Parameter Identification of JONSWAP Spectrum Acquired by Airborne LIDAR
In this study, we developed the first linear Joint North Sea Wave Project (JONSWAP) spectrum (JS), which involves a transformation from the JS solution to the natural logarithmic scale. This transformation is convenient for defining the least squares function in terms of the scale and shape paramete...
Gespeichert in:
Veröffentlicht in: | Journal of Ocean University of China 2017-12, Vol.16 (6), p.998-1002 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1002 |
---|---|
container_issue | 6 |
container_start_page | 998 |
container_title | Journal of Ocean University of China |
container_volume | 16 |
creator | Yu, Yang Pei, Hailong Xu, Chengzhong |
description | In this study, we developed the first linear Joint North Sea Wave Project (JONSWAP) spectrum (JS), which involves a transformation from the JS solution to the natural logarithmic scale. This transformation is convenient for defining the least squares function in terms of the scale and shape parameters. We identified these two wind-dependent parameters to better understand the wind effect on surface waves. Due to its efficiency and high-resolution, we employed the airborne Light Detection and Ranging (LIDAR) system for our measurements. Due to the lack of actual data, we simulated ocean waves in the MATLAB environment,which can be easily translated into industrial programming language. We utilized the Longuet-Higgin (LH) random-phase method to generate the time series of wave records and used the fast Fourier transform (FFT) technique to compute the power spectra density.After validating these procedures, we identified the JS parameters by minimizing the mean-square error of the target spectrum to that of the estimated spectrum obtained by FFT. We determined that the estimation error is relative to the amount of available wave record data. Finally, we found the inverse computation of wind factors (wind speed and wind fetch length) to be robust and sufficiently precise for wave forecasting. |
doi_str_mv | 10.1007/s11802-017-3271-2 |
format | Article |
fullrecord | <record><control><sourceid>wanfang_jour_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02387446v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>7000349805</cqvip_id><wanfj_id>qdhydxxb_e201706007</wanfj_id><sourcerecordid>qdhydxxb_e201706007</sourcerecordid><originalsourceid>FETCH-LOGICAL-c457t-e9aec3d60fedbf4b25269280de7d4d46bcabe1653e2f195f3f936c2073e275443</originalsourceid><addsrcrecordid>eNp9kU9P4zAQxSO0SLCwH4BbJE6rVWD8PzlGLJSiilawiKPl2OM2iCatkwL99rgKYjlx8mj0e-On95LkhMAZAVDnHSE50AyIyhhVJKN7ySEpCpYJoORHnKWimSA5PUh-dt0TgGBCqsNkNDPBLLHHkI4dNn3ta2v6um3S1qc309v7x3KW3q_Q9mGzTEu73tQBXVpt07IOVRsaTCfjv-XdcbLvzXOHvz7eo-Th6vLfxXU2mY7GF-Uks1yoPsPCoGVOgkdXeV5RQWVBc3CoHHdcVtZUSKRgSD0phGe-YNJSUHGhBOfsKPk93F2YZ70K9dKErW5Nra_Lid7tgLJccS5fSGT_DOyrabxp5vqp3YQmutNrt9i6t7dKI42JgYwJRvp0oFehXW-w6__jpJAk5sgYjRQZKBvargvoP00Q0Lsm9NCEjnf1rgm909BB00W2mWP4cvkb0Ycdu2ib-TrqPn9SAMB4kccO3wFA7pP2</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1961502332</pqid></control><display><type>article</type><title>Parameter Identification of JONSWAP Spectrum Acquired by Airborne LIDAR</title><source>SpringerLink Journals</source><source>Alma/SFX Local Collection</source><creator>Yu, Yang ; Pei, Hailong ; Xu, Chengzhong</creator><creatorcontrib>Yu, Yang ; Pei, Hailong ; Xu, Chengzhong</creatorcontrib><description>In this study, we developed the first linear Joint North Sea Wave Project (JONSWAP) spectrum (JS), which involves a transformation from the JS solution to the natural logarithmic scale. This transformation is convenient for defining the least squares function in terms of the scale and shape parameters. We identified these two wind-dependent parameters to better understand the wind effect on surface waves. Due to its efficiency and high-resolution, we employed the airborne Light Detection and Ranging (LIDAR) system for our measurements. Due to the lack of actual data, we simulated ocean waves in the MATLAB environment,which can be easily translated into industrial programming language. We utilized the Longuet-Higgin (LH) random-phase method to generate the time series of wave records and used the fast Fourier transform (FFT) technique to compute the power spectra density.After validating these procedures, we identified the JS parameters by minimizing the mean-square error of the target spectrum to that of the estimated spectrum obtained by FFT. We determined that the estimation error is relative to the amount of available wave record data. Finally, we found the inverse computation of wind factors (wind speed and wind fetch length) to be robust and sufficiently precise for wave forecasting.</description><identifier>ISSN: 1672-5182</identifier><identifier>EISSN: 1993-5021</identifier><identifier>EISSN: 1672-5174</identifier><identifier>DOI: 10.1007/s11802-017-3271-2</identifier><language>eng</language><publisher>Heidelberg: Science Press</publisher><subject>airborne ; Airborne sensing ; Automatic ; Computation ; Computer simulation ; Detection ; Earth and Environmental Science ; Earth Sciences ; Energy spectra ; Engineering Sciences ; Fast Fourier transformations ; Fluid Dynamics ; Fluid mechanics ; Fourier transforms ; Identification ; JONSWAP ; least ; LIDAR ; Mechanics ; Meteorology ; method ; Ocean waves ; Oceanography ; parameter ; Parameter identification ; Parameters ; Physics ; Power spectra ; Procedures ; Programming languages ; spectrum ; square ; Surface water waves ; Surface waves ; Wave data ; Wave forecasting ; Wind effects ; Wind speed</subject><ispartof>Journal of Ocean University of China, 2017-12, Vol.16 (6), p.998-1002</ispartof><rights>Science Press, Ocean University of China and Springer-Verlag GmbH Germany, part of Springer Nature 2017</rights><rights>Copyright Springer Science & Business Media Dec 2017</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c457t-e9aec3d60fedbf4b25269280de7d4d46bcabe1653e2f195f3f936c2073e275443</citedby><cites>FETCH-LOGICAL-c457t-e9aec3d60fedbf4b25269280de7d4d46bcabe1653e2f195f3f936c2073e275443</cites><orcidid>0000-0001-9329-7015</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/87473A/87473A.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11802-017-3271-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11802-017-3271-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02387446$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Yu, Yang</creatorcontrib><creatorcontrib>Pei, Hailong</creatorcontrib><creatorcontrib>Xu, Chengzhong</creatorcontrib><title>Parameter Identification of JONSWAP Spectrum Acquired by Airborne LIDAR</title><title>Journal of Ocean University of China</title><addtitle>J. Ocean Univ. China</addtitle><addtitle>Journal of Ocean University of China</addtitle><description>In this study, we developed the first linear Joint North Sea Wave Project (JONSWAP) spectrum (JS), which involves a transformation from the JS solution to the natural logarithmic scale. This transformation is convenient for defining the least squares function in terms of the scale and shape parameters. We identified these two wind-dependent parameters to better understand the wind effect on surface waves. Due to its efficiency and high-resolution, we employed the airborne Light Detection and Ranging (LIDAR) system for our measurements. Due to the lack of actual data, we simulated ocean waves in the MATLAB environment,which can be easily translated into industrial programming language. We utilized the Longuet-Higgin (LH) random-phase method to generate the time series of wave records and used the fast Fourier transform (FFT) technique to compute the power spectra density.After validating these procedures, we identified the JS parameters by minimizing the mean-square error of the target spectrum to that of the estimated spectrum obtained by FFT. We determined that the estimation error is relative to the amount of available wave record data. Finally, we found the inverse computation of wind factors (wind speed and wind fetch length) to be robust and sufficiently precise for wave forecasting.</description><subject>airborne</subject><subject>Airborne sensing</subject><subject>Automatic</subject><subject>Computation</subject><subject>Computer simulation</subject><subject>Detection</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Energy spectra</subject><subject>Engineering Sciences</subject><subject>Fast Fourier transformations</subject><subject>Fluid Dynamics</subject><subject>Fluid mechanics</subject><subject>Fourier transforms</subject><subject>Identification</subject><subject>JONSWAP</subject><subject>least</subject><subject>LIDAR</subject><subject>Mechanics</subject><subject>Meteorology</subject><subject>method</subject><subject>Ocean waves</subject><subject>Oceanography</subject><subject>parameter</subject><subject>Parameter identification</subject><subject>Parameters</subject><subject>Physics</subject><subject>Power spectra</subject><subject>Procedures</subject><subject>Programming languages</subject><subject>spectrum</subject><subject>square</subject><subject>Surface water waves</subject><subject>Surface waves</subject><subject>Wave data</subject><subject>Wave forecasting</subject><subject>Wind effects</subject><subject>Wind speed</subject><issn>1672-5182</issn><issn>1993-5021</issn><issn>1672-5174</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kU9P4zAQxSO0SLCwH4BbJE6rVWD8PzlGLJSiilawiKPl2OM2iCatkwL99rgKYjlx8mj0e-On95LkhMAZAVDnHSE50AyIyhhVJKN7ySEpCpYJoORHnKWimSA5PUh-dt0TgGBCqsNkNDPBLLHHkI4dNn3ta2v6um3S1qc309v7x3KW3q_Q9mGzTEu73tQBXVpt07IOVRsaTCfjv-XdcbLvzXOHvz7eo-Th6vLfxXU2mY7GF-Uks1yoPsPCoGVOgkdXeV5RQWVBc3CoHHdcVtZUSKRgSD0phGe-YNJSUHGhBOfsKPk93F2YZ70K9dKErW5Nra_Lid7tgLJccS5fSGT_DOyrabxp5vqp3YQmutNrt9i6t7dKI42JgYwJRvp0oFehXW-w6__jpJAk5sgYjRQZKBvargvoP00Q0Lsm9NCEjnf1rgm909BB00W2mWP4cvkb0Ycdu2ib-TrqPn9SAMB4kccO3wFA7pP2</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Yu, Yang</creator><creator>Pei, Hailong</creator><creator>Xu, Chengzhong</creator><general>Science Press</general><general>Springer Nature B.V</general><general>Key Laboratory of Autonomous Systems and Networked Control, Ministry of Education, South China University of Technology, Guangzhou 510640, P.R.China%LAGEP, B(a)timent CPE, Université Claude Bernard Lyon 1, Villeurbanne F-69622, France</general><general>Springer Verlag</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W94</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7T7</scope><scope>7TN</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H95</scope><scope>H96</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>M2P</scope><scope>P64</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-9329-7015</orcidid></search><sort><creationdate>20171201</creationdate><title>Parameter Identification of JONSWAP Spectrum Acquired by Airborne LIDAR</title><author>Yu, Yang ; Pei, Hailong ; Xu, Chengzhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c457t-e9aec3d60fedbf4b25269280de7d4d46bcabe1653e2f195f3f936c2073e275443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>airborne</topic><topic>Airborne sensing</topic><topic>Automatic</topic><topic>Computation</topic><topic>Computer simulation</topic><topic>Detection</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Energy spectra</topic><topic>Engineering Sciences</topic><topic>Fast Fourier transformations</topic><topic>Fluid Dynamics</topic><topic>Fluid mechanics</topic><topic>Fourier transforms</topic><topic>Identification</topic><topic>JONSWAP</topic><topic>least</topic><topic>LIDAR</topic><topic>Mechanics</topic><topic>Meteorology</topic><topic>method</topic><topic>Ocean waves</topic><topic>Oceanography</topic><topic>parameter</topic><topic>Parameter identification</topic><topic>Parameters</topic><topic>Physics</topic><topic>Power spectra</topic><topic>Procedures</topic><topic>Programming languages</topic><topic>spectrum</topic><topic>square</topic><topic>Surface water waves</topic><topic>Surface waves</topic><topic>Wave data</topic><topic>Wave forecasting</topic><topic>Wind effects</topic><topic>Wind speed</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Yang</creatorcontrib><creatorcontrib>Pei, Hailong</creatorcontrib><creatorcontrib>Xu, Chengzhong</creatorcontrib><collection>维普_期刊</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>维普中文期刊数据库</collection><collection>中文科技期刊数据库-自然科学</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Oceanic Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of Ocean University of China</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Yang</au><au>Pei, Hailong</au><au>Xu, Chengzhong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parameter Identification of JONSWAP Spectrum Acquired by Airborne LIDAR</atitle><jtitle>Journal of Ocean University of China</jtitle><stitle>J. Ocean Univ. China</stitle><addtitle>Journal of Ocean University of China</addtitle><date>2017-12-01</date><risdate>2017</risdate><volume>16</volume><issue>6</issue><spage>998</spage><epage>1002</epage><pages>998-1002</pages><issn>1672-5182</issn><eissn>1993-5021</eissn><eissn>1672-5174</eissn><abstract>In this study, we developed the first linear Joint North Sea Wave Project (JONSWAP) spectrum (JS), which involves a transformation from the JS solution to the natural logarithmic scale. This transformation is convenient for defining the least squares function in terms of the scale and shape parameters. We identified these two wind-dependent parameters to better understand the wind effect on surface waves. Due to its efficiency and high-resolution, we employed the airborne Light Detection and Ranging (LIDAR) system for our measurements. Due to the lack of actual data, we simulated ocean waves in the MATLAB environment,which can be easily translated into industrial programming language. We utilized the Longuet-Higgin (LH) random-phase method to generate the time series of wave records and used the fast Fourier transform (FFT) technique to compute the power spectra density.After validating these procedures, we identified the JS parameters by minimizing the mean-square error of the target spectrum to that of the estimated spectrum obtained by FFT. We determined that the estimation error is relative to the amount of available wave record data. Finally, we found the inverse computation of wind factors (wind speed and wind fetch length) to be robust and sufficiently precise for wave forecasting.</abstract><cop>Heidelberg</cop><pub>Science Press</pub><doi>10.1007/s11802-017-3271-2</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-9329-7015</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1672-5182 |
ispartof | Journal of Ocean University of China, 2017-12, Vol.16 (6), p.998-1002 |
issn | 1672-5182 1993-5021 1672-5174 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02387446v1 |
source | SpringerLink Journals; Alma/SFX Local Collection |
subjects | airborne Airborne sensing Automatic Computation Computer simulation Detection Earth and Environmental Science Earth Sciences Energy spectra Engineering Sciences Fast Fourier transformations Fluid Dynamics Fluid mechanics Fourier transforms Identification JONSWAP least LIDAR Mechanics Meteorology method Ocean waves Oceanography parameter Parameter identification Parameters Physics Power spectra Procedures Programming languages spectrum square Surface water waves Surface waves Wave data Wave forecasting Wind effects Wind speed |
title | Parameter Identification of JONSWAP Spectrum Acquired by Airborne LIDAR |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T18%3A20%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parameter%20Identification%20of%20JONSWAP%20Spectrum%20Acquired%20by%20Airborne%20LIDAR&rft.jtitle=Journal%20of%20Ocean%20University%20of%20China&rft.au=Yu,%20Yang&rft.date=2017-12-01&rft.volume=16&rft.issue=6&rft.spage=998&rft.epage=1002&rft.pages=998-1002&rft.issn=1672-5182&rft.eissn=1993-5021&rft_id=info:doi/10.1007/s11802-017-3271-2&rft_dat=%3Cwanfang_jour_hal_p%3Eqdhydxxb_e201706007%3C/wanfang_jour_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1961502332&rft_id=info:pmid/&rft_cqvip_id=7000349805&rft_wanfj_id=qdhydxxb_e201706007&rfr_iscdi=true |