Inertial effects on acoustic Rayleigh streaming flow: Transient and established regimes

The effect of inertia on Rayleigh streaming generated inside a cylindrical resonator where a mono-frequency standing wave is imposed, is investigated numerically and experimentally. To this effect, time evolutions of streaming cells in the near wall region and in the resonator core are analyzed. An...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Wave motion 2017-11, Vol.74, p.1-17
Hauptverfasser: Daru, Virginie, Weisman, Catherine, Baltean-Carlès, Diana, Reyt, Ida, Bailliet, Hélène
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 17
container_issue
container_start_page 1
container_title Wave motion
container_volume 74
creator Daru, Virginie
Weisman, Catherine
Baltean-Carlès, Diana
Reyt, Ida
Bailliet, Hélène
description The effect of inertia on Rayleigh streaming generated inside a cylindrical resonator where a mono-frequency standing wave is imposed, is investigated numerically and experimentally. To this effect, time evolutions of streaming cells in the near wall region and in the resonator core are analyzed. An analogy with the lid-driven cavity in a cylindrical geometry is presented in order to analyze the physical meanings of the characteristic times. Inertial effects on the established streaming flow pattern are then investigated numerically using a code solving the time averaged Navier–Stokes compressible equations, where a mono-frequency acoustic flow field is used to compute the source terms. It is shown that inertia of streaming cannot be considered as the leading phenomenon to explain the mutation of streaming at high acoustic levels. •Nonlinear inertial effects produce patterns different from DNS and experiments.•Time evolutions of streaming cells near the wall and in the core are analyzed.•The full streaming equations are solved numerically to obtain the established flow.•Nonlinear inertial effects produce patterns different from DNS and experiments.•Nonlinear inertial effects cannot explain the mutation of streaming at high levels.
doi_str_mv 10.1016/j.wavemoti.2017.06.001
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02385990v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0165212517300720</els_id><sourcerecordid>1964518213</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3371-fb35373d6eb072a7bcae9a9d70b2419a46614457509e112261b1bd76b5304fa03</originalsourceid><addsrcrecordid>eNqFkMFqGzEQhkVpoa6bVwiCnnLYrUbalbw5JYS0NhgKxSW5idndWVtmvUqktY3fvjJucu1pYPj-n5mPsWsQOQjQ37f5EQ-086PLpQCTC50LAR_YBGZmlhVKPX9kkwSWmQRZfmZfYtyKRBhVTdjTYqAwOuw5dR01Y-R-4Nj4fRxdw3_jqSe33vA4BsKdG9a86_3xlq8CDtHRMHIcWk5xxLp3cUMtD7R2O4pf2acO-0hX_-aU_fnxuHqYZ8tfPxcP98usUcpA1tWqVEa1mmphJJq6Qaqwao2oZQEVFlpDUZSmFBUBSKmhhro1ui6VKDoUaspuLr0b7O1LcDsMJ-vR2fn90p53QqpZWVXiAIn9dmFfgn_dp6Pt1u_DkM6zUOmihJkElSh9oZrgYwzUvdeCsGfhdmvfhNuzcCu0TTpT8O4SpPTvwVGwsUmKGmpdSGZt693_Kv4CGouMKQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1964518213</pqid></control><display><type>article</type><title>Inertial effects on acoustic Rayleigh streaming flow: Transient and established regimes</title><source>Elsevier ScienceDirect Journals</source><creator>Daru, Virginie ; Weisman, Catherine ; Baltean-Carlès, Diana ; Reyt, Ida ; Bailliet, Hélène</creator><creatorcontrib>Daru, Virginie ; Weisman, Catherine ; Baltean-Carlès, Diana ; Reyt, Ida ; Bailliet, Hélène</creatorcontrib><description>The effect of inertia on Rayleigh streaming generated inside a cylindrical resonator where a mono-frequency standing wave is imposed, is investigated numerically and experimentally. To this effect, time evolutions of streaming cells in the near wall region and in the resonator core are analyzed. An analogy with the lid-driven cavity in a cylindrical geometry is presented in order to analyze the physical meanings of the characteristic times. Inertial effects on the established streaming flow pattern are then investigated numerically using a code solving the time averaged Navier–Stokes compressible equations, where a mono-frequency acoustic flow field is used to compute the source terms. It is shown that inertia of streaming cannot be considered as the leading phenomenon to explain the mutation of streaming at high acoustic levels. •Nonlinear inertial effects produce patterns different from DNS and experiments.•Time evolutions of streaming cells near the wall and in the core are analyzed.•The full streaming equations are solved numerically to obtain the established flow.•Nonlinear inertial effects produce patterns different from DNS and experiments.•Nonlinear inertial effects cannot explain the mutation of streaming at high levels.</description><identifier>ISSN: 0165-2125</identifier><identifier>EISSN: 1878-433X</identifier><identifier>DOI: 10.1016/j.wavemoti.2017.06.001</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Cavity resonators ; Compressibility ; Computational fluid dynamics ; Engineering Sciences ; Inertia ; Inertial effects ; Navier-Stokes equations ; Nonlinear streaming ; Rayleigh number ; Rayleigh streaming ; Standing wave ; Time compression ; Transient evolution</subject><ispartof>Wave motion, 2017-11, Vol.74, p.1-17</ispartof><rights>2017 Elsevier B.V.</rights><rights>Copyright Elsevier BV Nov 2017</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3371-fb35373d6eb072a7bcae9a9d70b2419a46614457509e112261b1bd76b5304fa03</citedby><cites>FETCH-LOGICAL-c3371-fb35373d6eb072a7bcae9a9d70b2419a46614457509e112261b1bd76b5304fa03</cites><orcidid>0000-0001-7236-4557 ; 0000-0003-4082-4023</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.wavemoti.2017.06.001$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,777,781,882,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02385990$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Daru, Virginie</creatorcontrib><creatorcontrib>Weisman, Catherine</creatorcontrib><creatorcontrib>Baltean-Carlès, Diana</creatorcontrib><creatorcontrib>Reyt, Ida</creatorcontrib><creatorcontrib>Bailliet, Hélène</creatorcontrib><title>Inertial effects on acoustic Rayleigh streaming flow: Transient and established regimes</title><title>Wave motion</title><description>The effect of inertia on Rayleigh streaming generated inside a cylindrical resonator where a mono-frequency standing wave is imposed, is investigated numerically and experimentally. To this effect, time evolutions of streaming cells in the near wall region and in the resonator core are analyzed. An analogy with the lid-driven cavity in a cylindrical geometry is presented in order to analyze the physical meanings of the characteristic times. Inertial effects on the established streaming flow pattern are then investigated numerically using a code solving the time averaged Navier–Stokes compressible equations, where a mono-frequency acoustic flow field is used to compute the source terms. It is shown that inertia of streaming cannot be considered as the leading phenomenon to explain the mutation of streaming at high acoustic levels. •Nonlinear inertial effects produce patterns different from DNS and experiments.•Time evolutions of streaming cells near the wall and in the core are analyzed.•The full streaming equations are solved numerically to obtain the established flow.•Nonlinear inertial effects produce patterns different from DNS and experiments.•Nonlinear inertial effects cannot explain the mutation of streaming at high levels.</description><subject>Cavity resonators</subject><subject>Compressibility</subject><subject>Computational fluid dynamics</subject><subject>Engineering Sciences</subject><subject>Inertia</subject><subject>Inertial effects</subject><subject>Navier-Stokes equations</subject><subject>Nonlinear streaming</subject><subject>Rayleigh number</subject><subject>Rayleigh streaming</subject><subject>Standing wave</subject><subject>Time compression</subject><subject>Transient evolution</subject><issn>0165-2125</issn><issn>1878-433X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkMFqGzEQhkVpoa6bVwiCnnLYrUbalbw5JYS0NhgKxSW5idndWVtmvUqktY3fvjJucu1pYPj-n5mPsWsQOQjQ37f5EQ-086PLpQCTC50LAR_YBGZmlhVKPX9kkwSWmQRZfmZfYtyKRBhVTdjTYqAwOuw5dR01Y-R-4Nj4fRxdw3_jqSe33vA4BsKdG9a86_3xlq8CDtHRMHIcWk5xxLp3cUMtD7R2O4pf2acO-0hX_-aU_fnxuHqYZ8tfPxcP98usUcpA1tWqVEa1mmphJJq6Qaqwao2oZQEVFlpDUZSmFBUBSKmhhro1ui6VKDoUaspuLr0b7O1LcDsMJ-vR2fn90p53QqpZWVXiAIn9dmFfgn_dp6Pt1u_DkM6zUOmihJkElSh9oZrgYwzUvdeCsGfhdmvfhNuzcCu0TTpT8O4SpPTvwVGwsUmKGmpdSGZt693_Kv4CGouMKQ</recordid><startdate>20171101</startdate><enddate>20171101</enddate><creator>Daru, Virginie</creator><creator>Weisman, Catherine</creator><creator>Baltean-Carlès, Diana</creator><creator>Reyt, Ida</creator><creator>Bailliet, Hélène</creator><general>Elsevier B.V</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-7236-4557</orcidid><orcidid>https://orcid.org/0000-0003-4082-4023</orcidid></search><sort><creationdate>20171101</creationdate><title>Inertial effects on acoustic Rayleigh streaming flow: Transient and established regimes</title><author>Daru, Virginie ; Weisman, Catherine ; Baltean-Carlès, Diana ; Reyt, Ida ; Bailliet, Hélène</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3371-fb35373d6eb072a7bcae9a9d70b2419a46614457509e112261b1bd76b5304fa03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Cavity resonators</topic><topic>Compressibility</topic><topic>Computational fluid dynamics</topic><topic>Engineering Sciences</topic><topic>Inertia</topic><topic>Inertial effects</topic><topic>Navier-Stokes equations</topic><topic>Nonlinear streaming</topic><topic>Rayleigh number</topic><topic>Rayleigh streaming</topic><topic>Standing wave</topic><topic>Time compression</topic><topic>Transient evolution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Daru, Virginie</creatorcontrib><creatorcontrib>Weisman, Catherine</creatorcontrib><creatorcontrib>Baltean-Carlès, Diana</creatorcontrib><creatorcontrib>Reyt, Ida</creatorcontrib><creatorcontrib>Bailliet, Hélène</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Wave motion</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Daru, Virginie</au><au>Weisman, Catherine</au><au>Baltean-Carlès, Diana</au><au>Reyt, Ida</au><au>Bailliet, Hélène</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inertial effects on acoustic Rayleigh streaming flow: Transient and established regimes</atitle><jtitle>Wave motion</jtitle><date>2017-11-01</date><risdate>2017</risdate><volume>74</volume><spage>1</spage><epage>17</epage><pages>1-17</pages><issn>0165-2125</issn><eissn>1878-433X</eissn><abstract>The effect of inertia on Rayleigh streaming generated inside a cylindrical resonator where a mono-frequency standing wave is imposed, is investigated numerically and experimentally. To this effect, time evolutions of streaming cells in the near wall region and in the resonator core are analyzed. An analogy with the lid-driven cavity in a cylindrical geometry is presented in order to analyze the physical meanings of the characteristic times. Inertial effects on the established streaming flow pattern are then investigated numerically using a code solving the time averaged Navier–Stokes compressible equations, where a mono-frequency acoustic flow field is used to compute the source terms. It is shown that inertia of streaming cannot be considered as the leading phenomenon to explain the mutation of streaming at high acoustic levels. •Nonlinear inertial effects produce patterns different from DNS and experiments.•Time evolutions of streaming cells near the wall and in the core are analyzed.•The full streaming equations are solved numerically to obtain the established flow.•Nonlinear inertial effects produce patterns different from DNS and experiments.•Nonlinear inertial effects cannot explain the mutation of streaming at high levels.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.wavemoti.2017.06.001</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-7236-4557</orcidid><orcidid>https://orcid.org/0000-0003-4082-4023</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0165-2125
ispartof Wave motion, 2017-11, Vol.74, p.1-17
issn 0165-2125
1878-433X
language eng
recordid cdi_hal_primary_oai_HAL_hal_02385990v1
source Elsevier ScienceDirect Journals
subjects Cavity resonators
Compressibility
Computational fluid dynamics
Engineering Sciences
Inertia
Inertial effects
Navier-Stokes equations
Nonlinear streaming
Rayleigh number
Rayleigh streaming
Standing wave
Time compression
Transient evolution
title Inertial effects on acoustic Rayleigh streaming flow: Transient and established regimes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T02%3A25%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inertial%20effects%20on%20acoustic%20Rayleigh%20streaming%20flow:%20Transient%20and%20established%20regimes&rft.jtitle=Wave%20motion&rft.au=Daru,%20Virginie&rft.date=2017-11-01&rft.volume=74&rft.spage=1&rft.epage=17&rft.pages=1-17&rft.issn=0165-2125&rft.eissn=1878-433X&rft_id=info:doi/10.1016/j.wavemoti.2017.06.001&rft_dat=%3Cproquest_hal_p%3E1964518213%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1964518213&rft_id=info:pmid/&rft_els_id=S0165212517300720&rfr_iscdi=true