Modulation of the flavin–protein interactions in NADH peroxidase and mercuric ion reductase: a resonance Raman study

NADH peroxidase (Npx) and mercuric ion reductase (MerA) are flavoproteins belonging to the pyridine nucleotide:disulfide oxidoreductases (PNDO) and catalyzing the reduction of toxic substrates, i.e., hydrogen peroxide and mercuric ion, respectively. To determine the role of the flavin adenine dinucl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European biophysics journal 2018-04, Vol.47 (3), p.205-223
Hauptverfasser: Keirsse-Haquin, Julie, Picaud, Thierry, Bordes, Luc, de Gracia, Adrienne Gomez, Desbois, Alain
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 223
container_issue 3
container_start_page 205
container_title European biophysics journal
container_volume 47
creator Keirsse-Haquin, Julie
Picaud, Thierry
Bordes, Luc
de Gracia, Adrienne Gomez
Desbois, Alain
description NADH peroxidase (Npx) and mercuric ion reductase (MerA) are flavoproteins belonging to the pyridine nucleotide:disulfide oxidoreductases (PNDO) and catalyzing the reduction of toxic substrates, i.e., hydrogen peroxide and mercuric ion, respectively. To determine the role of the flavin adenine dinucleotide (FAD) in the detoxification mechanism, the resonance Raman (RR) spectra of these enzymes under various redox and ligation states have been investigated using blue and/or near-UV excitation(s). These data were compared to those previously obtained for glutathione reductase (GR), another enzyme of the PNDO family, but catalyzing the reduction of oxidized glutathione. Spectral differences have been detected for the marker bands of the isoalloxazine ring of Npx, MerA, and GR. They provide evidence for different catalytic mechanisms in these flavoproteins. The RR modes of the oxidized and two-electron reduced (EH 2 ) forms of Npx are related to very tight flavin–protein interactions maintaining a nearly planar conformation of the isoalloxazine tricycle, a low level of H-bonding at the N 1 /N 5 and O 2 /O 4 sites, and a strong H-bond at N 3 H. They also indicate minimal changes in FAD structure and environment upon either NAD(H) binding or reduction of the sulfinic redox center. All these spectroscopic data support an enzyme functioning centered on the Cys-SO − /Cys-S − redox moiety and a neighbouring His residue. On the contrary, the RR data on various functional forms of MerA are indicative of a modulation of both ring II distortion and H-bonding states of the N 5 site and ring III. The Cd(II) binding to the EH 2 –NADP(H) complexes, biomimetic intermediates in the reaction of Hg(II) reduction, provokes important spectral changes. They are interpreted in terms of flattening of the isoalloxazine ring and large decreases in H-bonding at the N 5 site and ring III. The large flexibility of the FAD structure and environment in MerA is in agreement with proposed mechanisms involving C 4a (flavin) adducts.
doi_str_mv 10.1007/s00249-017-1245-3
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02389778v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2015700015</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-497b2e98944de5d5ddf752093d91928db490a3a20b35ce546f508ba812e424a53</originalsourceid><addsrcrecordid>eNp1kc9u1DAQxi0EotvCA3BBljhxCIz_1Ta3VQtdpAUkBGfLiSc01a692MmK3ngH3pAnwVFKOXEZa2Z-843tj5BnDF4xAP26AHBpG2C6YVyqRjwgKyYFb1gtPSSrGlWjlWYn5LSUGwCpGDOPyQk3xlgu-IocP6Qw7fw4pEhTT8drpP3OH4f4--evQ04jDpEOccTsu5kpNaEf15cbesCcfgzBF6Q-BrrH3E156OgslDFM3Vhbb6ivSUnRxw7pZ7_3kZZxCrdPyKPe7wo-vTvPyNd3b79cbJrtp6v3F-tt00k4HxtpdcvRGitlQBVUCL1WHKwIllluQisteOE5tEJ1qOR5r8C03jCOkkuvxBl5uehe-5075GHv861LfnCb9dbNNeDCWK3NkVX2xcLWd3-fsIzuJk051us5DkxpgBorxRaqy6mUjP29LAM3u-IWV1z9fDe74kSdeX6nPLV7DPcTf22oAF-AUlvxG-Z_q_-v-gckGJfX</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2015700015</pqid></control><display><type>article</type><title>Modulation of the flavin–protein interactions in NADH peroxidase and mercuric ion reductase: a resonance Raman study</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Keirsse-Haquin, Julie ; Picaud, Thierry ; Bordes, Luc ; de Gracia, Adrienne Gomez ; Desbois, Alain</creator><creatorcontrib>Keirsse-Haquin, Julie ; Picaud, Thierry ; Bordes, Luc ; de Gracia, Adrienne Gomez ; Desbois, Alain</creatorcontrib><description>NADH peroxidase (Npx) and mercuric ion reductase (MerA) are flavoproteins belonging to the pyridine nucleotide:disulfide oxidoreductases (PNDO) and catalyzing the reduction of toxic substrates, i.e., hydrogen peroxide and mercuric ion, respectively. To determine the role of the flavin adenine dinucleotide (FAD) in the detoxification mechanism, the resonance Raman (RR) spectra of these enzymes under various redox and ligation states have been investigated using blue and/or near-UV excitation(s). These data were compared to those previously obtained for glutathione reductase (GR), another enzyme of the PNDO family, but catalyzing the reduction of oxidized glutathione. Spectral differences have been detected for the marker bands of the isoalloxazine ring of Npx, MerA, and GR. They provide evidence for different catalytic mechanisms in these flavoproteins. The RR modes of the oxidized and two-electron reduced (EH 2 ) forms of Npx are related to very tight flavin–protein interactions maintaining a nearly planar conformation of the isoalloxazine tricycle, a low level of H-bonding at the N 1 /N 5 and O 2 /O 4 sites, and a strong H-bond at N 3 H. They also indicate minimal changes in FAD structure and environment upon either NAD(H) binding or reduction of the sulfinic redox center. All these spectroscopic data support an enzyme functioning centered on the Cys-SO − /Cys-S − redox moiety and a neighbouring His residue. On the contrary, the RR data on various functional forms of MerA are indicative of a modulation of both ring II distortion and H-bonding states of the N 5 site and ring III. The Cd(II) binding to the EH 2 –NADP(H) complexes, biomimetic intermediates in the reaction of Hg(II) reduction, provokes important spectral changes. They are interpreted in terms of flattening of the isoalloxazine ring and large decreases in H-bonding at the N 5 site and ring III. The large flexibility of the FAD structure and environment in MerA is in agreement with proposed mechanisms involving C 4a (flavin) adducts.</description><identifier>ISSN: 0175-7571</identifier><identifier>EISSN: 1432-1017</identifier><identifier>DOI: 10.1007/s00249-017-1245-3</identifier><identifier>PMID: 28889232</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Adducts ; Adenine ; Binding ; Biochemistry ; Biological and Medical Physics ; Biomedical and Life Sciences ; Biomimetics ; Biophysics ; Bonding strength ; Cadmium ; Catalysis ; Cell Biology ; Chemical reduction ; Detoxification ; Enterococcus faecalis - enzymology ; Enzymes ; Flavin-adenine dinucleotide ; Flavins - metabolism ; Flavoproteins ; Glutathione ; Glutathione reductase ; Hydrogen peroxide ; Intermediates ; Life Sciences ; Low level ; Membrane Biology ; Mercury (metal) ; Mercury compounds ; Modulation ; NAD ; NADH ; NADH peroxidase ; NADP ; Nanotechnology ; Neurobiology ; Nicotinamide adenine dinucleotide ; Original Article ; Oxidoreductases - chemistry ; Oxidoreductases - metabolism ; Peroxidase ; Peroxidases - chemistry ; Peroxidases - metabolism ; Protein Binding ; Protein interaction ; Pyridines ; Ralstonia - enzymology ; Reduction ; Resonance ; Spectra ; Spectrum Analysis, Raman ; Substrates</subject><ispartof>European biophysics journal, 2018-04, Vol.47 (3), p.205-223</ispartof><rights>European Biophysical Societies' Association 2017</rights><rights>European Biophysics Journal is a copyright of Springer, (2017). All Rights Reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-497b2e98944de5d5ddf752093d91928db490a3a20b35ce546f508ba812e424a53</citedby><cites>FETCH-LOGICAL-c406t-497b2e98944de5d5ddf752093d91928db490a3a20b35ce546f508ba812e424a53</cites><orcidid>0000-0003-4061-013X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00249-017-1245-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00249-017-1245-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28889232$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02389778$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Keirsse-Haquin, Julie</creatorcontrib><creatorcontrib>Picaud, Thierry</creatorcontrib><creatorcontrib>Bordes, Luc</creatorcontrib><creatorcontrib>de Gracia, Adrienne Gomez</creatorcontrib><creatorcontrib>Desbois, Alain</creatorcontrib><title>Modulation of the flavin–protein interactions in NADH peroxidase and mercuric ion reductase: a resonance Raman study</title><title>European biophysics journal</title><addtitle>Eur Biophys J</addtitle><addtitle>Eur Biophys J</addtitle><description>NADH peroxidase (Npx) and mercuric ion reductase (MerA) are flavoproteins belonging to the pyridine nucleotide:disulfide oxidoreductases (PNDO) and catalyzing the reduction of toxic substrates, i.e., hydrogen peroxide and mercuric ion, respectively. To determine the role of the flavin adenine dinucleotide (FAD) in the detoxification mechanism, the resonance Raman (RR) spectra of these enzymes under various redox and ligation states have been investigated using blue and/or near-UV excitation(s). These data were compared to those previously obtained for glutathione reductase (GR), another enzyme of the PNDO family, but catalyzing the reduction of oxidized glutathione. Spectral differences have been detected for the marker bands of the isoalloxazine ring of Npx, MerA, and GR. They provide evidence for different catalytic mechanisms in these flavoproteins. The RR modes of the oxidized and two-electron reduced (EH 2 ) forms of Npx are related to very tight flavin–protein interactions maintaining a nearly planar conformation of the isoalloxazine tricycle, a low level of H-bonding at the N 1 /N 5 and O 2 /O 4 sites, and a strong H-bond at N 3 H. They also indicate minimal changes in FAD structure and environment upon either NAD(H) binding or reduction of the sulfinic redox center. All these spectroscopic data support an enzyme functioning centered on the Cys-SO − /Cys-S − redox moiety and a neighbouring His residue. On the contrary, the RR data on various functional forms of MerA are indicative of a modulation of both ring II distortion and H-bonding states of the N 5 site and ring III. The Cd(II) binding to the EH 2 –NADP(H) complexes, biomimetic intermediates in the reaction of Hg(II) reduction, provokes important spectral changes. They are interpreted in terms of flattening of the isoalloxazine ring and large decreases in H-bonding at the N 5 site and ring III. The large flexibility of the FAD structure and environment in MerA is in agreement with proposed mechanisms involving C 4a (flavin) adducts.</description><subject>Adducts</subject><subject>Adenine</subject><subject>Binding</subject><subject>Biochemistry</subject><subject>Biological and Medical Physics</subject><subject>Biomedical and Life Sciences</subject><subject>Biomimetics</subject><subject>Biophysics</subject><subject>Bonding strength</subject><subject>Cadmium</subject><subject>Catalysis</subject><subject>Cell Biology</subject><subject>Chemical reduction</subject><subject>Detoxification</subject><subject>Enterococcus faecalis - enzymology</subject><subject>Enzymes</subject><subject>Flavin-adenine dinucleotide</subject><subject>Flavins - metabolism</subject><subject>Flavoproteins</subject><subject>Glutathione</subject><subject>Glutathione reductase</subject><subject>Hydrogen peroxide</subject><subject>Intermediates</subject><subject>Life Sciences</subject><subject>Low level</subject><subject>Membrane Biology</subject><subject>Mercury (metal)</subject><subject>Mercury compounds</subject><subject>Modulation</subject><subject>NAD</subject><subject>NADH</subject><subject>NADH peroxidase</subject><subject>NADP</subject><subject>Nanotechnology</subject><subject>Neurobiology</subject><subject>Nicotinamide adenine dinucleotide</subject><subject>Original Article</subject><subject>Oxidoreductases - chemistry</subject><subject>Oxidoreductases - metabolism</subject><subject>Peroxidase</subject><subject>Peroxidases - chemistry</subject><subject>Peroxidases - metabolism</subject><subject>Protein Binding</subject><subject>Protein interaction</subject><subject>Pyridines</subject><subject>Ralstonia - enzymology</subject><subject>Reduction</subject><subject>Resonance</subject><subject>Spectra</subject><subject>Spectrum Analysis, Raman</subject><subject>Substrates</subject><issn>0175-7571</issn><issn>1432-1017</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kc9u1DAQxi0EotvCA3BBljhxCIz_1Ta3VQtdpAUkBGfLiSc01a692MmK3ngH3pAnwVFKOXEZa2Z-843tj5BnDF4xAP26AHBpG2C6YVyqRjwgKyYFb1gtPSSrGlWjlWYn5LSUGwCpGDOPyQk3xlgu-IocP6Qw7fw4pEhTT8drpP3OH4f4--evQ04jDpEOccTsu5kpNaEf15cbesCcfgzBF6Q-BrrH3E156OgslDFM3Vhbb6ivSUnRxw7pZ7_3kZZxCrdPyKPe7wo-vTvPyNd3b79cbJrtp6v3F-tt00k4HxtpdcvRGitlQBVUCL1WHKwIllluQisteOE5tEJ1qOR5r8C03jCOkkuvxBl5uehe-5075GHv861LfnCb9dbNNeDCWK3NkVX2xcLWd3-fsIzuJk051us5DkxpgBorxRaqy6mUjP29LAM3u-IWV1z9fDe74kSdeX6nPLV7DPcTf22oAF-AUlvxG-Z_q_-v-gckGJfX</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Keirsse-Haquin, Julie</creator><creator>Picaud, Thierry</creator><creator>Bordes, Luc</creator><creator>de Gracia, Adrienne Gomez</creator><creator>Desbois, Alain</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><general>Springer Verlag (Germany)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-4061-013X</orcidid></search><sort><creationdate>20180401</creationdate><title>Modulation of the flavin–protein interactions in NADH peroxidase and mercuric ion reductase: a resonance Raman study</title><author>Keirsse-Haquin, Julie ; Picaud, Thierry ; Bordes, Luc ; de Gracia, Adrienne Gomez ; Desbois, Alain</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-497b2e98944de5d5ddf752093d91928db490a3a20b35ce546f508ba812e424a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adducts</topic><topic>Adenine</topic><topic>Binding</topic><topic>Biochemistry</topic><topic>Biological and Medical Physics</topic><topic>Biomedical and Life Sciences</topic><topic>Biomimetics</topic><topic>Biophysics</topic><topic>Bonding strength</topic><topic>Cadmium</topic><topic>Catalysis</topic><topic>Cell Biology</topic><topic>Chemical reduction</topic><topic>Detoxification</topic><topic>Enterococcus faecalis - enzymology</topic><topic>Enzymes</topic><topic>Flavin-adenine dinucleotide</topic><topic>Flavins - metabolism</topic><topic>Flavoproteins</topic><topic>Glutathione</topic><topic>Glutathione reductase</topic><topic>Hydrogen peroxide</topic><topic>Intermediates</topic><topic>Life Sciences</topic><topic>Low level</topic><topic>Membrane Biology</topic><topic>Mercury (metal)</topic><topic>Mercury compounds</topic><topic>Modulation</topic><topic>NAD</topic><topic>NADH</topic><topic>NADH peroxidase</topic><topic>NADP</topic><topic>Nanotechnology</topic><topic>Neurobiology</topic><topic>Nicotinamide adenine dinucleotide</topic><topic>Original Article</topic><topic>Oxidoreductases - chemistry</topic><topic>Oxidoreductases - metabolism</topic><topic>Peroxidase</topic><topic>Peroxidases - chemistry</topic><topic>Peroxidases - metabolism</topic><topic>Protein Binding</topic><topic>Protein interaction</topic><topic>Pyridines</topic><topic>Ralstonia - enzymology</topic><topic>Reduction</topic><topic>Resonance</topic><topic>Spectra</topic><topic>Spectrum Analysis, Raman</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Keirsse-Haquin, Julie</creatorcontrib><creatorcontrib>Picaud, Thierry</creatorcontrib><creatorcontrib>Bordes, Luc</creatorcontrib><creatorcontrib>de Gracia, Adrienne Gomez</creatorcontrib><creatorcontrib>Desbois, Alain</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>European biophysics journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Keirsse-Haquin, Julie</au><au>Picaud, Thierry</au><au>Bordes, Luc</au><au>de Gracia, Adrienne Gomez</au><au>Desbois, Alain</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modulation of the flavin–protein interactions in NADH peroxidase and mercuric ion reductase: a resonance Raman study</atitle><jtitle>European biophysics journal</jtitle><stitle>Eur Biophys J</stitle><addtitle>Eur Biophys J</addtitle><date>2018-04-01</date><risdate>2018</risdate><volume>47</volume><issue>3</issue><spage>205</spage><epage>223</epage><pages>205-223</pages><issn>0175-7571</issn><eissn>1432-1017</eissn><abstract>NADH peroxidase (Npx) and mercuric ion reductase (MerA) are flavoproteins belonging to the pyridine nucleotide:disulfide oxidoreductases (PNDO) and catalyzing the reduction of toxic substrates, i.e., hydrogen peroxide and mercuric ion, respectively. To determine the role of the flavin adenine dinucleotide (FAD) in the detoxification mechanism, the resonance Raman (RR) spectra of these enzymes under various redox and ligation states have been investigated using blue and/or near-UV excitation(s). These data were compared to those previously obtained for glutathione reductase (GR), another enzyme of the PNDO family, but catalyzing the reduction of oxidized glutathione. Spectral differences have been detected for the marker bands of the isoalloxazine ring of Npx, MerA, and GR. They provide evidence for different catalytic mechanisms in these flavoproteins. The RR modes of the oxidized and two-electron reduced (EH 2 ) forms of Npx are related to very tight flavin–protein interactions maintaining a nearly planar conformation of the isoalloxazine tricycle, a low level of H-bonding at the N 1 /N 5 and O 2 /O 4 sites, and a strong H-bond at N 3 H. They also indicate minimal changes in FAD structure and environment upon either NAD(H) binding or reduction of the sulfinic redox center. All these spectroscopic data support an enzyme functioning centered on the Cys-SO − /Cys-S − redox moiety and a neighbouring His residue. On the contrary, the RR data on various functional forms of MerA are indicative of a modulation of both ring II distortion and H-bonding states of the N 5 site and ring III. The Cd(II) binding to the EH 2 –NADP(H) complexes, biomimetic intermediates in the reaction of Hg(II) reduction, provokes important spectral changes. They are interpreted in terms of flattening of the isoalloxazine ring and large decreases in H-bonding at the N 5 site and ring III. The large flexibility of the FAD structure and environment in MerA is in agreement with proposed mechanisms involving C 4a (flavin) adducts.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>28889232</pmid><doi>10.1007/s00249-017-1245-3</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0003-4061-013X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0175-7571
ispartof European biophysics journal, 2018-04, Vol.47 (3), p.205-223
issn 0175-7571
1432-1017
language eng
recordid cdi_hal_primary_oai_HAL_hal_02389778v1
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Adducts
Adenine
Binding
Biochemistry
Biological and Medical Physics
Biomedical and Life Sciences
Biomimetics
Biophysics
Bonding strength
Cadmium
Catalysis
Cell Biology
Chemical reduction
Detoxification
Enterococcus faecalis - enzymology
Enzymes
Flavin-adenine dinucleotide
Flavins - metabolism
Flavoproteins
Glutathione
Glutathione reductase
Hydrogen peroxide
Intermediates
Life Sciences
Low level
Membrane Biology
Mercury (metal)
Mercury compounds
Modulation
NAD
NADH
NADH peroxidase
NADP
Nanotechnology
Neurobiology
Nicotinamide adenine dinucleotide
Original Article
Oxidoreductases - chemistry
Oxidoreductases - metabolism
Peroxidase
Peroxidases - chemistry
Peroxidases - metabolism
Protein Binding
Protein interaction
Pyridines
Ralstonia - enzymology
Reduction
Resonance
Spectra
Spectrum Analysis, Raman
Substrates
title Modulation of the flavin–protein interactions in NADH peroxidase and mercuric ion reductase: a resonance Raman study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T04%3A37%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modulation%20of%20the%20flavin%E2%80%93protein%20interactions%20in%20NADH%20peroxidase%20and%20mercuric%20ion%20reductase:%20a%20resonance%20Raman%20study&rft.jtitle=European%20biophysics%20journal&rft.au=Keirsse-Haquin,%20Julie&rft.date=2018-04-01&rft.volume=47&rft.issue=3&rft.spage=205&rft.epage=223&rft.pages=205-223&rft.issn=0175-7571&rft.eissn=1432-1017&rft_id=info:doi/10.1007/s00249-017-1245-3&rft_dat=%3Cproquest_hal_p%3E2015700015%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2015700015&rft_id=info:pmid/28889232&rfr_iscdi=true