Ice Thickness and Bed Elevation of the Northern and Southern Patagonian Icefields

The Northern and Southern Patagonian Icefields are the largest ice masses in the Southern Hemisphere outside Antarctica, but their ice volume and bed topography are poorly known. Here, we combine airborne gravity data collected in 2012 and 2016, with radar data from the Warm Ice Experiment Sounder a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geophysical research letters 2019-06, Vol.46 (12), p.6626-6635
Hauptverfasser: Millan, R., Rignot, E., Rivera, A., Martineau, V., Mouginot, J., Zamora, R., Uribe, J., Lenzano, G., De Fleurian, B., Li, X., Gim, Y., Kirchner, D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6635
container_issue 12
container_start_page 6626
container_title Geophysical research letters
container_volume 46
creator Millan, R.
Rignot, E.
Rivera, A.
Martineau, V.
Mouginot, J.
Zamora, R.
Uribe, J.
Lenzano, G.
De Fleurian, B.
Li, X.
Gim, Y.
Kirchner, D.
description The Northern and Southern Patagonian Icefields are the largest ice masses in the Southern Hemisphere outside Antarctica, but their ice volume and bed topography are poorly known. Here, we combine airborne gravity data collected in 2012 and 2016, with radar data from the Warm Ice Experiment Sounder and Centro de Estudios Científicos's to map bed elevation and ice thickness in great detail. We perform a 3‐D inversion of the gravity data constrained by radar‐derived thickness and fjord bathymetry to infer bed elevation at 500‐m spacing, with a precision of about 60 m. We detect deep glacial valleys with ice thickness exceeding 1,400 m and sectors below sea level on the western branch of Glaciar Pio XI, Occidental, between San Rafael and Colonia, and near Fitz Roy. We calculate an ice volume of 4,756 ± 923 km3 for Northern Patagonia Icefield and Southern Patagonia Icefield, or 40 times the volume of glaciers in the European Alps. Plain Language Summary Traditional techniques of radar depth sounding fail to resolve thick, temperate ice masses due to poor penetration of the radar signals into snow and ice and extensive scattering due to water content. We combine sparse airborne radar sounding and bathymetry data with novel high‐resolution, high‐precision airborne gravity data to infer the bed topography of the Patagonia Icefields of South America. The results reveal the full range of deep ice thickness on the plateau, portions of the icefields grounded below sea level, and the total volume content of the Patagonia Icefields. The results are critical to constrain the details of the past, present, and future evolution of this glaciated region in a warmer climate. Key Points Comprehensive ice thickness and bed elevation measurements are conducted on the Northern and Southern Patagonian Icefields of South America Ice thickness in excess of 1,400 m is observed over selected regions of the plateau A multisensor approach solves the problem of mapping the thickness of temperate ice masses
doi_str_mv 10.1029/2019GL082485
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02392137v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2264455447</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4677-b5d625902e5dc667d6beff41e424a8bbb1f66f50d7cbd828e29802dd9a621e753</originalsourceid><addsrcrecordid>eNp90FtLwzAUB_AgCs7pmx-g4JNg9STNpXmcMrdB8TqfQ9qkrrM2M-km-_Z2VsQnn86FH38OB6FTDJcYiLwigOUkg5TQlO2hAZaUximA2EcDANn1RPBDdBTCEgASSPAAPc4KG80XVfHW2BAi3Zjo2ppoXNuNbivXRK6M2oWN7pzvim--xbNb98ODbvWrayrdRF1OWdnahGN0UOo62JOfOkQvt-P5zTTO7iezm1EWa8qFiHNmOGESiGWm4FwYntuypNhSQnWa5zkuOS8ZGFHkJiWpJTIFYozUnGArWDJE533uQtdq5at37bfK6UpNR5na7YAkkuBEbHBnz3q78u5jbUOrlm7tm-48RQinlDFKRacuelV4F4K35W8sBrV7sPr74I6Tnn9Wtd3-a9XkKWOplCL5Au6xeiw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2264455447</pqid></control><display><type>article</type><title>Ice Thickness and Bed Elevation of the Northern and Southern Patagonian Icefields</title><source>Wiley-Blackwell AGU Digital Library</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Online Library Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Millan, R. ; Rignot, E. ; Rivera, A. ; Martineau, V. ; Mouginot, J. ; Zamora, R. ; Uribe, J. ; Lenzano, G. ; De Fleurian, B. ; Li, X. ; Gim, Y. ; Kirchner, D.</creator><creatorcontrib>Millan, R. ; Rignot, E. ; Rivera, A. ; Martineau, V. ; Mouginot, J. ; Zamora, R. ; Uribe, J. ; Lenzano, G. ; De Fleurian, B. ; Li, X. ; Gim, Y. ; Kirchner, D.</creatorcontrib><description>The Northern and Southern Patagonian Icefields are the largest ice masses in the Southern Hemisphere outside Antarctica, but their ice volume and bed topography are poorly known. Here, we combine airborne gravity data collected in 2012 and 2016, with radar data from the Warm Ice Experiment Sounder and Centro de Estudios Científicos's to map bed elevation and ice thickness in great detail. We perform a 3‐D inversion of the gravity data constrained by radar‐derived thickness and fjord bathymetry to infer bed elevation at 500‐m spacing, with a precision of about 60 m. We detect deep glacial valleys with ice thickness exceeding 1,400 m and sectors below sea level on the western branch of Glaciar Pio XI, Occidental, between San Rafael and Colonia, and near Fitz Roy. We calculate an ice volume of 4,756 ± 923 km3 for Northern Patagonia Icefield and Southern Patagonia Icefield, or 40 times the volume of glaciers in the European Alps. Plain Language Summary Traditional techniques of radar depth sounding fail to resolve thick, temperate ice masses due to poor penetration of the radar signals into snow and ice and extensive scattering due to water content. We combine sparse airborne radar sounding and bathymetry data with novel high‐resolution, high‐precision airborne gravity data to infer the bed topography of the Patagonia Icefields of South America. The results reveal the full range of deep ice thickness on the plateau, portions of the icefields grounded below sea level, and the total volume content of the Patagonia Icefields. The results are critical to constrain the details of the past, present, and future evolution of this glaciated region in a warmer climate. Key Points Comprehensive ice thickness and bed elevation measurements are conducted on the Northern and Southern Patagonian Icefields of South America Ice thickness in excess of 1,400 m is observed over selected regions of the plateau A multisensor approach solves the problem of mapping the thickness of temperate ice masses</description><identifier>ISSN: 0094-8276</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1029/2019GL082485</identifier><language>eng</language><publisher>Washington: John Wiley &amp; Sons, Inc</publisher><subject>airborne gravity ; Airborne radar ; Airborne remote sensing ; Bathymeters ; Bathymetry ; bedrock topography ; Continental interfaces, environment ; Elevation ; Environmental Sciences ; Evolution ; Fjords ; Glaciers ; Global Changes ; Gravity data ; Ice ; Ice cover ; Ice fields ; Ice thickness ; Ice volume ; Moisture content ; Patagonian Icefields ; Radar ; Radar data ; radar depth sounder ; Sciences of the Universe ; Sea level ; Snow and ice ; Sounding ; Southern Hemisphere ; Thickness ; Topography ; Topography (geology) ; Valleys ; Water content</subject><ispartof>Geophysical research letters, 2019-06, Vol.46 (12), p.6626-6635</ispartof><rights>2019. The Authors.</rights><rights>2019. American Geophysical Union. All Rights Reserved.</rights><rights>Attribution - NonCommercial - ShareAlike</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4677-b5d625902e5dc667d6beff41e424a8bbb1f66f50d7cbd828e29802dd9a621e753</citedby><cites>FETCH-LOGICAL-a4677-b5d625902e5dc667d6beff41e424a8bbb1f66f50d7cbd828e29802dd9a621e753</cites><orcidid>0000-0001-8700-9822 ; 0000-0002-2779-4192 ; 0000-0002-7987-1305 ; 0000-0003-4326-9758 ; 0000-0001-9155-5455 ; 0000-0002-3366-0481 ; 0000-0001-6744-590X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2019GL082485$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2019GL082485$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,1427,11493,27901,27902,45550,45551,46384,46443,46808,46867</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02392137$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Millan, R.</creatorcontrib><creatorcontrib>Rignot, E.</creatorcontrib><creatorcontrib>Rivera, A.</creatorcontrib><creatorcontrib>Martineau, V.</creatorcontrib><creatorcontrib>Mouginot, J.</creatorcontrib><creatorcontrib>Zamora, R.</creatorcontrib><creatorcontrib>Uribe, J.</creatorcontrib><creatorcontrib>Lenzano, G.</creatorcontrib><creatorcontrib>De Fleurian, B.</creatorcontrib><creatorcontrib>Li, X.</creatorcontrib><creatorcontrib>Gim, Y.</creatorcontrib><creatorcontrib>Kirchner, D.</creatorcontrib><title>Ice Thickness and Bed Elevation of the Northern and Southern Patagonian Icefields</title><title>Geophysical research letters</title><description>The Northern and Southern Patagonian Icefields are the largest ice masses in the Southern Hemisphere outside Antarctica, but their ice volume and bed topography are poorly known. Here, we combine airborne gravity data collected in 2012 and 2016, with radar data from the Warm Ice Experiment Sounder and Centro de Estudios Científicos's to map bed elevation and ice thickness in great detail. We perform a 3‐D inversion of the gravity data constrained by radar‐derived thickness and fjord bathymetry to infer bed elevation at 500‐m spacing, with a precision of about 60 m. We detect deep glacial valleys with ice thickness exceeding 1,400 m and sectors below sea level on the western branch of Glaciar Pio XI, Occidental, between San Rafael and Colonia, and near Fitz Roy. We calculate an ice volume of 4,756 ± 923 km3 for Northern Patagonia Icefield and Southern Patagonia Icefield, or 40 times the volume of glaciers in the European Alps. Plain Language Summary Traditional techniques of radar depth sounding fail to resolve thick, temperate ice masses due to poor penetration of the radar signals into snow and ice and extensive scattering due to water content. We combine sparse airborne radar sounding and bathymetry data with novel high‐resolution, high‐precision airborne gravity data to infer the bed topography of the Patagonia Icefields of South America. The results reveal the full range of deep ice thickness on the plateau, portions of the icefields grounded below sea level, and the total volume content of the Patagonia Icefields. The results are critical to constrain the details of the past, present, and future evolution of this glaciated region in a warmer climate. Key Points Comprehensive ice thickness and bed elevation measurements are conducted on the Northern and Southern Patagonian Icefields of South America Ice thickness in excess of 1,400 m is observed over selected regions of the plateau A multisensor approach solves the problem of mapping the thickness of temperate ice masses</description><subject>airborne gravity</subject><subject>Airborne radar</subject><subject>Airborne remote sensing</subject><subject>Bathymeters</subject><subject>Bathymetry</subject><subject>bedrock topography</subject><subject>Continental interfaces, environment</subject><subject>Elevation</subject><subject>Environmental Sciences</subject><subject>Evolution</subject><subject>Fjords</subject><subject>Glaciers</subject><subject>Global Changes</subject><subject>Gravity data</subject><subject>Ice</subject><subject>Ice cover</subject><subject>Ice fields</subject><subject>Ice thickness</subject><subject>Ice volume</subject><subject>Moisture content</subject><subject>Patagonian Icefields</subject><subject>Radar</subject><subject>Radar data</subject><subject>radar depth sounder</subject><subject>Sciences of the Universe</subject><subject>Sea level</subject><subject>Snow and ice</subject><subject>Sounding</subject><subject>Southern Hemisphere</subject><subject>Thickness</subject><subject>Topography</subject><subject>Topography (geology)</subject><subject>Valleys</subject><subject>Water content</subject><issn>0094-8276</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp90FtLwzAUB_AgCs7pmx-g4JNg9STNpXmcMrdB8TqfQ9qkrrM2M-km-_Z2VsQnn86FH38OB6FTDJcYiLwigOUkg5TQlO2hAZaUximA2EcDANn1RPBDdBTCEgASSPAAPc4KG80XVfHW2BAi3Zjo2ppoXNuNbivXRK6M2oWN7pzvim--xbNb98ODbvWrayrdRF1OWdnahGN0UOo62JOfOkQvt-P5zTTO7iezm1EWa8qFiHNmOGESiGWm4FwYntuypNhSQnWa5zkuOS8ZGFHkJiWpJTIFYozUnGArWDJE533uQtdq5at37bfK6UpNR5na7YAkkuBEbHBnz3q78u5jbUOrlm7tm-48RQinlDFKRacuelV4F4K35W8sBrV7sPr74I6Tnn9Wtd3-a9XkKWOplCL5Au6xeiw</recordid><startdate>20190628</startdate><enddate>20190628</enddate><creator>Millan, R.</creator><creator>Rignot, E.</creator><creator>Rivera, A.</creator><creator>Martineau, V.</creator><creator>Mouginot, J.</creator><creator>Zamora, R.</creator><creator>Uribe, J.</creator><creator>Lenzano, G.</creator><creator>De Fleurian, B.</creator><creator>Li, X.</creator><creator>Gim, Y.</creator><creator>Kirchner, D.</creator><general>John Wiley &amp; Sons, Inc</general><general>American Geophysical Union</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-8700-9822</orcidid><orcidid>https://orcid.org/0000-0002-2779-4192</orcidid><orcidid>https://orcid.org/0000-0002-7987-1305</orcidid><orcidid>https://orcid.org/0000-0003-4326-9758</orcidid><orcidid>https://orcid.org/0000-0001-9155-5455</orcidid><orcidid>https://orcid.org/0000-0002-3366-0481</orcidid><orcidid>https://orcid.org/0000-0001-6744-590X</orcidid></search><sort><creationdate>20190628</creationdate><title>Ice Thickness and Bed Elevation of the Northern and Southern Patagonian Icefields</title><author>Millan, R. ; Rignot, E. ; Rivera, A. ; Martineau, V. ; Mouginot, J. ; Zamora, R. ; Uribe, J. ; Lenzano, G. ; De Fleurian, B. ; Li, X. ; Gim, Y. ; Kirchner, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4677-b5d625902e5dc667d6beff41e424a8bbb1f66f50d7cbd828e29802dd9a621e753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>airborne gravity</topic><topic>Airborne radar</topic><topic>Airborne remote sensing</topic><topic>Bathymeters</topic><topic>Bathymetry</topic><topic>bedrock topography</topic><topic>Continental interfaces, environment</topic><topic>Elevation</topic><topic>Environmental Sciences</topic><topic>Evolution</topic><topic>Fjords</topic><topic>Glaciers</topic><topic>Global Changes</topic><topic>Gravity data</topic><topic>Ice</topic><topic>Ice cover</topic><topic>Ice fields</topic><topic>Ice thickness</topic><topic>Ice volume</topic><topic>Moisture content</topic><topic>Patagonian Icefields</topic><topic>Radar</topic><topic>Radar data</topic><topic>radar depth sounder</topic><topic>Sciences of the Universe</topic><topic>Sea level</topic><topic>Snow and ice</topic><topic>Sounding</topic><topic>Southern Hemisphere</topic><topic>Thickness</topic><topic>Topography</topic><topic>Topography (geology)</topic><topic>Valleys</topic><topic>Water content</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Millan, R.</creatorcontrib><creatorcontrib>Rignot, E.</creatorcontrib><creatorcontrib>Rivera, A.</creatorcontrib><creatorcontrib>Martineau, V.</creatorcontrib><creatorcontrib>Mouginot, J.</creatorcontrib><creatorcontrib>Zamora, R.</creatorcontrib><creatorcontrib>Uribe, J.</creatorcontrib><creatorcontrib>Lenzano, G.</creatorcontrib><creatorcontrib>De Fleurian, B.</creatorcontrib><creatorcontrib>Li, X.</creatorcontrib><creatorcontrib>Gim, Y.</creatorcontrib><creatorcontrib>Kirchner, D.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Millan, R.</au><au>Rignot, E.</au><au>Rivera, A.</au><au>Martineau, V.</au><au>Mouginot, J.</au><au>Zamora, R.</au><au>Uribe, J.</au><au>Lenzano, G.</au><au>De Fleurian, B.</au><au>Li, X.</au><au>Gim, Y.</au><au>Kirchner, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ice Thickness and Bed Elevation of the Northern and Southern Patagonian Icefields</atitle><jtitle>Geophysical research letters</jtitle><date>2019-06-28</date><risdate>2019</risdate><volume>46</volume><issue>12</issue><spage>6626</spage><epage>6635</epage><pages>6626-6635</pages><issn>0094-8276</issn><eissn>1944-8007</eissn><abstract>The Northern and Southern Patagonian Icefields are the largest ice masses in the Southern Hemisphere outside Antarctica, but their ice volume and bed topography are poorly known. Here, we combine airborne gravity data collected in 2012 and 2016, with radar data from the Warm Ice Experiment Sounder and Centro de Estudios Científicos's to map bed elevation and ice thickness in great detail. We perform a 3‐D inversion of the gravity data constrained by radar‐derived thickness and fjord bathymetry to infer bed elevation at 500‐m spacing, with a precision of about 60 m. We detect deep glacial valleys with ice thickness exceeding 1,400 m and sectors below sea level on the western branch of Glaciar Pio XI, Occidental, between San Rafael and Colonia, and near Fitz Roy. We calculate an ice volume of 4,756 ± 923 km3 for Northern Patagonia Icefield and Southern Patagonia Icefield, or 40 times the volume of glaciers in the European Alps. Plain Language Summary Traditional techniques of radar depth sounding fail to resolve thick, temperate ice masses due to poor penetration of the radar signals into snow and ice and extensive scattering due to water content. We combine sparse airborne radar sounding and bathymetry data with novel high‐resolution, high‐precision airborne gravity data to infer the bed topography of the Patagonia Icefields of South America. The results reveal the full range of deep ice thickness on the plateau, portions of the icefields grounded below sea level, and the total volume content of the Patagonia Icefields. The results are critical to constrain the details of the past, present, and future evolution of this glaciated region in a warmer climate. Key Points Comprehensive ice thickness and bed elevation measurements are conducted on the Northern and Southern Patagonian Icefields of South America Ice thickness in excess of 1,400 m is observed over selected regions of the plateau A multisensor approach solves the problem of mapping the thickness of temperate ice masses</abstract><cop>Washington</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1029/2019GL082485</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-8700-9822</orcidid><orcidid>https://orcid.org/0000-0002-2779-4192</orcidid><orcidid>https://orcid.org/0000-0002-7987-1305</orcidid><orcidid>https://orcid.org/0000-0003-4326-9758</orcidid><orcidid>https://orcid.org/0000-0001-9155-5455</orcidid><orcidid>https://orcid.org/0000-0002-3366-0481</orcidid><orcidid>https://orcid.org/0000-0001-6744-590X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-8276
ispartof Geophysical research letters, 2019-06, Vol.46 (12), p.6626-6635
issn 0094-8276
1944-8007
language eng
recordid cdi_hal_primary_oai_HAL_hal_02392137v1
source Wiley-Blackwell AGU Digital Library; Wiley Online Library Journals Frontfile Complete; Wiley Online Library Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects airborne gravity
Airborne radar
Airborne remote sensing
Bathymeters
Bathymetry
bedrock topography
Continental interfaces, environment
Elevation
Environmental Sciences
Evolution
Fjords
Glaciers
Global Changes
Gravity data
Ice
Ice cover
Ice fields
Ice thickness
Ice volume
Moisture content
Patagonian Icefields
Radar
Radar data
radar depth sounder
Sciences of the Universe
Sea level
Snow and ice
Sounding
Southern Hemisphere
Thickness
Topography
Topography (geology)
Valleys
Water content
title Ice Thickness and Bed Elevation of the Northern and Southern Patagonian Icefields
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T07%3A46%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ice%20Thickness%20and%20Bed%20Elevation%20of%20the%20Northern%20and%20Southern%20Patagonian%20Icefields&rft.jtitle=Geophysical%20research%20letters&rft.au=Millan,%20R.&rft.date=2019-06-28&rft.volume=46&rft.issue=12&rft.spage=6626&rft.epage=6635&rft.pages=6626-6635&rft.issn=0094-8276&rft.eissn=1944-8007&rft_id=info:doi/10.1029/2019GL082485&rft_dat=%3Cproquest_hal_p%3E2264455447%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2264455447&rft_id=info:pmid/&rfr_iscdi=true