Drp1 polymerization stabilizes curved tubular membranes similar to those of constricted mitochondria
Dynamin-related protein 1 (Drp1), an 80 kDa mechanochemical GTPase of the dynamin superfamily, is required for mitochondrial division in mammals. Despite the role of Drp1 dysfunction in human disease, its molecular mechanism remains poorly understood. Here, we examined the effect of Drp1 on membrane...
Gespeichert in:
Veröffentlicht in: | Journal of cell science 2018-04, Vol.132 (4) |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | |
container_title | Journal of cell science |
container_volume | 132 |
creator | Ugarte-Uribe, Begoña Prévost, Coline Das, Kushal Kumar Bassereau, Patricia García-Sáez, Ana J |
description | Dynamin-related protein 1 (Drp1), an 80 kDa mechanochemical GTPase of the dynamin superfamily, is required for mitochondrial division in mammals. Despite the role of Drp1 dysfunction in human disease, its molecular mechanism remains poorly understood. Here, we examined the effect of Drp1 on membrane curvature using tubes pulled from giant unilamellar vesicles (GUVs). We found that GTP promoted rapid rearrangement of Drp1 from a uniform distribution to discrete foci, in line with the assembly of Drp1 scaffolds at multiple nucleation sites around the lipid tube. Polymerized Drp1 preserved the membrane tube below the protein coat, also in the absence of pulling forces, but did not induce spontaneous membrane fission. Strikingly, Drp1 polymers stabilized membrane curvatures similar to those of constricted mitochondria against pressure changes. Our findings support a new model for mitochondrial division whereby Drp1 mainly acts as a scaffold for membrane curvature stabilization, which sets it apart from other dynamin homologs. |
doi_str_mv | 10.1242/jcs.208603 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02390364v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1990853963</sourcerecordid><originalsourceid>FETCH-LOGICAL-c423t-2d90fc97917d8e4c506a419768601d7e8885343493c9dd88e6a6150808a4cdb63</originalsourceid><addsrcrecordid>eNo9kUtPAyEUhYnR2Frd-APMLNVkKq8OsGzqoyZN3OiaMEBTmplSgWnS_npppnZ1k3M_DhwOAPcIjhGm-GWt4xhDXkFyAYaIMlYKRNglGEKIUSkmhAzATYxrCCHDgl2DARakQhNCh8C8hi0qtr7Ztza4g0rOb4qYVO0ad7Cx0F3YWVOkru4aFYrWtnVQm7yIrnVHJfkirXy0hV8W2m9iCk6nfKJ1yeuV35jg1C24Wqom2rvTHIGf97fv2bxcfH18zqaLUlNMUomNgEstmEDMcEv1BFaKIsGqHA0ZZjnn-c2ECqKFMZzbSuUUkEOuqDZ1RUbgqfddqUZug2tV2EuvnJxPF_KoQUwEJBXdocw-9uw2-N_OxiRbF7VtmpzOd1EiIWC-TlQko889qoOPMdjl2RtBeWxA5gZk30CGH06-Xd1ac0b_v5z8AekLgUQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1990853963</pqid></control><display><type>article</type><title>Drp1 polymerization stabilizes curved tubular membranes similar to those of constricted mitochondria</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><source>Company of Biologists</source><creator>Ugarte-Uribe, Begoña ; Prévost, Coline ; Das, Kushal Kumar ; Bassereau, Patricia ; García-Sáez, Ana J</creator><creatorcontrib>Ugarte-Uribe, Begoña ; Prévost, Coline ; Das, Kushal Kumar ; Bassereau, Patricia ; García-Sáez, Ana J</creatorcontrib><description>Dynamin-related protein 1 (Drp1), an 80 kDa mechanochemical GTPase of the dynamin superfamily, is required for mitochondrial division in mammals. Despite the role of Drp1 dysfunction in human disease, its molecular mechanism remains poorly understood. Here, we examined the effect of Drp1 on membrane curvature using tubes pulled from giant unilamellar vesicles (GUVs). We found that GTP promoted rapid rearrangement of Drp1 from a uniform distribution to discrete foci, in line with the assembly of Drp1 scaffolds at multiple nucleation sites around the lipid tube. Polymerized Drp1 preserved the membrane tube below the protein coat, also in the absence of pulling forces, but did not induce spontaneous membrane fission. Strikingly, Drp1 polymers stabilized membrane curvatures similar to those of constricted mitochondria against pressure changes. Our findings support a new model for mitochondrial division whereby Drp1 mainly acts as a scaffold for membrane curvature stabilization, which sets it apart from other dynamin homologs.</description><identifier>ISSN: 0021-9533</identifier><identifier>EISSN: 1477-9137</identifier><identifier>DOI: 10.1242/jcs.208603</identifier><identifier>PMID: 29361534</identifier><language>eng</language><publisher>England: Company of Biologists</publisher><subject>Biochemistry, Molecular Biology ; Biophysics ; Cellular Biology ; Condensed Matter ; Life Sciences ; Physics ; Soft Condensed Matter ; Subcellular Processes</subject><ispartof>Journal of cell science, 2018-04, Vol.132 (4)</ispartof><rights>2018. Published by The Company of Biologists Ltd.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c423t-2d90fc97917d8e4c506a419768601d7e8885343493c9dd88e6a6150808a4cdb63</citedby><cites>FETCH-LOGICAL-c423t-2d90fc97917d8e4c506a419768601d7e8885343493c9dd88e6a6150808a4cdb63</cites><orcidid>0000-0002-3894-5945 ; 0000-0002-8544-6778</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,3665,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29361534$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02390364$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ugarte-Uribe, Begoña</creatorcontrib><creatorcontrib>Prévost, Coline</creatorcontrib><creatorcontrib>Das, Kushal Kumar</creatorcontrib><creatorcontrib>Bassereau, Patricia</creatorcontrib><creatorcontrib>García-Sáez, Ana J</creatorcontrib><title>Drp1 polymerization stabilizes curved tubular membranes similar to those of constricted mitochondria</title><title>Journal of cell science</title><addtitle>J Cell Sci</addtitle><description>Dynamin-related protein 1 (Drp1), an 80 kDa mechanochemical GTPase of the dynamin superfamily, is required for mitochondrial division in mammals. Despite the role of Drp1 dysfunction in human disease, its molecular mechanism remains poorly understood. Here, we examined the effect of Drp1 on membrane curvature using tubes pulled from giant unilamellar vesicles (GUVs). We found that GTP promoted rapid rearrangement of Drp1 from a uniform distribution to discrete foci, in line with the assembly of Drp1 scaffolds at multiple nucleation sites around the lipid tube. Polymerized Drp1 preserved the membrane tube below the protein coat, also in the absence of pulling forces, but did not induce spontaneous membrane fission. Strikingly, Drp1 polymers stabilized membrane curvatures similar to those of constricted mitochondria against pressure changes. Our findings support a new model for mitochondrial division whereby Drp1 mainly acts as a scaffold for membrane curvature stabilization, which sets it apart from other dynamin homologs.</description><subject>Biochemistry, Molecular Biology</subject><subject>Biophysics</subject><subject>Cellular Biology</subject><subject>Condensed Matter</subject><subject>Life Sciences</subject><subject>Physics</subject><subject>Soft Condensed Matter</subject><subject>Subcellular Processes</subject><issn>0021-9533</issn><issn>1477-9137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kUtPAyEUhYnR2Frd-APMLNVkKq8OsGzqoyZN3OiaMEBTmplSgWnS_npppnZ1k3M_DhwOAPcIjhGm-GWt4xhDXkFyAYaIMlYKRNglGEKIUSkmhAzATYxrCCHDgl2DARakQhNCh8C8hi0qtr7Ztza4g0rOb4qYVO0ad7Cx0F3YWVOkru4aFYrWtnVQm7yIrnVHJfkirXy0hV8W2m9iCk6nfKJ1yeuV35jg1C24Wqom2rvTHIGf97fv2bxcfH18zqaLUlNMUomNgEstmEDMcEv1BFaKIsGqHA0ZZjnn-c2ECqKFMZzbSuUUkEOuqDZ1RUbgqfddqUZug2tV2EuvnJxPF_KoQUwEJBXdocw-9uw2-N_OxiRbF7VtmpzOd1EiIWC-TlQko889qoOPMdjl2RtBeWxA5gZk30CGH06-Xd1ac0b_v5z8AekLgUQ</recordid><startdate>20180419</startdate><enddate>20180419</enddate><creator>Ugarte-Uribe, Begoña</creator><creator>Prévost, Coline</creator><creator>Das, Kushal Kumar</creator><creator>Bassereau, Patricia</creator><creator>García-Sáez, Ana J</creator><general>Company of Biologists</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-3894-5945</orcidid><orcidid>https://orcid.org/0000-0002-8544-6778</orcidid></search><sort><creationdate>20180419</creationdate><title>Drp1 polymerization stabilizes curved tubular membranes similar to those of constricted mitochondria</title><author>Ugarte-Uribe, Begoña ; Prévost, Coline ; Das, Kushal Kumar ; Bassereau, Patricia ; García-Sáez, Ana J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c423t-2d90fc97917d8e4c506a419768601d7e8885343493c9dd88e6a6150808a4cdb63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Biochemistry, Molecular Biology</topic><topic>Biophysics</topic><topic>Cellular Biology</topic><topic>Condensed Matter</topic><topic>Life Sciences</topic><topic>Physics</topic><topic>Soft Condensed Matter</topic><topic>Subcellular Processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ugarte-Uribe, Begoña</creatorcontrib><creatorcontrib>Prévost, Coline</creatorcontrib><creatorcontrib>Das, Kushal Kumar</creatorcontrib><creatorcontrib>Bassereau, Patricia</creatorcontrib><creatorcontrib>García-Sáez, Ana J</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of cell science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ugarte-Uribe, Begoña</au><au>Prévost, Coline</au><au>Das, Kushal Kumar</au><au>Bassereau, Patricia</au><au>García-Sáez, Ana J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Drp1 polymerization stabilizes curved tubular membranes similar to those of constricted mitochondria</atitle><jtitle>Journal of cell science</jtitle><addtitle>J Cell Sci</addtitle><date>2018-04-19</date><risdate>2018</risdate><volume>132</volume><issue>4</issue><issn>0021-9533</issn><eissn>1477-9137</eissn><abstract>Dynamin-related protein 1 (Drp1), an 80 kDa mechanochemical GTPase of the dynamin superfamily, is required for mitochondrial division in mammals. Despite the role of Drp1 dysfunction in human disease, its molecular mechanism remains poorly understood. Here, we examined the effect of Drp1 on membrane curvature using tubes pulled from giant unilamellar vesicles (GUVs). We found that GTP promoted rapid rearrangement of Drp1 from a uniform distribution to discrete foci, in line with the assembly of Drp1 scaffolds at multiple nucleation sites around the lipid tube. Polymerized Drp1 preserved the membrane tube below the protein coat, also in the absence of pulling forces, but did not induce spontaneous membrane fission. Strikingly, Drp1 polymers stabilized membrane curvatures similar to those of constricted mitochondria against pressure changes. Our findings support a new model for mitochondrial division whereby Drp1 mainly acts as a scaffold for membrane curvature stabilization, which sets it apart from other dynamin homologs.</abstract><cop>England</cop><pub>Company of Biologists</pub><pmid>29361534</pmid><doi>10.1242/jcs.208603</doi><orcidid>https://orcid.org/0000-0002-3894-5945</orcidid><orcidid>https://orcid.org/0000-0002-8544-6778</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9533 |
ispartof | Journal of cell science, 2018-04, Vol.132 (4) |
issn | 0021-9533 1477-9137 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02390364v1 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection; Company of Biologists |
subjects | Biochemistry, Molecular Biology Biophysics Cellular Biology Condensed Matter Life Sciences Physics Soft Condensed Matter Subcellular Processes |
title | Drp1 polymerization stabilizes curved tubular membranes similar to those of constricted mitochondria |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T23%3A34%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Drp1%20polymerization%20stabilizes%20curved%20tubular%20membranes%20similar%20to%20those%20of%20constricted%20mitochondria&rft.jtitle=Journal%20of%20cell%20science&rft.au=Ugarte-Uribe,%20Bego%C3%B1a&rft.date=2018-04-19&rft.volume=132&rft.issue=4&rft.issn=0021-9533&rft.eissn=1477-9137&rft_id=info:doi/10.1242/jcs.208603&rft_dat=%3Cproquest_hal_p%3E1990853963%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1990853963&rft_id=info:pmid/29361534&rfr_iscdi=true |