Ionospheric correction of InSAR data for accurate ice velocity measurement at polar regions
Interferometric synthetic aperture radar (InSAR) has become an essential tool for measuring ice sheet velocity in the Polar Regions. At low radar frequencies, e.g. L-band (1.2 GHz) but also at higher frequency, e.g. C-band (5.6 GHz), the ionosphere has been documented to be an important source of no...
Gespeichert in:
Veröffentlicht in: | Remote sensing of environment 2018-05, Vol.209, p.166-180 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 180 |
---|---|
container_issue | |
container_start_page | 166 |
container_title | Remote sensing of environment |
container_volume | 209 |
creator | Liao, Heming Meyer, Franz J. Scheuchl, Bernd Mouginot, Jeremie Joughin, Ian Rignot, Eric |
description | Interferometric synthetic aperture radar (InSAR) has become an essential tool for measuring ice sheet velocity in the Polar Regions. At low radar frequencies, e.g. L-band (1.2 GHz) but also at higher frequency, e.g. C-band (5.6 GHz), the ionosphere has been documented to be an important source of noise in these data. In this paper, we employ a split-spectrum technique and investigate its performance for correcting ionospheric effects in InSAR-based ice velocity measurements in Greenland and Antarctica. Three case studies using ALOS PALSAR data are used to assess the performance of the split spectrum technique for ionosphere correction over a range of environmental parameters. We employ several approaches to evaluate the results, including visual inspection, profile analysis, comparison of experimental and theoretic errors, comparison with reference data from other sources, generation of double difference interferograms, and analysis of time series of multi-temporal data. Our experiments show that ionospheric distortions are observed regularly, and in our analyzed Greenland dataset and Antarctic dataset the ionospheric noise reaches 14 m/yr and 10 m/yr, respectively, which exceeds the signal associated with ice motion. Our analysis using several different approaches demonstrates that the split-spectrum technique provides an effective correction. The split spectrum technique is also found to be superior to currently used approaches such as baseline fitting and multi-temporal averaging. The noise level is reduced by a factor of 70% in Greenland test areas and 90% in Antarctic test areas.
•Split-spectrum methods are effective in correcting ionospheric noise from InSAR data.•Errors in ice velocity estimates were reduced by ~70% (Greenland)–90% (Antarctic).•Split-spectrum-based correction outperforms multi-temporal averaging techniques. |
doi_str_mv | 10.1016/j.rse.2018.02.048 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02391966v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0034425718300580</els_id><sourcerecordid>2070929056</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-1cc78f974645b6156b1b93f6d5d8564946d42cbb69a1b2ad0a4acf9f2ffb827a3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKs_wFvAk4ddk2w2u8FTEbWFguDHyUPIZic2pd3UZLfQf2_KikdPA8Pzvsw8CF1TklNCxd06DxFyRmidE5YTXp-gCa0rmZGK8FM0IaTgGWdldY4uYlwTQsu6ohP0ufCdj7sVBGew8SGA6Z3vsLd40b3NXnGre42tD1gbMwTdA3YG8B423rj-gLeg4xBgC12PdY93fqMDDvCVOuIlOrN6E-Hqd07Rx9Pj-8M8W748Lx5my8wUpewzakxVW1lxwctG0FI0tJGFFW3Z1qXgkouWM9M0QmraMN0SzbWx0jJrm5pVupii27F3pTdqF9xWh4Py2qn5bKmOO8IKSaUQe5rYm5HdBf89QOzV2g-hS-cpllRJJkkpEkVHygQfYwD7V0uJOvpWa5V8q6Pv1K6S75S5HzOQXt07CCoaB52B1h2lqta7f9I_qKGIMw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2070929056</pqid></control><display><type>article</type><title>Ionospheric correction of InSAR data for accurate ice velocity measurement at polar regions</title><source>Access via ScienceDirect (Elsevier)</source><creator>Liao, Heming ; Meyer, Franz J. ; Scheuchl, Bernd ; Mouginot, Jeremie ; Joughin, Ian ; Rignot, Eric</creator><creatorcontrib>Liao, Heming ; Meyer, Franz J. ; Scheuchl, Bernd ; Mouginot, Jeremie ; Joughin, Ian ; Rignot, Eric</creatorcontrib><description>Interferometric synthetic aperture radar (InSAR) has become an essential tool for measuring ice sheet velocity in the Polar Regions. At low radar frequencies, e.g. L-band (1.2 GHz) but also at higher frequency, e.g. C-band (5.6 GHz), the ionosphere has been documented to be an important source of noise in these data. In this paper, we employ a split-spectrum technique and investigate its performance for correcting ionospheric effects in InSAR-based ice velocity measurements in Greenland and Antarctica. Three case studies using ALOS PALSAR data are used to assess the performance of the split spectrum technique for ionosphere correction over a range of environmental parameters. We employ several approaches to evaluate the results, including visual inspection, profile analysis, comparison of experimental and theoretic errors, comparison with reference data from other sources, generation of double difference interferograms, and analysis of time series of multi-temporal data. Our experiments show that ionospheric distortions are observed regularly, and in our analyzed Greenland dataset and Antarctic dataset the ionospheric noise reaches 14 m/yr and 10 m/yr, respectively, which exceeds the signal associated with ice motion. Our analysis using several different approaches demonstrates that the split-spectrum technique provides an effective correction. The split spectrum technique is also found to be superior to currently used approaches such as baseline fitting and multi-temporal averaging. The noise level is reduced by a factor of 70% in Greenland test areas and 90% in Antarctic test areas.
•Split-spectrum methods are effective in correcting ionospheric noise from InSAR data.•Errors in ice velocity estimates were reduced by ~70% (Greenland)–90% (Antarctic).•Split-spectrum-based correction outperforms multi-temporal averaging techniques.</description><identifier>ISSN: 0034-4257</identifier><identifier>EISSN: 1879-0704</identifier><identifier>DOI: 10.1016/j.rse.2018.02.048</identifier><language>eng</language><publisher>New York: Elsevier Inc</publisher><subject>C band ; Case studies ; Data stacking ; Environmental Engineering ; Environmental parameters ; Environmental Sciences ; Global Changes ; Ice ; Ice sheets ; Ice velocity ; Inspection ; Interferometric synthetic aperture radar ; Interferometry ; Ionosphere ; Ionosphere correction ; Ionosphere effect ; Ionospheric noise ; Noise levels ; Polar environments ; Polar regions ; Radar ; Range split spectrum ; Remote sensing ; SAR interferometry ; Spatial analysis ; Synthetic aperture radar ; Synthetic aperture radar interferometry ; Velocity ; Velocity measurement</subject><ispartof>Remote sensing of environment, 2018-05, Vol.209, p.166-180</ispartof><rights>2018 Elsevier Inc.</rights><rights>Copyright Elsevier BV May 2018</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-1cc78f974645b6156b1b93f6d5d8564946d42cbb69a1b2ad0a4acf9f2ffb827a3</citedby><cites>FETCH-LOGICAL-c359t-1cc78f974645b6156b1b93f6d5d8564946d42cbb69a1b2ad0a4acf9f2ffb827a3</cites><orcidid>0000-0002-3366-0481 ; 0000-0001-9155-5455 ; 0000-0001-5947-7709</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.rse.2018.02.048$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,315,782,786,887,3552,27931,27932,46002</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02391966$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Liao, Heming</creatorcontrib><creatorcontrib>Meyer, Franz J.</creatorcontrib><creatorcontrib>Scheuchl, Bernd</creatorcontrib><creatorcontrib>Mouginot, Jeremie</creatorcontrib><creatorcontrib>Joughin, Ian</creatorcontrib><creatorcontrib>Rignot, Eric</creatorcontrib><title>Ionospheric correction of InSAR data for accurate ice velocity measurement at polar regions</title><title>Remote sensing of environment</title><description>Interferometric synthetic aperture radar (InSAR) has become an essential tool for measuring ice sheet velocity in the Polar Regions. At low radar frequencies, e.g. L-band (1.2 GHz) but also at higher frequency, e.g. C-band (5.6 GHz), the ionosphere has been documented to be an important source of noise in these data. In this paper, we employ a split-spectrum technique and investigate its performance for correcting ionospheric effects in InSAR-based ice velocity measurements in Greenland and Antarctica. Three case studies using ALOS PALSAR data are used to assess the performance of the split spectrum technique for ionosphere correction over a range of environmental parameters. We employ several approaches to evaluate the results, including visual inspection, profile analysis, comparison of experimental and theoretic errors, comparison with reference data from other sources, generation of double difference interferograms, and analysis of time series of multi-temporal data. Our experiments show that ionospheric distortions are observed regularly, and in our analyzed Greenland dataset and Antarctic dataset the ionospheric noise reaches 14 m/yr and 10 m/yr, respectively, which exceeds the signal associated with ice motion. Our analysis using several different approaches demonstrates that the split-spectrum technique provides an effective correction. The split spectrum technique is also found to be superior to currently used approaches such as baseline fitting and multi-temporal averaging. The noise level is reduced by a factor of 70% in Greenland test areas and 90% in Antarctic test areas.
•Split-spectrum methods are effective in correcting ionospheric noise from InSAR data.•Errors in ice velocity estimates were reduced by ~70% (Greenland)–90% (Antarctic).•Split-spectrum-based correction outperforms multi-temporal averaging techniques.</description><subject>C band</subject><subject>Case studies</subject><subject>Data stacking</subject><subject>Environmental Engineering</subject><subject>Environmental parameters</subject><subject>Environmental Sciences</subject><subject>Global Changes</subject><subject>Ice</subject><subject>Ice sheets</subject><subject>Ice velocity</subject><subject>Inspection</subject><subject>Interferometric synthetic aperture radar</subject><subject>Interferometry</subject><subject>Ionosphere</subject><subject>Ionosphere correction</subject><subject>Ionosphere effect</subject><subject>Ionospheric noise</subject><subject>Noise levels</subject><subject>Polar environments</subject><subject>Polar regions</subject><subject>Radar</subject><subject>Range split spectrum</subject><subject>Remote sensing</subject><subject>SAR interferometry</subject><subject>Spatial analysis</subject><subject>Synthetic aperture radar</subject><subject>Synthetic aperture radar interferometry</subject><subject>Velocity</subject><subject>Velocity measurement</subject><issn>0034-4257</issn><issn>1879-0704</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKs_wFvAk4ddk2w2u8FTEbWFguDHyUPIZic2pd3UZLfQf2_KikdPA8Pzvsw8CF1TklNCxd06DxFyRmidE5YTXp-gCa0rmZGK8FM0IaTgGWdldY4uYlwTQsu6ohP0ufCdj7sVBGew8SGA6Z3vsLd40b3NXnGre42tD1gbMwTdA3YG8B423rj-gLeg4xBgC12PdY93fqMDDvCVOuIlOrN6E-Hqd07Rx9Pj-8M8W748Lx5my8wUpewzakxVW1lxwctG0FI0tJGFFW3Z1qXgkouWM9M0QmraMN0SzbWx0jJrm5pVupii27F3pTdqF9xWh4Py2qn5bKmOO8IKSaUQe5rYm5HdBf89QOzV2g-hS-cpllRJJkkpEkVHygQfYwD7V0uJOvpWa5V8q6Pv1K6S75S5HzOQXt07CCoaB52B1h2lqta7f9I_qKGIMw</recordid><startdate>201805</startdate><enddate>201805</enddate><creator>Liao, Heming</creator><creator>Meyer, Franz J.</creator><creator>Scheuchl, Bernd</creator><creator>Mouginot, Jeremie</creator><creator>Joughin, Ian</creator><creator>Rignot, Eric</creator><general>Elsevier Inc</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TG</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-3366-0481</orcidid><orcidid>https://orcid.org/0000-0001-9155-5455</orcidid><orcidid>https://orcid.org/0000-0001-5947-7709</orcidid></search><sort><creationdate>201805</creationdate><title>Ionospheric correction of InSAR data for accurate ice velocity measurement at polar regions</title><author>Liao, Heming ; Meyer, Franz J. ; Scheuchl, Bernd ; Mouginot, Jeremie ; Joughin, Ian ; Rignot, Eric</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-1cc78f974645b6156b1b93f6d5d8564946d42cbb69a1b2ad0a4acf9f2ffb827a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>C band</topic><topic>Case studies</topic><topic>Data stacking</topic><topic>Environmental Engineering</topic><topic>Environmental parameters</topic><topic>Environmental Sciences</topic><topic>Global Changes</topic><topic>Ice</topic><topic>Ice sheets</topic><topic>Ice velocity</topic><topic>Inspection</topic><topic>Interferometric synthetic aperture radar</topic><topic>Interferometry</topic><topic>Ionosphere</topic><topic>Ionosphere correction</topic><topic>Ionosphere effect</topic><topic>Ionospheric noise</topic><topic>Noise levels</topic><topic>Polar environments</topic><topic>Polar regions</topic><topic>Radar</topic><topic>Range split spectrum</topic><topic>Remote sensing</topic><topic>SAR interferometry</topic><topic>Spatial analysis</topic><topic>Synthetic aperture radar</topic><topic>Synthetic aperture radar interferometry</topic><topic>Velocity</topic><topic>Velocity measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liao, Heming</creatorcontrib><creatorcontrib>Meyer, Franz J.</creatorcontrib><creatorcontrib>Scheuchl, Bernd</creatorcontrib><creatorcontrib>Mouginot, Jeremie</creatorcontrib><creatorcontrib>Joughin, Ian</creatorcontrib><creatorcontrib>Rignot, Eric</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Remote sensing of environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liao, Heming</au><au>Meyer, Franz J.</au><au>Scheuchl, Bernd</au><au>Mouginot, Jeremie</au><au>Joughin, Ian</au><au>Rignot, Eric</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ionospheric correction of InSAR data for accurate ice velocity measurement at polar regions</atitle><jtitle>Remote sensing of environment</jtitle><date>2018-05</date><risdate>2018</risdate><volume>209</volume><spage>166</spage><epage>180</epage><pages>166-180</pages><issn>0034-4257</issn><eissn>1879-0704</eissn><abstract>Interferometric synthetic aperture radar (InSAR) has become an essential tool for measuring ice sheet velocity in the Polar Regions. At low radar frequencies, e.g. L-band (1.2 GHz) but also at higher frequency, e.g. C-band (5.6 GHz), the ionosphere has been documented to be an important source of noise in these data. In this paper, we employ a split-spectrum technique and investigate its performance for correcting ionospheric effects in InSAR-based ice velocity measurements in Greenland and Antarctica. Three case studies using ALOS PALSAR data are used to assess the performance of the split spectrum technique for ionosphere correction over a range of environmental parameters. We employ several approaches to evaluate the results, including visual inspection, profile analysis, comparison of experimental and theoretic errors, comparison with reference data from other sources, generation of double difference interferograms, and analysis of time series of multi-temporal data. Our experiments show that ionospheric distortions are observed regularly, and in our analyzed Greenland dataset and Antarctic dataset the ionospheric noise reaches 14 m/yr and 10 m/yr, respectively, which exceeds the signal associated with ice motion. Our analysis using several different approaches demonstrates that the split-spectrum technique provides an effective correction. The split spectrum technique is also found to be superior to currently used approaches such as baseline fitting and multi-temporal averaging. The noise level is reduced by a factor of 70% in Greenland test areas and 90% in Antarctic test areas.
•Split-spectrum methods are effective in correcting ionospheric noise from InSAR data.•Errors in ice velocity estimates were reduced by ~70% (Greenland)–90% (Antarctic).•Split-spectrum-based correction outperforms multi-temporal averaging techniques.</abstract><cop>New York</cop><pub>Elsevier Inc</pub><doi>10.1016/j.rse.2018.02.048</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-3366-0481</orcidid><orcidid>https://orcid.org/0000-0001-9155-5455</orcidid><orcidid>https://orcid.org/0000-0001-5947-7709</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0034-4257 |
ispartof | Remote sensing of environment, 2018-05, Vol.209, p.166-180 |
issn | 0034-4257 1879-0704 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02391966v1 |
source | Access via ScienceDirect (Elsevier) |
subjects | C band Case studies Data stacking Environmental Engineering Environmental parameters Environmental Sciences Global Changes Ice Ice sheets Ice velocity Inspection Interferometric synthetic aperture radar Interferometry Ionosphere Ionosphere correction Ionosphere effect Ionospheric noise Noise levels Polar environments Polar regions Radar Range split spectrum Remote sensing SAR interferometry Spatial analysis Synthetic aperture radar Synthetic aperture radar interferometry Velocity Velocity measurement |
title | Ionospheric correction of InSAR data for accurate ice velocity measurement at polar regions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T18%3A32%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ionospheric%20correction%20of%20InSAR%20data%20for%20accurate%20ice%20velocity%20measurement%20at%20polar%20regions&rft.jtitle=Remote%20sensing%20of%20environment&rft.au=Liao,%20Heming&rft.date=2018-05&rft.volume=209&rft.spage=166&rft.epage=180&rft.pages=166-180&rft.issn=0034-4257&rft.eissn=1879-0704&rft_id=info:doi/10.1016/j.rse.2018.02.048&rft_dat=%3Cproquest_hal_p%3E2070929056%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2070929056&rft_id=info:pmid/&rft_els_id=S0034425718300580&rfr_iscdi=true |