Energy reconstruction for a hadronic calorimeter using multivariate data analysis methods

The CALICE highly granular Semi-Digital Hadronic CALorimeter (SDHCAL) technological prototype provides rich information on the shape and structure of the hadronic showers. To exploit this information and to improve on the standard energy reconstruction method where only the total number of hits is u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of instrumentation 2019-10, Vol.14 (10), p.P10034-P10034
Hauptverfasser: Liu, B., Liu, D., Shen, Q., Zhang, T., Garillot, G., Guo, J., He, X., Hu, J., Lagarde, F., Laktineh, I., Wang, X., Yan, J., Yang, H., Zhang, X., Zhu, Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page P10034
container_issue 10
container_start_page P10034
container_title Journal of instrumentation
container_volume 14
creator Liu, B.
Liu, D.
Shen, Q.
Zhang, T.
Garillot, G.
Guo, J.
He, X.
Hu, J.
Lagarde, F.
Laktineh, I.
Wang, X.
Yan, J.
Yang, H.
Zhang, X.
Zhu, Y.
description The CALICE highly granular Semi-Digital Hadronic CALorimeter (SDHCAL) technological prototype provides rich information on the shape and structure of the hadronic showers. To exploit this information and to improve on the standard energy reconstruction method where only the total number of hits is used, we propose to use two methods based on MultiVariate data Analysis (MVA) techniques: the Multi-Layer Perceptron (MLP) and the Boosted Decision Trees with Gradient Boost (BDTG) . The two new methods achieve better energy linearity (ΔE/Ebeam≤2%) with respect to the classic method (ΔE/Ebeam≤5%) and improve on the relative energy resolution. For instance, the MLP method achieves 6–7% relative improvement on the whole energy range when applied on samples of simulated π− events in the SDHCAL.
doi_str_mv 10.1088/1748-0221/14/10/P10034
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02393086v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2357634174</sourcerecordid><originalsourceid>FETCH-LOGICAL-c264t-beb0ebbf68ce04d0d8b42b8f2b8fb7bb4a6de78d1ab7b21404f6da5ec11114853</originalsourceid><addsrcrecordid>eNpNkEtLAzEQgIMoWB9_QQKePKxNdrO76bGUaoWCHvTgKUwe26ZsNzXJFvrvzbJSHBgmmfkYhg-hB0qeKeF8SmvGM5LndErZlJLpByWkYBdoch5c_ntfo5sQdoSUs5KRCfpedsZvTtgb5boQfa-idR1unMeAt6C966zCClrn7d5E43EfbLfB-76N9gjeQjRYQwQMHbSnYANO2NbpcIeuGmiDuf-rt-jrZfm5WGXr99e3xXydqbxiMZNGEiNlU3FlCNNEc8lyyZshZS0lg0qbmmsK6ZdTRlhTaSiNoikYL4tb9DTu3UIrDulK8CfhwIrVfC2GHsmLWUF4daSJfRzZg3c_vQlR7Fzv0-FB5EVZVwVLnhJVjZTyLgRvmvNaSsSgXAw2xWBTUDY0R-XFL23xdbk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2357634174</pqid></control><display><type>article</type><title>Energy reconstruction for a hadronic calorimeter using multivariate data analysis methods</title><source>Institute of Physics Journals</source><creator>Liu, B. ; Liu, D. ; Shen, Q. ; Zhang, T. ; Garillot, G. ; Guo, J. ; He, X. ; Hu, J. ; Lagarde, F. ; Laktineh, I. ; Wang, X. ; Yan, J. ; Yang, H. ; Zhang, X. ; Zhu, Y.</creator><creatorcontrib>Liu, B. ; Liu, D. ; Shen, Q. ; Zhang, T. ; Garillot, G. ; Guo, J. ; He, X. ; Hu, J. ; Lagarde, F. ; Laktineh, I. ; Wang, X. ; Yan, J. ; Yang, H. ; Zhang, X. ; Zhu, Y.</creatorcontrib><description>The CALICE highly granular Semi-Digital Hadronic CALorimeter (SDHCAL) technological prototype provides rich information on the shape and structure of the hadronic showers. To exploit this information and to improve on the standard energy reconstruction method where only the total number of hits is used, we propose to use two methods based on MultiVariate data Analysis (MVA) techniques: the Multi-Layer Perceptron (MLP) and the Boosted Decision Trees with Gradient Boost (BDTG) . The two new methods achieve better energy linearity (ΔE/Ebeam≤2%) with respect to the classic method (ΔE/Ebeam≤5%) and improve on the relative energy resolution. For instance, the MLP method achieves 6–7% relative improvement on the whole energy range when applied on samples of simulated π− events in the SDHCAL.</description><identifier>ISSN: 1748-0221</identifier><identifier>EISSN: 1748-0221</identifier><identifier>DOI: 10.1088/1748-0221/14/10/P10034</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Data analysis ; Decision analysis ; Decision trees ; Energy resolution ; High Energy Physics - Experiment ; Linearity ; Methods ; Multilayers ; Multivariate analysis ; Physics ; Reconstruction</subject><ispartof>Journal of instrumentation, 2019-10, Vol.14 (10), p.P10034-P10034</ispartof><rights>Copyright IOP Publishing Oct 2019</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c264t-beb0ebbf68ce04d0d8b42b8f2b8fb7bb4a6de78d1ab7b21404f6da5ec11114853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02393086$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, B.</creatorcontrib><creatorcontrib>Liu, D.</creatorcontrib><creatorcontrib>Shen, Q.</creatorcontrib><creatorcontrib>Zhang, T.</creatorcontrib><creatorcontrib>Garillot, G.</creatorcontrib><creatorcontrib>Guo, J.</creatorcontrib><creatorcontrib>He, X.</creatorcontrib><creatorcontrib>Hu, J.</creatorcontrib><creatorcontrib>Lagarde, F.</creatorcontrib><creatorcontrib>Laktineh, I.</creatorcontrib><creatorcontrib>Wang, X.</creatorcontrib><creatorcontrib>Yan, J.</creatorcontrib><creatorcontrib>Yang, H.</creatorcontrib><creatorcontrib>Zhang, X.</creatorcontrib><creatorcontrib>Zhu, Y.</creatorcontrib><title>Energy reconstruction for a hadronic calorimeter using multivariate data analysis methods</title><title>Journal of instrumentation</title><description>The CALICE highly granular Semi-Digital Hadronic CALorimeter (SDHCAL) technological prototype provides rich information on the shape and structure of the hadronic showers. To exploit this information and to improve on the standard energy reconstruction method where only the total number of hits is used, we propose to use two methods based on MultiVariate data Analysis (MVA) techniques: the Multi-Layer Perceptron (MLP) and the Boosted Decision Trees with Gradient Boost (BDTG) . The two new methods achieve better energy linearity (ΔE/Ebeam≤2%) with respect to the classic method (ΔE/Ebeam≤5%) and improve on the relative energy resolution. For instance, the MLP method achieves 6–7% relative improvement on the whole energy range when applied on samples of simulated π− events in the SDHCAL.</description><subject>Data analysis</subject><subject>Decision analysis</subject><subject>Decision trees</subject><subject>Energy resolution</subject><subject>High Energy Physics - Experiment</subject><subject>Linearity</subject><subject>Methods</subject><subject>Multilayers</subject><subject>Multivariate analysis</subject><subject>Physics</subject><subject>Reconstruction</subject><issn>1748-0221</issn><issn>1748-0221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpNkEtLAzEQgIMoWB9_QQKePKxNdrO76bGUaoWCHvTgKUwe26ZsNzXJFvrvzbJSHBgmmfkYhg-hB0qeKeF8SmvGM5LndErZlJLpByWkYBdoch5c_ntfo5sQdoSUs5KRCfpedsZvTtgb5boQfa-idR1unMeAt6C966zCClrn7d5E43EfbLfB-76N9gjeQjRYQwQMHbSnYANO2NbpcIeuGmiDuf-rt-jrZfm5WGXr99e3xXydqbxiMZNGEiNlU3FlCNNEc8lyyZshZS0lg0qbmmsK6ZdTRlhTaSiNoikYL4tb9DTu3UIrDulK8CfhwIrVfC2GHsmLWUF4daSJfRzZg3c_vQlR7Fzv0-FB5EVZVwVLnhJVjZTyLgRvmvNaSsSgXAw2xWBTUDY0R-XFL23xdbk</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Liu, B.</creator><creator>Liu, D.</creator><creator>Shen, Q.</creator><creator>Zhang, T.</creator><creator>Garillot, G.</creator><creator>Guo, J.</creator><creator>He, X.</creator><creator>Hu, J.</creator><creator>Lagarde, F.</creator><creator>Laktineh, I.</creator><creator>Wang, X.</creator><creator>Yan, J.</creator><creator>Yang, H.</creator><creator>Zhang, X.</creator><creator>Zhu, Y.</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>1XC</scope></search><sort><creationdate>20191001</creationdate><title>Energy reconstruction for a hadronic calorimeter using multivariate data analysis methods</title><author>Liu, B. ; Liu, D. ; Shen, Q. ; Zhang, T. ; Garillot, G. ; Guo, J. ; He, X. ; Hu, J. ; Lagarde, F. ; Laktineh, I. ; Wang, X. ; Yan, J. ; Yang, H. ; Zhang, X. ; Zhu, Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c264t-beb0ebbf68ce04d0d8b42b8f2b8fb7bb4a6de78d1ab7b21404f6da5ec11114853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Data analysis</topic><topic>Decision analysis</topic><topic>Decision trees</topic><topic>Energy resolution</topic><topic>High Energy Physics - Experiment</topic><topic>Linearity</topic><topic>Methods</topic><topic>Multilayers</topic><topic>Multivariate analysis</topic><topic>Physics</topic><topic>Reconstruction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, B.</creatorcontrib><creatorcontrib>Liu, D.</creatorcontrib><creatorcontrib>Shen, Q.</creatorcontrib><creatorcontrib>Zhang, T.</creatorcontrib><creatorcontrib>Garillot, G.</creatorcontrib><creatorcontrib>Guo, J.</creatorcontrib><creatorcontrib>He, X.</creatorcontrib><creatorcontrib>Hu, J.</creatorcontrib><creatorcontrib>Lagarde, F.</creatorcontrib><creatorcontrib>Laktineh, I.</creatorcontrib><creatorcontrib>Wang, X.</creatorcontrib><creatorcontrib>Yan, J.</creatorcontrib><creatorcontrib>Yang, H.</creatorcontrib><creatorcontrib>Zhang, X.</creatorcontrib><creatorcontrib>Zhu, Y.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of instrumentation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, B.</au><au>Liu, D.</au><au>Shen, Q.</au><au>Zhang, T.</au><au>Garillot, G.</au><au>Guo, J.</au><au>He, X.</au><au>Hu, J.</au><au>Lagarde, F.</au><au>Laktineh, I.</au><au>Wang, X.</au><au>Yan, J.</au><au>Yang, H.</au><au>Zhang, X.</au><au>Zhu, Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energy reconstruction for a hadronic calorimeter using multivariate data analysis methods</atitle><jtitle>Journal of instrumentation</jtitle><date>2019-10-01</date><risdate>2019</risdate><volume>14</volume><issue>10</issue><spage>P10034</spage><epage>P10034</epage><pages>P10034-P10034</pages><issn>1748-0221</issn><eissn>1748-0221</eissn><abstract>The CALICE highly granular Semi-Digital Hadronic CALorimeter (SDHCAL) technological prototype provides rich information on the shape and structure of the hadronic showers. To exploit this information and to improve on the standard energy reconstruction method where only the total number of hits is used, we propose to use two methods based on MultiVariate data Analysis (MVA) techniques: the Multi-Layer Perceptron (MLP) and the Boosted Decision Trees with Gradient Boost (BDTG) . The two new methods achieve better energy linearity (ΔE/Ebeam≤2%) with respect to the classic method (ΔE/Ebeam≤5%) and improve on the relative energy resolution. For instance, the MLP method achieves 6–7% relative improvement on the whole energy range when applied on samples of simulated π− events in the SDHCAL.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1748-0221/14/10/P10034</doi></addata></record>
fulltext fulltext
identifier ISSN: 1748-0221
ispartof Journal of instrumentation, 2019-10, Vol.14 (10), p.P10034-P10034
issn 1748-0221
1748-0221
language eng
recordid cdi_hal_primary_oai_HAL_hal_02393086v1
source Institute of Physics Journals
subjects Data analysis
Decision analysis
Decision trees
Energy resolution
High Energy Physics - Experiment
Linearity
Methods
Multilayers
Multivariate analysis
Physics
Reconstruction
title Energy reconstruction for a hadronic calorimeter using multivariate data analysis methods
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T22%3A43%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energy%20reconstruction%20for%20a%20hadronic%20calorimeter%20using%20multivariate%20data%20analysis%20methods&rft.jtitle=Journal%20of%20instrumentation&rft.au=Liu,%20B.&rft.date=2019-10-01&rft.volume=14&rft.issue=10&rft.spage=P10034&rft.epage=P10034&rft.pages=P10034-P10034&rft.issn=1748-0221&rft.eissn=1748-0221&rft_id=info:doi/10.1088/1748-0221/14/10/P10034&rft_dat=%3Cproquest_hal_p%3E2357634174%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2357634174&rft_id=info:pmid/&rfr_iscdi=true