Pre-steady-state kinetic analysis of damage recognition by human single-strand selective monofunctional uracil-DNA glycosylase SMUG1

In all organisms, DNA glycosylases initiate base excision repair pathways resulting in removal of aberrant bases from DNA. Human SMUG1 belongs to the superfamily of uracil-DNA glycosylases catalyzing the hydrolysis of the N-glycosidic bond of uridine and uridine lesions bearing oxidized groups at C5...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular bioSystems 2017, Vol.13 (12), p.2638-2649
Hauptverfasser: Kuznetsova, Alexandra A, Iakovlev, Danila A, Misovets, Inna V, Ishchenko, Alexander A, Saparbaev, Murat K, Kuznetsov, Nikita A, Fedorova, Olga S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2649
container_issue 12
container_start_page 2638
container_title Molecular bioSystems
container_volume 13
creator Kuznetsova, Alexandra A
Iakovlev, Danila A
Misovets, Inna V
Ishchenko, Alexander A
Saparbaev, Murat K
Kuznetsov, Nikita A
Fedorova, Olga S
description In all organisms, DNA glycosylases initiate base excision repair pathways resulting in removal of aberrant bases from DNA. Human SMUG1 belongs to the superfamily of uracil-DNA glycosylases catalyzing the hydrolysis of the N-glycosidic bond of uridine and uridine lesions bearing oxidized groups at C5: 5-hydroxymethyluridine (5hmU), 5-formyluridine (5fU), and 5-hydroxyuridine (5hoU). An apurinic/apyrimidinic (AP) site formed as the product of an N-glycosylase reaction is tightly bound to hSMUG1, thus inhibiting the downstream action of AP-endonuclease APE1. The steady-state kinetic parameters (k and K ; obtained from the literature) correspond to the enzyme turnover process limited by the release of hSMUG1 from the complex with the AP-site. In the present study, our objective was to carry out a stopped-flow fluorescence analysis of the interaction of hSMUG1 with a DNA substrate containing a dU:dG base pair to follow the pre-steady-state kinetics of conformational changes in both molecules. A comparison of kinetic data obtained by means of Trp and 2-aminopurine fluorescence and Förster resonance energy transfer (FRET) detection allowed us to elucidate the stages of specific and nonspecific DNA binding, to propose the mechanism of damaged base recognition by hSMUG1, and to determine the true rate of the catalytic step. Our results shed light on the kinetic mechanism underlying the initiation of base excision repair by hSMUG1 using the "wedge" strategy for DNA lesion search.
doi_str_mv 10.1039/c7mb00457e
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02393555v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2010873587</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-f54eb6f5736222b9b2e64c92781925fb6985d3ed107f70bb7812ecafc019187c3</originalsourceid><addsrcrecordid>eNpdkU9v1DAQxS0EomXhwgdAlrgAUsB_4jg-LktpkbaABJW4RbYz3ro4drGTSrnzwcmyZQ8cRm80-ulpZh5Czyl5SwlX76wcDCG1kPAAnVJZs4oRQR8e--bHCXpSyg0hvK0peYxOmFoAVctT9PtrhqqMoPt5ET0C_ukjjN5iHXWYiy84OdzrQe8AZ7BpF_3oU8RmxtfToCMuPu7C3iPr2OMCAezo7wAPKSY3RbundcBT1taH6sPnNd6F2aYyB10Af7u8OqdP0SOnQ4Fn97pCVx_Pvm8uqu2X80-b9bayNWvGyokaTOOE5A1jzCjDoKmtYrKliglnGtWKnkNPiXSSGLPMGVjtLKGKttLyFXp98L3WobvNftB57pL23cV62-1nhHHFhRB3dGFfHdjbnH5NUMZu8MVCCDpCmkpHlahJI8Xy1BV6-R96k6a8HF06RihpJRdLrdCbA2VzKiWDO25ASbfPsdvIy_d_czxb4Bf3lpMZoD-i_4LjfwAbVJg6</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2010873587</pqid></control><display><type>article</type><title>Pre-steady-state kinetic analysis of damage recognition by human single-strand selective monofunctional uracil-DNA glycosylase SMUG1</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Kuznetsova, Alexandra A ; Iakovlev, Danila A ; Misovets, Inna V ; Ishchenko, Alexander A ; Saparbaev, Murat K ; Kuznetsov, Nikita A ; Fedorova, Olga S</creator><creatorcontrib>Kuznetsova, Alexandra A ; Iakovlev, Danila A ; Misovets, Inna V ; Ishchenko, Alexander A ; Saparbaev, Murat K ; Kuznetsov, Nikita A ; Fedorova, Olga S</creatorcontrib><description>In all organisms, DNA glycosylases initiate base excision repair pathways resulting in removal of aberrant bases from DNA. Human SMUG1 belongs to the superfamily of uracil-DNA glycosylases catalyzing the hydrolysis of the N-glycosidic bond of uridine and uridine lesions bearing oxidized groups at C5: 5-hydroxymethyluridine (5hmU), 5-formyluridine (5fU), and 5-hydroxyuridine (5hoU). An apurinic/apyrimidinic (AP) site formed as the product of an N-glycosylase reaction is tightly bound to hSMUG1, thus inhibiting the downstream action of AP-endonuclease APE1. The steady-state kinetic parameters (k and K ; obtained from the literature) correspond to the enzyme turnover process limited by the release of hSMUG1 from the complex with the AP-site. In the present study, our objective was to carry out a stopped-flow fluorescence analysis of the interaction of hSMUG1 with a DNA substrate containing a dU:dG base pair to follow the pre-steady-state kinetics of conformational changes in both molecules. A comparison of kinetic data obtained by means of Trp and 2-aminopurine fluorescence and Förster resonance energy transfer (FRET) detection allowed us to elucidate the stages of specific and nonspecific DNA binding, to propose the mechanism of damaged base recognition by hSMUG1, and to determine the true rate of the catalytic step. Our results shed light on the kinetic mechanism underlying the initiation of base excision repair by hSMUG1 using the "wedge" strategy for DNA lesion search.</description><identifier>ISSN: 1742-206X</identifier><identifier>EISSN: 1742-2051</identifier><identifier>DOI: 10.1039/c7mb00457e</identifier><identifier>PMID: 29051947</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>2-Aminopurine ; Aberration ; Base excision repair ; Biochemistry ; Biochemistry, Molecular Biology ; Catalysis ; Deoxyribonucleic acid ; DNA ; DNA glycosylase ; DNA-(Apurinic or Apyrimidinic Site) Lyase - metabolism ; Endonuclease ; Energy transfer ; Fluorescence ; Fluorescence Resonance Energy Transfer ; Humans ; Kinetics ; Lesions ; Life Sciences ; N-Glycosylase ; Reaction kinetics ; Recognition ; Repair ; SMUG1 protein ; Steady state ; Structural Biology ; Substrates ; Uracil ; Uracil-DNA glycosidase ; Uracil-DNA Glycosidase - metabolism ; Uridine ; Uridine - analogs &amp; derivatives ; Uridine - chemistry</subject><ispartof>Molecular bioSystems, 2017, Vol.13 (12), p.2638-2649</ispartof><rights>Copyright Royal Society of Chemistry 2017</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-f54eb6f5736222b9b2e64c92781925fb6985d3ed107f70bb7812ecafc019187c3</citedby><cites>FETCH-LOGICAL-c426t-f54eb6f5736222b9b2e64c92781925fb6985d3ed107f70bb7812ecafc019187c3</cites><orcidid>0000-0002-4001-7187 ; 0000-0002-4016-198X ; 0000-0002-0488-8858 ; 0000-0002-4630-1074</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,778,782,883,4012,27906,27907,27908</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29051947$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02393555$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Kuznetsova, Alexandra A</creatorcontrib><creatorcontrib>Iakovlev, Danila A</creatorcontrib><creatorcontrib>Misovets, Inna V</creatorcontrib><creatorcontrib>Ishchenko, Alexander A</creatorcontrib><creatorcontrib>Saparbaev, Murat K</creatorcontrib><creatorcontrib>Kuznetsov, Nikita A</creatorcontrib><creatorcontrib>Fedorova, Olga S</creatorcontrib><title>Pre-steady-state kinetic analysis of damage recognition by human single-strand selective monofunctional uracil-DNA glycosylase SMUG1</title><title>Molecular bioSystems</title><addtitle>Mol Biosyst</addtitle><description>In all organisms, DNA glycosylases initiate base excision repair pathways resulting in removal of aberrant bases from DNA. Human SMUG1 belongs to the superfamily of uracil-DNA glycosylases catalyzing the hydrolysis of the N-glycosidic bond of uridine and uridine lesions bearing oxidized groups at C5: 5-hydroxymethyluridine (5hmU), 5-formyluridine (5fU), and 5-hydroxyuridine (5hoU). An apurinic/apyrimidinic (AP) site formed as the product of an N-glycosylase reaction is tightly bound to hSMUG1, thus inhibiting the downstream action of AP-endonuclease APE1. The steady-state kinetic parameters (k and K ; obtained from the literature) correspond to the enzyme turnover process limited by the release of hSMUG1 from the complex with the AP-site. In the present study, our objective was to carry out a stopped-flow fluorescence analysis of the interaction of hSMUG1 with a DNA substrate containing a dU:dG base pair to follow the pre-steady-state kinetics of conformational changes in both molecules. A comparison of kinetic data obtained by means of Trp and 2-aminopurine fluorescence and Förster resonance energy transfer (FRET) detection allowed us to elucidate the stages of specific and nonspecific DNA binding, to propose the mechanism of damaged base recognition by hSMUG1, and to determine the true rate of the catalytic step. Our results shed light on the kinetic mechanism underlying the initiation of base excision repair by hSMUG1 using the "wedge" strategy for DNA lesion search.</description><subject>2-Aminopurine</subject><subject>Aberration</subject><subject>Base excision repair</subject><subject>Biochemistry</subject><subject>Biochemistry, Molecular Biology</subject><subject>Catalysis</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA glycosylase</subject><subject>DNA-(Apurinic or Apyrimidinic Site) Lyase - metabolism</subject><subject>Endonuclease</subject><subject>Energy transfer</subject><subject>Fluorescence</subject><subject>Fluorescence Resonance Energy Transfer</subject><subject>Humans</subject><subject>Kinetics</subject><subject>Lesions</subject><subject>Life Sciences</subject><subject>N-Glycosylase</subject><subject>Reaction kinetics</subject><subject>Recognition</subject><subject>Repair</subject><subject>SMUG1 protein</subject><subject>Steady state</subject><subject>Structural Biology</subject><subject>Substrates</subject><subject>Uracil</subject><subject>Uracil-DNA glycosidase</subject><subject>Uracil-DNA Glycosidase - metabolism</subject><subject>Uridine</subject><subject>Uridine - analogs &amp; derivatives</subject><subject>Uridine - chemistry</subject><issn>1742-206X</issn><issn>1742-2051</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkU9v1DAQxS0EomXhwgdAlrgAUsB_4jg-LktpkbaABJW4RbYz3ro4drGTSrnzwcmyZQ8cRm80-ulpZh5Czyl5SwlX76wcDCG1kPAAnVJZs4oRQR8e--bHCXpSyg0hvK0peYxOmFoAVctT9PtrhqqMoPt5ET0C_ukjjN5iHXWYiy84OdzrQe8AZ7BpF_3oU8RmxtfToCMuPu7C3iPr2OMCAezo7wAPKSY3RbundcBT1taH6sPnNd6F2aYyB10Af7u8OqdP0SOnQ4Fn97pCVx_Pvm8uqu2X80-b9bayNWvGyokaTOOE5A1jzCjDoKmtYrKliglnGtWKnkNPiXSSGLPMGVjtLKGKttLyFXp98L3WobvNftB57pL23cV62-1nhHHFhRB3dGFfHdjbnH5NUMZu8MVCCDpCmkpHlahJI8Xy1BV6-R96k6a8HF06RihpJRdLrdCbA2VzKiWDO25ASbfPsdvIy_d_czxb4Bf3lpMZoD-i_4LjfwAbVJg6</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>Kuznetsova, Alexandra A</creator><creator>Iakovlev, Danila A</creator><creator>Misovets, Inna V</creator><creator>Ishchenko, Alexander A</creator><creator>Saparbaev, Murat K</creator><creator>Kuznetsov, Nikita A</creator><creator>Fedorova, Olga S</creator><general>Royal Society of Chemistry</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-4001-7187</orcidid><orcidid>https://orcid.org/0000-0002-4016-198X</orcidid><orcidid>https://orcid.org/0000-0002-0488-8858</orcidid><orcidid>https://orcid.org/0000-0002-4630-1074</orcidid></search><sort><creationdate>2017</creationdate><title>Pre-steady-state kinetic analysis of damage recognition by human single-strand selective monofunctional uracil-DNA glycosylase SMUG1</title><author>Kuznetsova, Alexandra A ; Iakovlev, Danila A ; Misovets, Inna V ; Ishchenko, Alexander A ; Saparbaev, Murat K ; Kuznetsov, Nikita A ; Fedorova, Olga S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-f54eb6f5736222b9b2e64c92781925fb6985d3ed107f70bb7812ecafc019187c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>2-Aminopurine</topic><topic>Aberration</topic><topic>Base excision repair</topic><topic>Biochemistry</topic><topic>Biochemistry, Molecular Biology</topic><topic>Catalysis</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA glycosylase</topic><topic>DNA-(Apurinic or Apyrimidinic Site) Lyase - metabolism</topic><topic>Endonuclease</topic><topic>Energy transfer</topic><topic>Fluorescence</topic><topic>Fluorescence Resonance Energy Transfer</topic><topic>Humans</topic><topic>Kinetics</topic><topic>Lesions</topic><topic>Life Sciences</topic><topic>N-Glycosylase</topic><topic>Reaction kinetics</topic><topic>Recognition</topic><topic>Repair</topic><topic>SMUG1 protein</topic><topic>Steady state</topic><topic>Structural Biology</topic><topic>Substrates</topic><topic>Uracil</topic><topic>Uracil-DNA glycosidase</topic><topic>Uracil-DNA Glycosidase - metabolism</topic><topic>Uridine</topic><topic>Uridine - analogs &amp; derivatives</topic><topic>Uridine - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kuznetsova, Alexandra A</creatorcontrib><creatorcontrib>Iakovlev, Danila A</creatorcontrib><creatorcontrib>Misovets, Inna V</creatorcontrib><creatorcontrib>Ishchenko, Alexander A</creatorcontrib><creatorcontrib>Saparbaev, Murat K</creatorcontrib><creatorcontrib>Kuznetsov, Nikita A</creatorcontrib><creatorcontrib>Fedorova, Olga S</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Molecular bioSystems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kuznetsova, Alexandra A</au><au>Iakovlev, Danila A</au><au>Misovets, Inna V</au><au>Ishchenko, Alexander A</au><au>Saparbaev, Murat K</au><au>Kuznetsov, Nikita A</au><au>Fedorova, Olga S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pre-steady-state kinetic analysis of damage recognition by human single-strand selective monofunctional uracil-DNA glycosylase SMUG1</atitle><jtitle>Molecular bioSystems</jtitle><addtitle>Mol Biosyst</addtitle><date>2017</date><risdate>2017</risdate><volume>13</volume><issue>12</issue><spage>2638</spage><epage>2649</epage><pages>2638-2649</pages><issn>1742-206X</issn><eissn>1742-2051</eissn><abstract>In all organisms, DNA glycosylases initiate base excision repair pathways resulting in removal of aberrant bases from DNA. Human SMUG1 belongs to the superfamily of uracil-DNA glycosylases catalyzing the hydrolysis of the N-glycosidic bond of uridine and uridine lesions bearing oxidized groups at C5: 5-hydroxymethyluridine (5hmU), 5-formyluridine (5fU), and 5-hydroxyuridine (5hoU). An apurinic/apyrimidinic (AP) site formed as the product of an N-glycosylase reaction is tightly bound to hSMUG1, thus inhibiting the downstream action of AP-endonuclease APE1. The steady-state kinetic parameters (k and K ; obtained from the literature) correspond to the enzyme turnover process limited by the release of hSMUG1 from the complex with the AP-site. In the present study, our objective was to carry out a stopped-flow fluorescence analysis of the interaction of hSMUG1 with a DNA substrate containing a dU:dG base pair to follow the pre-steady-state kinetics of conformational changes in both molecules. A comparison of kinetic data obtained by means of Trp and 2-aminopurine fluorescence and Förster resonance energy transfer (FRET) detection allowed us to elucidate the stages of specific and nonspecific DNA binding, to propose the mechanism of damaged base recognition by hSMUG1, and to determine the true rate of the catalytic step. Our results shed light on the kinetic mechanism underlying the initiation of base excision repair by hSMUG1 using the "wedge" strategy for DNA lesion search.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>29051947</pmid><doi>10.1039/c7mb00457e</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-4001-7187</orcidid><orcidid>https://orcid.org/0000-0002-4016-198X</orcidid><orcidid>https://orcid.org/0000-0002-0488-8858</orcidid><orcidid>https://orcid.org/0000-0002-4630-1074</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-206X
ispartof Molecular bioSystems, 2017, Vol.13 (12), p.2638-2649
issn 1742-206X
1742-2051
language eng
recordid cdi_hal_primary_oai_HAL_hal_02393555v1
source MEDLINE; Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects 2-Aminopurine
Aberration
Base excision repair
Biochemistry
Biochemistry, Molecular Biology
Catalysis
Deoxyribonucleic acid
DNA
DNA glycosylase
DNA-(Apurinic or Apyrimidinic Site) Lyase - metabolism
Endonuclease
Energy transfer
Fluorescence
Fluorescence Resonance Energy Transfer
Humans
Kinetics
Lesions
Life Sciences
N-Glycosylase
Reaction kinetics
Recognition
Repair
SMUG1 protein
Steady state
Structural Biology
Substrates
Uracil
Uracil-DNA glycosidase
Uracil-DNA Glycosidase - metabolism
Uridine
Uridine - analogs & derivatives
Uridine - chemistry
title Pre-steady-state kinetic analysis of damage recognition by human single-strand selective monofunctional uracil-DNA glycosylase SMUG1
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T19%3A42%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pre-steady-state%20kinetic%20analysis%20of%20damage%20recognition%20by%20human%20single-strand%20selective%20monofunctional%20uracil-DNA%20glycosylase%20SMUG1&rft.jtitle=Molecular%20bioSystems&rft.au=Kuznetsova,%20Alexandra%20A&rft.date=2017&rft.volume=13&rft.issue=12&rft.spage=2638&rft.epage=2649&rft.pages=2638-2649&rft.issn=1742-206X&rft.eissn=1742-2051&rft_id=info:doi/10.1039/c7mb00457e&rft_dat=%3Cproquest_hal_p%3E2010873587%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2010873587&rft_id=info:pmid/29051947&rfr_iscdi=true