.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>29051947</pmid><doi>10.1039/c7mb00457e</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-4001-7187</orcidid><orcidid>https://orcid.org/0000-0002-4016-198X</orcidid><orcidid>https://orcid.org/0000-0002-0488-8858</orcidid><orcidid>https://orcid.org/0000-0002-4630-1074</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-206X |
ispartof | Molecular bioSystems, 2017, Vol.13 (12), p.2638-2649 |
issn | 1742-206X 1742-2051 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02393555v1 |
source | MEDLINE; Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | 2-Aminopurine Aberration Base excision repair Biochemistry Biochemistry, Molecular Biology Catalysis Deoxyribonucleic acid DNA DNA glycosylase DNA-(Apurinic or Apyrimidinic Site) Lyase - metabolism Endonuclease Energy transfer Fluorescence Fluorescence Resonance Energy Transfer Humans Kinetics Lesions Life Sciences N-Glycosylase Reaction kinetics Recognition Repair SMUG1 protein Steady state Structural Biology Substrates Uracil Uracil-DNA glycosidase Uracil-DNA Glycosidase - metabolism Uridine Uridine - analogs & derivatives Uridine - chemistry |
title | Pre-steady-state kinetic analysis of damage recognition by human single-strand selective monofunctional uracil-DNA glycosylase SMUG1 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T19%3A42%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pre-steady-state%20kinetic%20analysis%20of%20damage%20recognition%20by%20human%20single-strand%20selective%20monofunctional%20uracil-DNA%20glycosylase%20SMUG1&rft.jtitle=Molecular%20bioSystems&rft.au=Kuznetsova,%20Alexandra%20A&rft.date=2017&rft.volume=13&rft.issue=12&rft.spage=2638&rft.epage=2649&rft.pages=2638-2649&rft.issn=1742-206X&rft.eissn=1742-2051&rft_id=info:doi/10.1039/c7mb00457e&rft_dat=%3Cproquest_hal_p%3E2010873587%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2010873587&rft_id=info:pmid/29051947&rfr_iscdi=true |