Modulation of the flavin–protein interactions in NADH peroxidase and mercuric ion reductase: a resonance Raman study
NADH peroxidase (Npx) and mercuric ion reductase (MerA) are flavoproteins belonging to the pyridine nucleotide:disulfide oxidoreductases (PNDO) and catalyzing the reduction of toxic substrates, i.e., hydrogen peroxide and mercuric ion, respectively. To determine the role of the flavin adenine dinucl...
Gespeichert in:
Veröffentlicht in: | European biophysics journal 2018-04, Vol.47 (3), p.205-223 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 223 |
---|---|
container_issue | 3 |
container_start_page | 205 |
container_title | European biophysics journal |
container_volume | 47 |
creator | Keirsse-Haquin, Julie Picaud, Thierry Bordes, Luc de Gracia, Adrienne Gomez Desbois, Alain |
description | NADH peroxidase (Npx) and mercuric ion reductase (MerA) are flavoproteins belonging to the pyridine nucleotide:disulfide oxidoreductases (PNDO) and catalyzing the reduction of toxic substrates, i.e., hydrogen peroxide and mercuric ion, respectively. To determine the role of the flavin adenine dinucleotide (FAD) in the detoxification mechanism, the resonance Raman (RR) spectra of these enzymes under various redox and ligation states have been investigated using blue and/or near-UV excitation(s). These data were compared to those previously obtained for glutathione reductase (GR), another enzyme of the PNDO family, but catalyzing the reduction of oxidized glutathione. Spectral differences have been detected for the marker bands of the isoalloxazine ring of Npx, MerA, and GR. They provide evidence for different catalytic mechanisms in these flavoproteins. The RR modes of the oxidized and two-electron reduced (EH
2
) forms of Npx are related to very tight flavin–protein interactions maintaining a nearly planar conformation of the isoalloxazine tricycle, a low level of H-bonding at the N
1
/N
5
and O
2
/O
4
sites, and a strong H-bond at N
3
H. They also indicate minimal changes in FAD structure and environment upon either NAD(H) binding or reduction of the sulfinic redox center. All these spectroscopic data support an enzyme functioning centered on the Cys-SO
−
/Cys-S
−
redox moiety and a neighbouring His residue. On the contrary, the RR data on various functional forms of MerA are indicative of a modulation of both ring II distortion and H-bonding states of the N
5
site and ring III. The Cd(II) binding to the EH
2
–NADP(H) complexes, biomimetic intermediates in the reaction of Hg(II) reduction, provokes important spectral changes. They are interpreted in terms of flattening of the isoalloxazine ring and large decreases in H-bonding at the N
5
site and ring III. The large flexibility of the FAD structure and environment in MerA is in agreement with proposed mechanisms involving C
4a
(flavin) adducts. |
doi_str_mv | 10.1007/s00249-017-1245-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02389778v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2015700015</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-497b2e98944de5d5ddf752093d91928db490a3a20b35ce546f508ba812e424a53</originalsourceid><addsrcrecordid>eNp1kc9u1DAQxi0EotvCA3BBljhxCIz_1Ta3VQtdpAUkBGfLiSc01a692MmK3ngH3pAnwVFKOXEZa2Z-843tj5BnDF4xAP26AHBpG2C6YVyqRjwgKyYFb1gtPSSrGlWjlWYn5LSUGwCpGDOPyQk3xlgu-IocP6Qw7fw4pEhTT8drpP3OH4f4--evQ04jDpEOccTsu5kpNaEf15cbesCcfgzBF6Q-BrrH3E156OgslDFM3Vhbb6ivSUnRxw7pZ7_3kZZxCrdPyKPe7wo-vTvPyNd3b79cbJrtp6v3F-tt00k4HxtpdcvRGitlQBVUCL1WHKwIllluQisteOE5tEJ1qOR5r8C03jCOkkuvxBl5uehe-5075GHv861LfnCb9dbNNeDCWK3NkVX2xcLWd3-fsIzuJk051us5DkxpgBorxRaqy6mUjP29LAM3u-IWV1z9fDe74kSdeX6nPLV7DPcTf22oAF-AUlvxG-Z_q_-v-gckGJfX</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2015700015</pqid></control><display><type>article</type><title>Modulation of the flavin–protein interactions in NADH peroxidase and mercuric ion reductase: a resonance Raman study</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Keirsse-Haquin, Julie ; Picaud, Thierry ; Bordes, Luc ; de Gracia, Adrienne Gomez ; Desbois, Alain</creator><creatorcontrib>Keirsse-Haquin, Julie ; Picaud, Thierry ; Bordes, Luc ; de Gracia, Adrienne Gomez ; Desbois, Alain</creatorcontrib><description>NADH peroxidase (Npx) and mercuric ion reductase (MerA) are flavoproteins belonging to the pyridine nucleotide:disulfide oxidoreductases (PNDO) and catalyzing the reduction of toxic substrates, i.e., hydrogen peroxide and mercuric ion, respectively. To determine the role of the flavin adenine dinucleotide (FAD) in the detoxification mechanism, the resonance Raman (RR) spectra of these enzymes under various redox and ligation states have been investigated using blue and/or near-UV excitation(s). These data were compared to those previously obtained for glutathione reductase (GR), another enzyme of the PNDO family, but catalyzing the reduction of oxidized glutathione. Spectral differences have been detected for the marker bands of the isoalloxazine ring of Npx, MerA, and GR. They provide evidence for different catalytic mechanisms in these flavoproteins. The RR modes of the oxidized and two-electron reduced (EH
2
) forms of Npx are related to very tight flavin–protein interactions maintaining a nearly planar conformation of the isoalloxazine tricycle, a low level of H-bonding at the N
1
/N
5
and O
2
/O
4
sites, and a strong H-bond at N
3
H. They also indicate minimal changes in FAD structure and environment upon either NAD(H) binding or reduction of the sulfinic redox center. All these spectroscopic data support an enzyme functioning centered on the Cys-SO
−
/Cys-S
−
redox moiety and a neighbouring His residue. On the contrary, the RR data on various functional forms of MerA are indicative of a modulation of both ring II distortion and H-bonding states of the N
5
site and ring III. The Cd(II) binding to the EH
2
–NADP(H) complexes, biomimetic intermediates in the reaction of Hg(II) reduction, provokes important spectral changes. They are interpreted in terms of flattening of the isoalloxazine ring and large decreases in H-bonding at the N
5
site and ring III. The large flexibility of the FAD structure and environment in MerA is in agreement with proposed mechanisms involving C
4a
(flavin) adducts.</description><identifier>ISSN: 0175-7571</identifier><identifier>EISSN: 1432-1017</identifier><identifier>DOI: 10.1007/s00249-017-1245-3</identifier><identifier>PMID: 28889232</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Adducts ; Adenine ; Binding ; Biochemistry ; Biological and Medical Physics ; Biomedical and Life Sciences ; Biomimetics ; Biophysics ; Bonding strength ; Cadmium ; Catalysis ; Cell Biology ; Chemical reduction ; Detoxification ; Enterococcus faecalis - enzymology ; Enzymes ; Flavin-adenine dinucleotide ; Flavins - metabolism ; Flavoproteins ; Glutathione ; Glutathione reductase ; Hydrogen peroxide ; Intermediates ; Life Sciences ; Low level ; Membrane Biology ; Mercury (metal) ; Mercury compounds ; Modulation ; NAD ; NADH ; NADH peroxidase ; NADP ; Nanotechnology ; Neurobiology ; Nicotinamide adenine dinucleotide ; Original Article ; Oxidoreductases - chemistry ; Oxidoreductases - metabolism ; Peroxidase ; Peroxidases - chemistry ; Peroxidases - metabolism ; Protein Binding ; Protein interaction ; Pyridines ; Ralstonia - enzymology ; Reduction ; Resonance ; Spectra ; Spectrum Analysis, Raman ; Substrates</subject><ispartof>European biophysics journal, 2018-04, Vol.47 (3), p.205-223</ispartof><rights>European Biophysical Societies' Association 2017</rights><rights>European Biophysics Journal is a copyright of Springer, (2017). All Rights Reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-497b2e98944de5d5ddf752093d91928db490a3a20b35ce546f508ba812e424a53</citedby><cites>FETCH-LOGICAL-c406t-497b2e98944de5d5ddf752093d91928db490a3a20b35ce546f508ba812e424a53</cites><orcidid>0000-0003-4061-013X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00249-017-1245-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00249-017-1245-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28889232$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02389778$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Keirsse-Haquin, Julie</creatorcontrib><creatorcontrib>Picaud, Thierry</creatorcontrib><creatorcontrib>Bordes, Luc</creatorcontrib><creatorcontrib>de Gracia, Adrienne Gomez</creatorcontrib><creatorcontrib>Desbois, Alain</creatorcontrib><title>Modulation of the flavin–protein interactions in NADH peroxidase and mercuric ion reductase: a resonance Raman study</title><title>European biophysics journal</title><addtitle>Eur Biophys J</addtitle><addtitle>Eur Biophys J</addtitle><description>NADH peroxidase (Npx) and mercuric ion reductase (MerA) are flavoproteins belonging to the pyridine nucleotide:disulfide oxidoreductases (PNDO) and catalyzing the reduction of toxic substrates, i.e., hydrogen peroxide and mercuric ion, respectively. To determine the role of the flavin adenine dinucleotide (FAD) in the detoxification mechanism, the resonance Raman (RR) spectra of these enzymes under various redox and ligation states have been investigated using blue and/or near-UV excitation(s). These data were compared to those previously obtained for glutathione reductase (GR), another enzyme of the PNDO family, but catalyzing the reduction of oxidized glutathione. Spectral differences have been detected for the marker bands of the isoalloxazine ring of Npx, MerA, and GR. They provide evidence for different catalytic mechanisms in these flavoproteins. The RR modes of the oxidized and two-electron reduced (EH
2
) forms of Npx are related to very tight flavin–protein interactions maintaining a nearly planar conformation of the isoalloxazine tricycle, a low level of H-bonding at the N
1
/N
5
and O
2
/O
4
sites, and a strong H-bond at N
3
H. They also indicate minimal changes in FAD structure and environment upon either NAD(H) binding or reduction of the sulfinic redox center. All these spectroscopic data support an enzyme functioning centered on the Cys-SO
−
/Cys-S
−
redox moiety and a neighbouring His residue. On the contrary, the RR data on various functional forms of MerA are indicative of a modulation of both ring II distortion and H-bonding states of the N
5
site and ring III. The Cd(II) binding to the EH
2
–NADP(H) complexes, biomimetic intermediates in the reaction of Hg(II) reduction, provokes important spectral changes. They are interpreted in terms of flattening of the isoalloxazine ring and large decreases in H-bonding at the N
5
site and ring III. The large flexibility of the FAD structure and environment in MerA is in agreement with proposed mechanisms involving C
4a
(flavin) adducts.</description><subject>Adducts</subject><subject>Adenine</subject><subject>Binding</subject><subject>Biochemistry</subject><subject>Biological and Medical Physics</subject><subject>Biomedical and Life Sciences</subject><subject>Biomimetics</subject><subject>Biophysics</subject><subject>Bonding strength</subject><subject>Cadmium</subject><subject>Catalysis</subject><subject>Cell Biology</subject><subject>Chemical reduction</subject><subject>Detoxification</subject><subject>Enterococcus faecalis - enzymology</subject><subject>Enzymes</subject><subject>Flavin-adenine dinucleotide</subject><subject>Flavins - metabolism</subject><subject>Flavoproteins</subject><subject>Glutathione</subject><subject>Glutathione reductase</subject><subject>Hydrogen peroxide</subject><subject>Intermediates</subject><subject>Life Sciences</subject><subject>Low level</subject><subject>Membrane Biology</subject><subject>Mercury (metal)</subject><subject>Mercury compounds</subject><subject>Modulation</subject><subject>NAD</subject><subject>NADH</subject><subject>NADH peroxidase</subject><subject>NADP</subject><subject>Nanotechnology</subject><subject>Neurobiology</subject><subject>Nicotinamide adenine dinucleotide</subject><subject>Original Article</subject><subject>Oxidoreductases - chemistry</subject><subject>Oxidoreductases - metabolism</subject><subject>Peroxidase</subject><subject>Peroxidases - chemistry</subject><subject>Peroxidases - metabolism</subject><subject>Protein Binding</subject><subject>Protein interaction</subject><subject>Pyridines</subject><subject>Ralstonia - enzymology</subject><subject>Reduction</subject><subject>Resonance</subject><subject>Spectra</subject><subject>Spectrum Analysis, Raman</subject><subject>Substrates</subject><issn>0175-7571</issn><issn>1432-1017</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kc9u1DAQxi0EotvCA3BBljhxCIz_1Ta3VQtdpAUkBGfLiSc01a692MmK3ngH3pAnwVFKOXEZa2Z-843tj5BnDF4xAP26AHBpG2C6YVyqRjwgKyYFb1gtPSSrGlWjlWYn5LSUGwCpGDOPyQk3xlgu-IocP6Qw7fw4pEhTT8drpP3OH4f4--evQ04jDpEOccTsu5kpNaEf15cbesCcfgzBF6Q-BrrH3E156OgslDFM3Vhbb6ivSUnRxw7pZ7_3kZZxCrdPyKPe7wo-vTvPyNd3b79cbJrtp6v3F-tt00k4HxtpdcvRGitlQBVUCL1WHKwIllluQisteOE5tEJ1qOR5r8C03jCOkkuvxBl5uehe-5075GHv861LfnCb9dbNNeDCWK3NkVX2xcLWd3-fsIzuJk051us5DkxpgBorxRaqy6mUjP29LAM3u-IWV1z9fDe74kSdeX6nPLV7DPcTf22oAF-AUlvxG-Z_q_-v-gckGJfX</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Keirsse-Haquin, Julie</creator><creator>Picaud, Thierry</creator><creator>Bordes, Luc</creator><creator>de Gracia, Adrienne Gomez</creator><creator>Desbois, Alain</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><general>Springer Verlag (Germany)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-4061-013X</orcidid></search><sort><creationdate>20180401</creationdate><title>Modulation of the flavin–protein interactions in NADH peroxidase and mercuric ion reductase: a resonance Raman study</title><author>Keirsse-Haquin, Julie ; Picaud, Thierry ; Bordes, Luc ; de Gracia, Adrienne Gomez ; Desbois, Alain</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-497b2e98944de5d5ddf752093d91928db490a3a20b35ce546f508ba812e424a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adducts</topic><topic>Adenine</topic><topic>Binding</topic><topic>Biochemistry</topic><topic>Biological and Medical Physics</topic><topic>Biomedical and Life Sciences</topic><topic>Biomimetics</topic><topic>Biophysics</topic><topic>Bonding strength</topic><topic>Cadmium</topic><topic>Catalysis</topic><topic>Cell Biology</topic><topic>Chemical reduction</topic><topic>Detoxification</topic><topic>Enterococcus faecalis - enzymology</topic><topic>Enzymes</topic><topic>Flavin-adenine dinucleotide</topic><topic>Flavins - metabolism</topic><topic>Flavoproteins</topic><topic>Glutathione</topic><topic>Glutathione reductase</topic><topic>Hydrogen peroxide</topic><topic>Intermediates</topic><topic>Life Sciences</topic><topic>Low level</topic><topic>Membrane Biology</topic><topic>Mercury (metal)</topic><topic>Mercury compounds</topic><topic>Modulation</topic><topic>NAD</topic><topic>NADH</topic><topic>NADH peroxidase</topic><topic>NADP</topic><topic>Nanotechnology</topic><topic>Neurobiology</topic><topic>Nicotinamide adenine dinucleotide</topic><topic>Original Article</topic><topic>Oxidoreductases - chemistry</topic><topic>Oxidoreductases - metabolism</topic><topic>Peroxidase</topic><topic>Peroxidases - chemistry</topic><topic>Peroxidases - metabolism</topic><topic>Protein Binding</topic><topic>Protein interaction</topic><topic>Pyridines</topic><topic>Ralstonia - enzymology</topic><topic>Reduction</topic><topic>Resonance</topic><topic>Spectra</topic><topic>Spectrum Analysis, Raman</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Keirsse-Haquin, Julie</creatorcontrib><creatorcontrib>Picaud, Thierry</creatorcontrib><creatorcontrib>Bordes, Luc</creatorcontrib><creatorcontrib>de Gracia, Adrienne Gomez</creatorcontrib><creatorcontrib>Desbois, Alain</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>European biophysics journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Keirsse-Haquin, Julie</au><au>Picaud, Thierry</au><au>Bordes, Luc</au><au>de Gracia, Adrienne Gomez</au><au>Desbois, Alain</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modulation of the flavin–protein interactions in NADH peroxidase and mercuric ion reductase: a resonance Raman study</atitle><jtitle>European biophysics journal</jtitle><stitle>Eur Biophys J</stitle><addtitle>Eur Biophys J</addtitle><date>2018-04-01</date><risdate>2018</risdate><volume>47</volume><issue>3</issue><spage>205</spage><epage>223</epage><pages>205-223</pages><issn>0175-7571</issn><eissn>1432-1017</eissn><abstract>NADH peroxidase (Npx) and mercuric ion reductase (MerA) are flavoproteins belonging to the pyridine nucleotide:disulfide oxidoreductases (PNDO) and catalyzing the reduction of toxic substrates, i.e., hydrogen peroxide and mercuric ion, respectively. To determine the role of the flavin adenine dinucleotide (FAD) in the detoxification mechanism, the resonance Raman (RR) spectra of these enzymes under various redox and ligation states have been investigated using blue and/or near-UV excitation(s). These data were compared to those previously obtained for glutathione reductase (GR), another enzyme of the PNDO family, but catalyzing the reduction of oxidized glutathione. Spectral differences have been detected for the marker bands of the isoalloxazine ring of Npx, MerA, and GR. They provide evidence for different catalytic mechanisms in these flavoproteins. The RR modes of the oxidized and two-electron reduced (EH
2
) forms of Npx are related to very tight flavin–protein interactions maintaining a nearly planar conformation of the isoalloxazine tricycle, a low level of H-bonding at the N
1
/N
5
and O
2
/O
4
sites, and a strong H-bond at N
3
H. They also indicate minimal changes in FAD structure and environment upon either NAD(H) binding or reduction of the sulfinic redox center. All these spectroscopic data support an enzyme functioning centered on the Cys-SO
−
/Cys-S
−
redox moiety and a neighbouring His residue. On the contrary, the RR data on various functional forms of MerA are indicative of a modulation of both ring II distortion and H-bonding states of the N
5
site and ring III. The Cd(II) binding to the EH
2
–NADP(H) complexes, biomimetic intermediates in the reaction of Hg(II) reduction, provokes important spectral changes. They are interpreted in terms of flattening of the isoalloxazine ring and large decreases in H-bonding at the N
5
site and ring III. The large flexibility of the FAD structure and environment in MerA is in agreement with proposed mechanisms involving C
4a
(flavin) adducts.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>28889232</pmid><doi>10.1007/s00249-017-1245-3</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0003-4061-013X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0175-7571 |
ispartof | European biophysics journal, 2018-04, Vol.47 (3), p.205-223 |
issn | 0175-7571 1432-1017 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02389778v1 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Adducts Adenine Binding Biochemistry Biological and Medical Physics Biomedical and Life Sciences Biomimetics Biophysics Bonding strength Cadmium Catalysis Cell Biology Chemical reduction Detoxification Enterococcus faecalis - enzymology Enzymes Flavin-adenine dinucleotide Flavins - metabolism Flavoproteins Glutathione Glutathione reductase Hydrogen peroxide Intermediates Life Sciences Low level Membrane Biology Mercury (metal) Mercury compounds Modulation NAD NADH NADH peroxidase NADP Nanotechnology Neurobiology Nicotinamide adenine dinucleotide Original Article Oxidoreductases - chemistry Oxidoreductases - metabolism Peroxidase Peroxidases - chemistry Peroxidases - metabolism Protein Binding Protein interaction Pyridines Ralstonia - enzymology Reduction Resonance Spectra Spectrum Analysis, Raman Substrates |
title | Modulation of the flavin–protein interactions in NADH peroxidase and mercuric ion reductase: a resonance Raman study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T04%3A37%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modulation%20of%20the%20flavin%E2%80%93protein%20interactions%20in%20NADH%20peroxidase%20and%20mercuric%20ion%20reductase:%20a%20resonance%20Raman%20study&rft.jtitle=European%20biophysics%20journal&rft.au=Keirsse-Haquin,%20Julie&rft.date=2018-04-01&rft.volume=47&rft.issue=3&rft.spage=205&rft.epage=223&rft.pages=205-223&rft.issn=0175-7571&rft.eissn=1432-1017&rft_id=info:doi/10.1007/s00249-017-1245-3&rft_dat=%3Cproquest_hal_p%3E2015700015%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2015700015&rft_id=info:pmid/28889232&rfr_iscdi=true |