Molecular mechanisms of acclimation to long‐term elevated temperature exposure in marine symbioses

Seawater temperature rise in French Polynesia has repeatedly resulted in the bleaching of corals and giant clams. Because giant clams possess distinctive ectosymbiotic features, they represent a unique and powerful model for comparing molecular pathways involved in (a) maintenance of symbiosis and (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Global change biology 2020-03, Vol.26 (3), p.1271-1284
Hauptverfasser: Alves Monteiro, Homère J., Brahmi, Chloé, Mayfield, Anderson B., Vidal‐Dupiol, Jérémie, Lapeyre, Bruno, Le Luyer, Jérémy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1284
container_issue 3
container_start_page 1271
container_title Global change biology
container_volume 26
creator Alves Monteiro, Homère J.
Brahmi, Chloé
Mayfield, Anderson B.
Vidal‐Dupiol, Jérémie
Lapeyre, Bruno
Le Luyer, Jérémy
description Seawater temperature rise in French Polynesia has repeatedly resulted in the bleaching of corals and giant clams. Because giant clams possess distinctive ectosymbiotic features, they represent a unique and powerful model for comparing molecular pathways involved in (a) maintenance of symbiosis and (b) acquisition of thermotolerance among coral reef organisms. Herein, we explored the physiological and transcriptomic responses of the clam hosts and their photosynthetically active symbionts over a 65 day experiment in which clams were exposed to either normal or environmentally relevant elevated seawater temperatures. Additionally, we used metabarcoding data coupled with in situ sampling/survey data to explore the relative importance of holobiont adaptation (i.e., a symbiont community shift) versus acclimation (i.e., physiological changes at the molecular level) in the clams’ responses to environmental change. We finally compared transcriptomic data to publicly available genomic datasets for Symbiodiniaceae dinoflagellates (both cultured and in hospite with the coral Pocillopora damicornis) to better tease apart the responses of both hosts and specific symbiont genotypes in this mutualistic association. Gene module preservation analysis revealed that the function of the symbionts’ photosystem II was impaired at high temperature, and this response was also found across all holobionts and Symbiodiniaceae lineages examined. Similarly, epigenetic modulation appeared to be a key response mechanism for symbionts in hospite with giant clams exposed to high temperatures, and such modulation was able to distinguish thermotolerant from thermosensitive Cladocopium goreaui ecotypes; epigenetic processes may, then, represent a promising research avenue for those interested in coral reef conservation in this era of changing global climate. Symbiodiniaceae show conserved genomic response to long‐term thermal stress. Thermotolerance in Symbiodiniaceae relies on epigenetic remodeling and phytohormone regulation.
doi_str_mv 10.1111/gcb.14907
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02392459v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2312548818</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4227-afdcca9128bee993b45ff23e8f7cac670485be4e6bb8004ea5fb1b0ba1c8fabb3</originalsourceid><addsrcrecordid>eNp1kb1uFDEURi1EREKg4AWQJRooJvHfzHjKZBUSpI3ShNqyvdeJI3u82DOB7XiEPCNPgpcNWyDhxp-so-N79SH0jpITWs_pnTUnVAykf4GOKO_ahgnZvdzmVjSUUH6IXpfyQAjhjHSv0CGn3cBqPEKr6xTAzkFnHMHe69GXWHByWFsbfNSTTyOeEg5pvPv182mCHDEEeNQTrPAEcQ1ZT3MGDD_WqWyDH3HU2Y-AyyYanwqUN-jA6VDg7fN9jL5-vrhdXDXLm8svi7NlYwVjfaPdylo9UCYNwDBwI1rnGAfpeqtt1xMhWwMCOmMkIQJ06ww1xGhqpdPG8GP0aee910Gtcx0_b1TSXl2dLdX2jTA-MNEOj7SyH3fsOqdvM5RJRV8shKBHSHNRjFPWCimprOiHf9CHNOexblKpnhLR0Sref25zKiWD209AidrWpGpN6k9NlX3_bJxNhNWe_NtLBU53wHcfYPN_k7pcnO-UvwGm9J4P</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2371046102</pqid></control><display><type>article</type><title>Molecular mechanisms of acclimation to long‐term elevated temperature exposure in marine symbioses</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Alves Monteiro, Homère J. ; Brahmi, Chloé ; Mayfield, Anderson B. ; Vidal‐Dupiol, Jérémie ; Lapeyre, Bruno ; Le Luyer, Jérémy</creator><creatorcontrib>Alves Monteiro, Homère J. ; Brahmi, Chloé ; Mayfield, Anderson B. ; Vidal‐Dupiol, Jérémie ; Lapeyre, Bruno ; Le Luyer, Jérémy</creatorcontrib><description>Seawater temperature rise in French Polynesia has repeatedly resulted in the bleaching of corals and giant clams. Because giant clams possess distinctive ectosymbiotic features, they represent a unique and powerful model for comparing molecular pathways involved in (a) maintenance of symbiosis and (b) acquisition of thermotolerance among coral reef organisms. Herein, we explored the physiological and transcriptomic responses of the clam hosts and their photosynthetically active symbionts over a 65 day experiment in which clams were exposed to either normal or environmentally relevant elevated seawater temperatures. Additionally, we used metabarcoding data coupled with in situ sampling/survey data to explore the relative importance of holobiont adaptation (i.e., a symbiont community shift) versus acclimation (i.e., physiological changes at the molecular level) in the clams’ responses to environmental change. We finally compared transcriptomic data to publicly available genomic datasets for Symbiodiniaceae dinoflagellates (both cultured and in hospite with the coral Pocillopora damicornis) to better tease apart the responses of both hosts and specific symbiont genotypes in this mutualistic association. Gene module preservation analysis revealed that the function of the symbionts’ photosystem II was impaired at high temperature, and this response was also found across all holobionts and Symbiodiniaceae lineages examined. Similarly, epigenetic modulation appeared to be a key response mechanism for symbionts in hospite with giant clams exposed to high temperatures, and such modulation was able to distinguish thermotolerant from thermosensitive Cladocopium goreaui ecotypes; epigenetic processes may, then, represent a promising research avenue for those interested in coral reef conservation in this era of changing global climate. Symbiodiniaceae show conserved genomic response to long‐term thermal stress. Thermotolerance in Symbiodiniaceae relies on epigenetic remodeling and phytohormone regulation.</description><identifier>ISSN: 1354-1013</identifier><identifier>EISSN: 1365-2486</identifier><identifier>DOI: 10.1111/gcb.14907</identifier><identifier>PMID: 31692206</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Acclimation ; Acclimatization ; Adaptation ; Animal biology ; Animals ; Anthozoa ; Bioclimatology ; Bleaching ; Chemical analysis ; Clams ; Climate change ; Coral reef conservation ; Coral Reefs ; Corals ; co‐expression network analysis ; Dinoflagellates ; Dinoflagellida ; Earth Sciences ; Ecology, environment ; Ecotypes ; Environmental changes ; Epigenetics ; Exposure ; Genotypes ; giant clams ; High temperature ; Hosts ; Invertebrate Zoology ; Life Sciences ; Marine invertebrates ; metabarcoding ; Modulation ; Molecular modelling ; Oceanography ; Photosystem II ; Physiology ; Polynesia ; Preservation ; RNA‐Seq ; Sciences of the Universe ; Seawater ; Surveying ; Symbiodiniaceae ; Symbionts ; Symbiosis ; Temperature ; Temperature tolerance ; thermo‐acclimation ; Water analysis</subject><ispartof>Global change biology, 2020-03, Vol.26 (3), p.1271-1284</ispartof><rights>2019 John Wiley &amp; Sons Ltd</rights><rights>2019 John Wiley &amp; Sons Ltd.</rights><rights>Copyright © 2020 John Wiley &amp; Sons Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4227-afdcca9128bee993b45ff23e8f7cac670485be4e6bb8004ea5fb1b0ba1c8fabb3</citedby><cites>FETCH-LOGICAL-c4227-afdcca9128bee993b45ff23e8f7cac670485be4e6bb8004ea5fb1b0ba1c8fabb3</cites><orcidid>0000-0001-9409-3196 ; 0000-0001-6801-7237 ; 0000-0002-0577-2953</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fgcb.14907$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fgcb.14907$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31692206$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02392459$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Alves Monteiro, Homère J.</creatorcontrib><creatorcontrib>Brahmi, Chloé</creatorcontrib><creatorcontrib>Mayfield, Anderson B.</creatorcontrib><creatorcontrib>Vidal‐Dupiol, Jérémie</creatorcontrib><creatorcontrib>Lapeyre, Bruno</creatorcontrib><creatorcontrib>Le Luyer, Jérémy</creatorcontrib><title>Molecular mechanisms of acclimation to long‐term elevated temperature exposure in marine symbioses</title><title>Global change biology</title><addtitle>Glob Chang Biol</addtitle><description>Seawater temperature rise in French Polynesia has repeatedly resulted in the bleaching of corals and giant clams. Because giant clams possess distinctive ectosymbiotic features, they represent a unique and powerful model for comparing molecular pathways involved in (a) maintenance of symbiosis and (b) acquisition of thermotolerance among coral reef organisms. Herein, we explored the physiological and transcriptomic responses of the clam hosts and their photosynthetically active symbionts over a 65 day experiment in which clams were exposed to either normal or environmentally relevant elevated seawater temperatures. Additionally, we used metabarcoding data coupled with in situ sampling/survey data to explore the relative importance of holobiont adaptation (i.e., a symbiont community shift) versus acclimation (i.e., physiological changes at the molecular level) in the clams’ responses to environmental change. We finally compared transcriptomic data to publicly available genomic datasets for Symbiodiniaceae dinoflagellates (both cultured and in hospite with the coral Pocillopora damicornis) to better tease apart the responses of both hosts and specific symbiont genotypes in this mutualistic association. Gene module preservation analysis revealed that the function of the symbionts’ photosystem II was impaired at high temperature, and this response was also found across all holobionts and Symbiodiniaceae lineages examined. Similarly, epigenetic modulation appeared to be a key response mechanism for symbionts in hospite with giant clams exposed to high temperatures, and such modulation was able to distinguish thermotolerant from thermosensitive Cladocopium goreaui ecotypes; epigenetic processes may, then, represent a promising research avenue for those interested in coral reef conservation in this era of changing global climate. Symbiodiniaceae show conserved genomic response to long‐term thermal stress. Thermotolerance in Symbiodiniaceae relies on epigenetic remodeling and phytohormone regulation.</description><subject>Acclimation</subject><subject>Acclimatization</subject><subject>Adaptation</subject><subject>Animal biology</subject><subject>Animals</subject><subject>Anthozoa</subject><subject>Bioclimatology</subject><subject>Bleaching</subject><subject>Chemical analysis</subject><subject>Clams</subject><subject>Climate change</subject><subject>Coral reef conservation</subject><subject>Coral Reefs</subject><subject>Corals</subject><subject>co‐expression network analysis</subject><subject>Dinoflagellates</subject><subject>Dinoflagellida</subject><subject>Earth Sciences</subject><subject>Ecology, environment</subject><subject>Ecotypes</subject><subject>Environmental changes</subject><subject>Epigenetics</subject><subject>Exposure</subject><subject>Genotypes</subject><subject>giant clams</subject><subject>High temperature</subject><subject>Hosts</subject><subject>Invertebrate Zoology</subject><subject>Life Sciences</subject><subject>Marine invertebrates</subject><subject>metabarcoding</subject><subject>Modulation</subject><subject>Molecular modelling</subject><subject>Oceanography</subject><subject>Photosystem II</subject><subject>Physiology</subject><subject>Polynesia</subject><subject>Preservation</subject><subject>RNA‐Seq</subject><subject>Sciences of the Universe</subject><subject>Seawater</subject><subject>Surveying</subject><subject>Symbiodiniaceae</subject><subject>Symbionts</subject><subject>Symbiosis</subject><subject>Temperature</subject><subject>Temperature tolerance</subject><subject>thermo‐acclimation</subject><subject>Water analysis</subject><issn>1354-1013</issn><issn>1365-2486</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kb1uFDEURi1EREKg4AWQJRooJvHfzHjKZBUSpI3ShNqyvdeJI3u82DOB7XiEPCNPgpcNWyDhxp-so-N79SH0jpITWs_pnTUnVAykf4GOKO_ahgnZvdzmVjSUUH6IXpfyQAjhjHSv0CGn3cBqPEKr6xTAzkFnHMHe69GXWHByWFsbfNSTTyOeEg5pvPv182mCHDEEeNQTrPAEcQ1ZT3MGDD_WqWyDH3HU2Y-AyyYanwqUN-jA6VDg7fN9jL5-vrhdXDXLm8svi7NlYwVjfaPdylo9UCYNwDBwI1rnGAfpeqtt1xMhWwMCOmMkIQJ06ww1xGhqpdPG8GP0aee910Gtcx0_b1TSXl2dLdX2jTA-MNEOj7SyH3fsOqdvM5RJRV8shKBHSHNRjFPWCimprOiHf9CHNOexblKpnhLR0Sref25zKiWD209AidrWpGpN6k9NlX3_bJxNhNWe_NtLBU53wHcfYPN_k7pcnO-UvwGm9J4P</recordid><startdate>202003</startdate><enddate>202003</enddate><creator>Alves Monteiro, Homère J.</creator><creator>Brahmi, Chloé</creator><creator>Mayfield, Anderson B.</creator><creator>Vidal‐Dupiol, Jérémie</creator><creator>Lapeyre, Bruno</creator><creator>Le Luyer, Jérémy</creator><general>Blackwell Publishing Ltd</general><general>Wiley</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-9409-3196</orcidid><orcidid>https://orcid.org/0000-0001-6801-7237</orcidid><orcidid>https://orcid.org/0000-0002-0577-2953</orcidid></search><sort><creationdate>202003</creationdate><title>Molecular mechanisms of acclimation to long‐term elevated temperature exposure in marine symbioses</title><author>Alves Monteiro, Homère J. ; Brahmi, Chloé ; Mayfield, Anderson B. ; Vidal‐Dupiol, Jérémie ; Lapeyre, Bruno ; Le Luyer, Jérémy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4227-afdcca9128bee993b45ff23e8f7cac670485be4e6bb8004ea5fb1b0ba1c8fabb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acclimation</topic><topic>Acclimatization</topic><topic>Adaptation</topic><topic>Animal biology</topic><topic>Animals</topic><topic>Anthozoa</topic><topic>Bioclimatology</topic><topic>Bleaching</topic><topic>Chemical analysis</topic><topic>Clams</topic><topic>Climate change</topic><topic>Coral reef conservation</topic><topic>Coral Reefs</topic><topic>Corals</topic><topic>co‐expression network analysis</topic><topic>Dinoflagellates</topic><topic>Dinoflagellida</topic><topic>Earth Sciences</topic><topic>Ecology, environment</topic><topic>Ecotypes</topic><topic>Environmental changes</topic><topic>Epigenetics</topic><topic>Exposure</topic><topic>Genotypes</topic><topic>giant clams</topic><topic>High temperature</topic><topic>Hosts</topic><topic>Invertebrate Zoology</topic><topic>Life Sciences</topic><topic>Marine invertebrates</topic><topic>metabarcoding</topic><topic>Modulation</topic><topic>Molecular modelling</topic><topic>Oceanography</topic><topic>Photosystem II</topic><topic>Physiology</topic><topic>Polynesia</topic><topic>Preservation</topic><topic>RNA‐Seq</topic><topic>Sciences of the Universe</topic><topic>Seawater</topic><topic>Surveying</topic><topic>Symbiodiniaceae</topic><topic>Symbionts</topic><topic>Symbiosis</topic><topic>Temperature</topic><topic>Temperature tolerance</topic><topic>thermo‐acclimation</topic><topic>Water analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alves Monteiro, Homère J.</creatorcontrib><creatorcontrib>Brahmi, Chloé</creatorcontrib><creatorcontrib>Mayfield, Anderson B.</creatorcontrib><creatorcontrib>Vidal‐Dupiol, Jérémie</creatorcontrib><creatorcontrib>Lapeyre, Bruno</creatorcontrib><creatorcontrib>Le Luyer, Jérémy</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Global change biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alves Monteiro, Homère J.</au><au>Brahmi, Chloé</au><au>Mayfield, Anderson B.</au><au>Vidal‐Dupiol, Jérémie</au><au>Lapeyre, Bruno</au><au>Le Luyer, Jérémy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular mechanisms of acclimation to long‐term elevated temperature exposure in marine symbioses</atitle><jtitle>Global change biology</jtitle><addtitle>Glob Chang Biol</addtitle><date>2020-03</date><risdate>2020</risdate><volume>26</volume><issue>3</issue><spage>1271</spage><epage>1284</epage><pages>1271-1284</pages><issn>1354-1013</issn><eissn>1365-2486</eissn><abstract>Seawater temperature rise in French Polynesia has repeatedly resulted in the bleaching of corals and giant clams. Because giant clams possess distinctive ectosymbiotic features, they represent a unique and powerful model for comparing molecular pathways involved in (a) maintenance of symbiosis and (b) acquisition of thermotolerance among coral reef organisms. Herein, we explored the physiological and transcriptomic responses of the clam hosts and their photosynthetically active symbionts over a 65 day experiment in which clams were exposed to either normal or environmentally relevant elevated seawater temperatures. Additionally, we used metabarcoding data coupled with in situ sampling/survey data to explore the relative importance of holobiont adaptation (i.e., a symbiont community shift) versus acclimation (i.e., physiological changes at the molecular level) in the clams’ responses to environmental change. We finally compared transcriptomic data to publicly available genomic datasets for Symbiodiniaceae dinoflagellates (both cultured and in hospite with the coral Pocillopora damicornis) to better tease apart the responses of both hosts and specific symbiont genotypes in this mutualistic association. Gene module preservation analysis revealed that the function of the symbionts’ photosystem II was impaired at high temperature, and this response was also found across all holobionts and Symbiodiniaceae lineages examined. Similarly, epigenetic modulation appeared to be a key response mechanism for symbionts in hospite with giant clams exposed to high temperatures, and such modulation was able to distinguish thermotolerant from thermosensitive Cladocopium goreaui ecotypes; epigenetic processes may, then, represent a promising research avenue for those interested in coral reef conservation in this era of changing global climate. Symbiodiniaceae show conserved genomic response to long‐term thermal stress. Thermotolerance in Symbiodiniaceae relies on epigenetic remodeling and phytohormone regulation.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>31692206</pmid><doi>10.1111/gcb.14907</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-9409-3196</orcidid><orcidid>https://orcid.org/0000-0001-6801-7237</orcidid><orcidid>https://orcid.org/0000-0002-0577-2953</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1354-1013
ispartof Global change biology, 2020-03, Vol.26 (3), p.1271-1284
issn 1354-1013
1365-2486
language eng
recordid cdi_hal_primary_oai_HAL_hal_02392459v1
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Acclimation
Acclimatization
Adaptation
Animal biology
Animals
Anthozoa
Bioclimatology
Bleaching
Chemical analysis
Clams
Climate change
Coral reef conservation
Coral Reefs
Corals
co‐expression network analysis
Dinoflagellates
Dinoflagellida
Earth Sciences
Ecology, environment
Ecotypes
Environmental changes
Epigenetics
Exposure
Genotypes
giant clams
High temperature
Hosts
Invertebrate Zoology
Life Sciences
Marine invertebrates
metabarcoding
Modulation
Molecular modelling
Oceanography
Photosystem II
Physiology
Polynesia
Preservation
RNA‐Seq
Sciences of the Universe
Seawater
Surveying
Symbiodiniaceae
Symbionts
Symbiosis
Temperature
Temperature tolerance
thermo‐acclimation
Water analysis
title Molecular mechanisms of acclimation to long‐term elevated temperature exposure in marine symbioses
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T10%3A49%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20mechanisms%20of%20acclimation%20to%20long%E2%80%90term%20elevated%20temperature%20exposure%20in%20marine%20symbioses&rft.jtitle=Global%20change%20biology&rft.au=Alves%20Monteiro,%20Hom%C3%A8re%20J.&rft.date=2020-03&rft.volume=26&rft.issue=3&rft.spage=1271&rft.epage=1284&rft.pages=1271-1284&rft.issn=1354-1013&rft.eissn=1365-2486&rft_id=info:doi/10.1111/gcb.14907&rft_dat=%3Cproquest_hal_p%3E2312548818%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2371046102&rft_id=info:pmid/31692206&rfr_iscdi=true