Pd and Pd@PdO core–shell nanoparticles supported on Vulcan carbon XC-72R: comparison of electroactivity for methanol electro-oxidation reaction

Nanomaterials based on Pd nanoparticles supported on Vulcan carbon (XC-72R) were prepared by the organometallic approach in one-pot and mild conditions (3 bar hydrogen and room temperature) using Pd(dba) 2 (bis (dibenzylideneacetone) palladium (0)) as metal source and hexadecylamine (HDA) as stabili...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science 2019-11, Vol.54 (21), p.13694-13714
Hauptverfasser: Guerrero-Ortega, L. P. A., Ramírez-Meneses, E., Cabrera-Sierra, R., Palacios-Romero, L. M., Philippot, K., Santiago-Ramírez, C. R., Lartundo-Rojas, L., Manzo-Robledo, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13714
container_issue 21
container_start_page 13694
container_title Journal of materials science
container_volume 54
creator Guerrero-Ortega, L. P. A.
Ramírez-Meneses, E.
Cabrera-Sierra, R.
Palacios-Romero, L. M.
Philippot, K.
Santiago-Ramírez, C. R.
Lartundo-Rojas, L.
Manzo-Robledo, A.
description Nanomaterials based on Pd nanoparticles supported on Vulcan carbon (XC-72R) were prepared by the organometallic approach in one-pot and mild conditions (3 bar hydrogen and room temperature) using Pd(dba) 2 (bis (dibenzylideneacetone) palladium (0)) as metal source and hexadecylamine (HDA) as stabilizer. High-resolution transmission electron microscopy (HR-TEM) evidenced the presence of well-dispersed Pd nanoparticles of ca. 4.5 nm mean size onto the carbon support (Pd/HDA/C). Scanning and transmission electron microscopy with electron energy loss spectroscopy (STEM-EELS) allowed to determine the chemical composition of the nanomaterials. When the Pd/HDA/C nanomaterial was submitted to heating treatment (ht) at 400 °C under air (referred as Pd/HDA/C@air-ht), X-ray photoelectron spectroscopy (XPS) and HR-TEM/STEM-EELS analyses suggested the presence of interactions between PdO and Pd(0) as a result of the formation of Pd@PdO core–shell nanoparticles. The highest oxidation current magnitude during methanol oxidation reaction is ascribed to the heat-treated material, linked with a better electron and mass transfer processes at the electrode interface. This can be attributed to electronic interactions at the core–shell formed, which might promote different redox processes at the electrode interface during CH 3 OH deprotonation in the alkaline electrolyte.
doi_str_mv 10.1007/s10853-019-03843-8
format Article
fullrecord <record><control><sourceid>gale_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02388801v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A596346834</galeid><sourcerecordid>A596346834</sourcerecordid><originalsourceid>FETCH-LOGICAL-c601t-a73414469d16b7b1623e4f8313be10fe62495125167ea62766d4844e2a91a76d3</originalsourceid><addsrcrecordid>eNp9ksuKFDEUhgtRsB19AVcBV7OoMbdKpVzZNOoMNEwzXnAX0qlT3RmqkjJJDTM7X0F8Q5_EtKUODSJZhJx83-Ec-IviOcFnBOP6ZSRYVqzEpCkxk5yV8kGxIFXNSi4xe1gsMKa0pFyQx8WTGK8xxlVNyaL4tmmRdi3atK837SUyPsCPr9_jHvoeOe38qEOypoeI4jSOPiRokXfo09Qb7ZDRYZtfn1dlTa9eZXvIvI255DsEPZgUvDbJ3th0hzof0ABpn7v2fz5Lf2tbnWw2AhxI754WjzrdR3j2-z4pPr5982F1Xq4v312sluvSCExSqWvGCeeiaYnY1lsiKAPeSUbYFgjuQFDeVIRWRNSgBa2FaLnkHKhuiK5Fy06K07nvXvdqDHbQ4U55bdX5cq0ONUyZlBKTG5LZFzM7Bv9lgpjUtZ-Cy-MpSgWrGyZpc0_tdA_Kus6noM1go1HLqhGMC8l4ps7-QeXTwmCNd9DZXD8STo-EzCS4TTs9xagu3l8ds3RmTfAxBuj-bkawOiRFzUlROSnqV1KUzBKbpZhht4Nwv91_rJ_Hwr9A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2263793829</pqid></control><display><type>article</type><title>Pd and Pd@PdO core–shell nanoparticles supported on Vulcan carbon XC-72R: comparison of electroactivity for methanol electro-oxidation reaction</title><source>SpringerLink Journals - AutoHoldings</source><creator>Guerrero-Ortega, L. P. A. ; Ramírez-Meneses, E. ; Cabrera-Sierra, R. ; Palacios-Romero, L. M. ; Philippot, K. ; Santiago-Ramírez, C. R. ; Lartundo-Rojas, L. ; Manzo-Robledo, A.</creator><creatorcontrib>Guerrero-Ortega, L. P. A. ; Ramírez-Meneses, E. ; Cabrera-Sierra, R. ; Palacios-Romero, L. M. ; Philippot, K. ; Santiago-Ramírez, C. R. ; Lartundo-Rojas, L. ; Manzo-Robledo, A.</creatorcontrib><description>Nanomaterials based on Pd nanoparticles supported on Vulcan carbon (XC-72R) were prepared by the organometallic approach in one-pot and mild conditions (3 bar hydrogen and room temperature) using Pd(dba) 2 (bis (dibenzylideneacetone) palladium (0)) as metal source and hexadecylamine (HDA) as stabilizer. High-resolution transmission electron microscopy (HR-TEM) evidenced the presence of well-dispersed Pd nanoparticles of ca. 4.5 nm mean size onto the carbon support (Pd/HDA/C). Scanning and transmission electron microscopy with electron energy loss spectroscopy (STEM-EELS) allowed to determine the chemical composition of the nanomaterials. When the Pd/HDA/C nanomaterial was submitted to heating treatment (ht) at 400 °C under air (referred as Pd/HDA/C@air-ht), X-ray photoelectron spectroscopy (XPS) and HR-TEM/STEM-EELS analyses suggested the presence of interactions between PdO and Pd(0) as a result of the formation of Pd@PdO core–shell nanoparticles. The highest oxidation current magnitude during methanol oxidation reaction is ascribed to the heat-treated material, linked with a better electron and mass transfer processes at the electrode interface. This can be attributed to electronic interactions at the core–shell formed, which might promote different redox processes at the electrode interface during CH 3 OH deprotonation in the alkaline electrolyte.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-019-03843-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Carbon ; Characterization and Evaluation of Materials ; Chemical composition ; Chemical Sciences ; Chemistry and Materials Science ; Classical Mechanics ; Comparative analysis ; Coordination chemistry ; Core-shell particles ; Crystallography and Scattering Methods ; Electroactivity ; Electrodes ; Electron energy loss spectroscopy ; Energy dissipation ; Energy Materials ; Energy transmission ; Heat treatment ; Mass transfer ; Material chemistry ; Materials Science ; Methanol ; Nanomaterials ; Nanoparticles ; Organic chemistry ; Oxidation ; Oxidation-reduction reaction ; Palladium ; Photoelectrons ; Polymer Sciences ; Povidone ; Scanning electron microscopy ; Scanning transmission electron microscopy ; Solid Mechanics ; Spectrum analysis ; Transmission electron microscopy ; X ray photoelectron spectroscopy ; X-ray spectroscopy</subject><ispartof>Journal of materials science, 2019-11, Vol.54 (21), p.13694-13714</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>COPYRIGHT 2019 Springer</rights><rights>Journal of Materials Science is a copyright of Springer, (2019). All Rights Reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c601t-a73414469d16b7b1623e4f8313be10fe62495125167ea62766d4844e2a91a76d3</citedby><cites>FETCH-LOGICAL-c601t-a73414469d16b7b1623e4f8313be10fe62495125167ea62766d4844e2a91a76d3</cites><orcidid>0000-0002-8570-4028 ; 0000-0003-0072-1281 ; 0000-0002-8965-825X ; 0000-0002-0003-6439 ; 0000-0002-6366-8791 ; 0000-0003-2456-3580 ; 0000-0002-7733-1671 ; 0000-0002-1367-6152</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-019-03843-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-019-03843-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02388801$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Guerrero-Ortega, L. P. A.</creatorcontrib><creatorcontrib>Ramírez-Meneses, E.</creatorcontrib><creatorcontrib>Cabrera-Sierra, R.</creatorcontrib><creatorcontrib>Palacios-Romero, L. M.</creatorcontrib><creatorcontrib>Philippot, K.</creatorcontrib><creatorcontrib>Santiago-Ramírez, C. R.</creatorcontrib><creatorcontrib>Lartundo-Rojas, L.</creatorcontrib><creatorcontrib>Manzo-Robledo, A.</creatorcontrib><title>Pd and Pd@PdO core–shell nanoparticles supported on Vulcan carbon XC-72R: comparison of electroactivity for methanol electro-oxidation reaction</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>Nanomaterials based on Pd nanoparticles supported on Vulcan carbon (XC-72R) were prepared by the organometallic approach in one-pot and mild conditions (3 bar hydrogen and room temperature) using Pd(dba) 2 (bis (dibenzylideneacetone) palladium (0)) as metal source and hexadecylamine (HDA) as stabilizer. High-resolution transmission electron microscopy (HR-TEM) evidenced the presence of well-dispersed Pd nanoparticles of ca. 4.5 nm mean size onto the carbon support (Pd/HDA/C). Scanning and transmission electron microscopy with electron energy loss spectroscopy (STEM-EELS) allowed to determine the chemical composition of the nanomaterials. When the Pd/HDA/C nanomaterial was submitted to heating treatment (ht) at 400 °C under air (referred as Pd/HDA/C@air-ht), X-ray photoelectron spectroscopy (XPS) and HR-TEM/STEM-EELS analyses suggested the presence of interactions between PdO and Pd(0) as a result of the formation of Pd@PdO core–shell nanoparticles. The highest oxidation current magnitude during methanol oxidation reaction is ascribed to the heat-treated material, linked with a better electron and mass transfer processes at the electrode interface. This can be attributed to electronic interactions at the core–shell formed, which might promote different redox processes at the electrode interface during CH 3 OH deprotonation in the alkaline electrolyte.</description><subject>Carbon</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical composition</subject><subject>Chemical Sciences</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Comparative analysis</subject><subject>Coordination chemistry</subject><subject>Core-shell particles</subject><subject>Crystallography and Scattering Methods</subject><subject>Electroactivity</subject><subject>Electrodes</subject><subject>Electron energy loss spectroscopy</subject><subject>Energy dissipation</subject><subject>Energy Materials</subject><subject>Energy transmission</subject><subject>Heat treatment</subject><subject>Mass transfer</subject><subject>Material chemistry</subject><subject>Materials Science</subject><subject>Methanol</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><subject>Organic chemistry</subject><subject>Oxidation</subject><subject>Oxidation-reduction reaction</subject><subject>Palladium</subject><subject>Photoelectrons</subject><subject>Polymer Sciences</subject><subject>Povidone</subject><subject>Scanning electron microscopy</subject><subject>Scanning transmission electron microscopy</subject><subject>Solid Mechanics</subject><subject>Spectrum analysis</subject><subject>Transmission electron microscopy</subject><subject>X ray photoelectron spectroscopy</subject><subject>X-ray spectroscopy</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9ksuKFDEUhgtRsB19AVcBV7OoMbdKpVzZNOoMNEwzXnAX0qlT3RmqkjJJDTM7X0F8Q5_EtKUODSJZhJx83-Ec-IviOcFnBOP6ZSRYVqzEpCkxk5yV8kGxIFXNSi4xe1gsMKa0pFyQx8WTGK8xxlVNyaL4tmmRdi3atK837SUyPsCPr9_jHvoeOe38qEOypoeI4jSOPiRokXfo09Qb7ZDRYZtfn1dlTa9eZXvIvI255DsEPZgUvDbJ3th0hzof0ABpn7v2fz5Lf2tbnWw2AhxI754WjzrdR3j2-z4pPr5982F1Xq4v312sluvSCExSqWvGCeeiaYnY1lsiKAPeSUbYFgjuQFDeVIRWRNSgBa2FaLnkHKhuiK5Fy06K07nvXvdqDHbQ4U55bdX5cq0ONUyZlBKTG5LZFzM7Bv9lgpjUtZ-Cy-MpSgWrGyZpc0_tdA_Kus6noM1go1HLqhGMC8l4ps7-QeXTwmCNd9DZXD8STo-EzCS4TTs9xagu3l8ds3RmTfAxBuj-bkawOiRFzUlROSnqV1KUzBKbpZhht4Nwv91_rJ_Hwr9A</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Guerrero-Ortega, L. P. A.</creator><creator>Ramírez-Meneses, E.</creator><creator>Cabrera-Sierra, R.</creator><creator>Palacios-Romero, L. M.</creator><creator>Philippot, K.</creator><creator>Santiago-Ramírez, C. R.</creator><creator>Lartundo-Rojas, L.</creator><creator>Manzo-Robledo, A.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-8570-4028</orcidid><orcidid>https://orcid.org/0000-0003-0072-1281</orcidid><orcidid>https://orcid.org/0000-0002-8965-825X</orcidid><orcidid>https://orcid.org/0000-0002-0003-6439</orcidid><orcidid>https://orcid.org/0000-0002-6366-8791</orcidid><orcidid>https://orcid.org/0000-0003-2456-3580</orcidid><orcidid>https://orcid.org/0000-0002-7733-1671</orcidid><orcidid>https://orcid.org/0000-0002-1367-6152</orcidid></search><sort><creationdate>20191101</creationdate><title>Pd and Pd@PdO core–shell nanoparticles supported on Vulcan carbon XC-72R: comparison of electroactivity for methanol electro-oxidation reaction</title><author>Guerrero-Ortega, L. P. A. ; Ramírez-Meneses, E. ; Cabrera-Sierra, R. ; Palacios-Romero, L. M. ; Philippot, K. ; Santiago-Ramírez, C. R. ; Lartundo-Rojas, L. ; Manzo-Robledo, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c601t-a73414469d16b7b1623e4f8313be10fe62495125167ea62766d4844e2a91a76d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Carbon</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical composition</topic><topic>Chemical Sciences</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Comparative analysis</topic><topic>Coordination chemistry</topic><topic>Core-shell particles</topic><topic>Crystallography and Scattering Methods</topic><topic>Electroactivity</topic><topic>Electrodes</topic><topic>Electron energy loss spectroscopy</topic><topic>Energy dissipation</topic><topic>Energy Materials</topic><topic>Energy transmission</topic><topic>Heat treatment</topic><topic>Mass transfer</topic><topic>Material chemistry</topic><topic>Materials Science</topic><topic>Methanol</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><topic>Organic chemistry</topic><topic>Oxidation</topic><topic>Oxidation-reduction reaction</topic><topic>Palladium</topic><topic>Photoelectrons</topic><topic>Polymer Sciences</topic><topic>Povidone</topic><topic>Scanning electron microscopy</topic><topic>Scanning transmission electron microscopy</topic><topic>Solid Mechanics</topic><topic>Spectrum analysis</topic><topic>Transmission electron microscopy</topic><topic>X ray photoelectron spectroscopy</topic><topic>X-ray spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guerrero-Ortega, L. P. A.</creatorcontrib><creatorcontrib>Ramírez-Meneses, E.</creatorcontrib><creatorcontrib>Cabrera-Sierra, R.</creatorcontrib><creatorcontrib>Palacios-Romero, L. M.</creatorcontrib><creatorcontrib>Philippot, K.</creatorcontrib><creatorcontrib>Santiago-Ramírez, C. R.</creatorcontrib><creatorcontrib>Lartundo-Rojas, L.</creatorcontrib><creatorcontrib>Manzo-Robledo, A.</creatorcontrib><collection>CrossRef</collection><collection>Science In Context</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guerrero-Ortega, L. P. A.</au><au>Ramírez-Meneses, E.</au><au>Cabrera-Sierra, R.</au><au>Palacios-Romero, L. M.</au><au>Philippot, K.</au><au>Santiago-Ramírez, C. R.</au><au>Lartundo-Rojas, L.</au><au>Manzo-Robledo, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pd and Pd@PdO core–shell nanoparticles supported on Vulcan carbon XC-72R: comparison of electroactivity for methanol electro-oxidation reaction</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2019-11-01</date><risdate>2019</risdate><volume>54</volume><issue>21</issue><spage>13694</spage><epage>13714</epage><pages>13694-13714</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>Nanomaterials based on Pd nanoparticles supported on Vulcan carbon (XC-72R) were prepared by the organometallic approach in one-pot and mild conditions (3 bar hydrogen and room temperature) using Pd(dba) 2 (bis (dibenzylideneacetone) palladium (0)) as metal source and hexadecylamine (HDA) as stabilizer. High-resolution transmission electron microscopy (HR-TEM) evidenced the presence of well-dispersed Pd nanoparticles of ca. 4.5 nm mean size onto the carbon support (Pd/HDA/C). Scanning and transmission electron microscopy with electron energy loss spectroscopy (STEM-EELS) allowed to determine the chemical composition of the nanomaterials. When the Pd/HDA/C nanomaterial was submitted to heating treatment (ht) at 400 °C under air (referred as Pd/HDA/C@air-ht), X-ray photoelectron spectroscopy (XPS) and HR-TEM/STEM-EELS analyses suggested the presence of interactions between PdO and Pd(0) as a result of the formation of Pd@PdO core–shell nanoparticles. The highest oxidation current magnitude during methanol oxidation reaction is ascribed to the heat-treated material, linked with a better electron and mass transfer processes at the electrode interface. This can be attributed to electronic interactions at the core–shell formed, which might promote different redox processes at the electrode interface during CH 3 OH deprotonation in the alkaline electrolyte.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-019-03843-8</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-8570-4028</orcidid><orcidid>https://orcid.org/0000-0003-0072-1281</orcidid><orcidid>https://orcid.org/0000-0002-8965-825X</orcidid><orcidid>https://orcid.org/0000-0002-0003-6439</orcidid><orcidid>https://orcid.org/0000-0002-6366-8791</orcidid><orcidid>https://orcid.org/0000-0003-2456-3580</orcidid><orcidid>https://orcid.org/0000-0002-7733-1671</orcidid><orcidid>https://orcid.org/0000-0002-1367-6152</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-2461
ispartof Journal of materials science, 2019-11, Vol.54 (21), p.13694-13714
issn 0022-2461
1573-4803
language eng
recordid cdi_hal_primary_oai_HAL_hal_02388801v1
source SpringerLink Journals - AutoHoldings
subjects Carbon
Characterization and Evaluation of Materials
Chemical composition
Chemical Sciences
Chemistry and Materials Science
Classical Mechanics
Comparative analysis
Coordination chemistry
Core-shell particles
Crystallography and Scattering Methods
Electroactivity
Electrodes
Electron energy loss spectroscopy
Energy dissipation
Energy Materials
Energy transmission
Heat treatment
Mass transfer
Material chemistry
Materials Science
Methanol
Nanomaterials
Nanoparticles
Organic chemistry
Oxidation
Oxidation-reduction reaction
Palladium
Photoelectrons
Polymer Sciences
Povidone
Scanning electron microscopy
Scanning transmission electron microscopy
Solid Mechanics
Spectrum analysis
Transmission electron microscopy
X ray photoelectron spectroscopy
X-ray spectroscopy
title Pd and Pd@PdO core–shell nanoparticles supported on Vulcan carbon XC-72R: comparison of electroactivity for methanol electro-oxidation reaction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T15%3A56%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pd%20and%20Pd@PdO%20core%E2%80%93shell%20nanoparticles%20supported%20on%20Vulcan%20carbon%20XC-72R:%20comparison%20of%20electroactivity%20for%20methanol%20electro-oxidation%20reaction&rft.jtitle=Journal%20of%20materials%20science&rft.au=Guerrero-Ortega,%20L.%20P.%20A.&rft.date=2019-11-01&rft.volume=54&rft.issue=21&rft.spage=13694&rft.epage=13714&rft.pages=13694-13714&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-019-03843-8&rft_dat=%3Cgale_hal_p%3EA596346834%3C/gale_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2263793829&rft_id=info:pmid/&rft_galeid=A596346834&rfr_iscdi=true