Inertial effects on acoustic Rayleigh streaming flow: Transient and established regimes
The effect of inertia on Rayleigh streaming generated inside a cylindrical resonator where a mono-frequency standing wave is imposed, is investigated numerically and experimentally. To this effect, time evolutions of streaming cells in the near wall region and in the resonator core are analyzed. An...
Gespeichert in:
Veröffentlicht in: | Wave motion 2017-11, Vol.74, p.1-17 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 17 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | Wave motion |
container_volume | 74 |
creator | Daru, Virginie Weisman, Catherine Baltean-Carlès, Diana Reyt, Ida Bailliet, Hélène |
description | The effect of inertia on Rayleigh streaming generated inside a cylindrical resonator where a mono-frequency standing wave is imposed, is investigated numerically and experimentally. To this effect, time evolutions of streaming cells in the near wall region and in the resonator core are analyzed. An analogy with the lid-driven cavity in a cylindrical geometry is presented in order to analyze the physical meanings of the characteristic times.
Inertial effects on the established streaming flow pattern are then investigated numerically using a code solving the time averaged Navier–Stokes compressible equations, where a mono-frequency acoustic flow field is used to compute the source terms.
It is shown that inertia of streaming cannot be considered as the leading phenomenon to explain the mutation of streaming at high acoustic levels.
•Nonlinear inertial effects produce patterns different from DNS and experiments.•Time evolutions of streaming cells near the wall and in the core are analyzed.•The full streaming equations are solved numerically to obtain the established flow.•Nonlinear inertial effects produce patterns different from DNS and experiments.•Nonlinear inertial effects cannot explain the mutation of streaming at high levels. |
doi_str_mv | 10.1016/j.wavemoti.2017.06.001 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02385990v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0165212517300720</els_id><sourcerecordid>1964518213</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3371-fb35373d6eb072a7bcae9a9d70b2419a46614457509e112261b1bd76b5304fa03</originalsourceid><addsrcrecordid>eNqFkMFqGzEQhkVpoa6bVwiCnnLYrUbalbw5JYS0NhgKxSW5idndWVtmvUqktY3fvjJucu1pYPj-n5mPsWsQOQjQ37f5EQ-086PLpQCTC50LAR_YBGZmlhVKPX9kkwSWmQRZfmZfYtyKRBhVTdjTYqAwOuw5dR01Y-R-4Nj4fRxdw3_jqSe33vA4BsKdG9a86_3xlq8CDtHRMHIcWk5xxLp3cUMtD7R2O4pf2acO-0hX_-aU_fnxuHqYZ8tfPxcP98usUcpA1tWqVEa1mmphJJq6Qaqwao2oZQEVFlpDUZSmFBUBSKmhhro1ui6VKDoUaspuLr0b7O1LcDsMJ-vR2fn90p53QqpZWVXiAIn9dmFfgn_dp6Pt1u_DkM6zUOmihJkElSh9oZrgYwzUvdeCsGfhdmvfhNuzcCu0TTpT8O4SpPTvwVGwsUmKGmpdSGZt693_Kv4CGouMKQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1964518213</pqid></control><display><type>article</type><title>Inertial effects on acoustic Rayleigh streaming flow: Transient and established regimes</title><source>Elsevier ScienceDirect Journals</source><creator>Daru, Virginie ; Weisman, Catherine ; Baltean-Carlès, Diana ; Reyt, Ida ; Bailliet, Hélène</creator><creatorcontrib>Daru, Virginie ; Weisman, Catherine ; Baltean-Carlès, Diana ; Reyt, Ida ; Bailliet, Hélène</creatorcontrib><description>The effect of inertia on Rayleigh streaming generated inside a cylindrical resonator where a mono-frequency standing wave is imposed, is investigated numerically and experimentally. To this effect, time evolutions of streaming cells in the near wall region and in the resonator core are analyzed. An analogy with the lid-driven cavity in a cylindrical geometry is presented in order to analyze the physical meanings of the characteristic times.
Inertial effects on the established streaming flow pattern are then investigated numerically using a code solving the time averaged Navier–Stokes compressible equations, where a mono-frequency acoustic flow field is used to compute the source terms.
It is shown that inertia of streaming cannot be considered as the leading phenomenon to explain the mutation of streaming at high acoustic levels.
•Nonlinear inertial effects produce patterns different from DNS and experiments.•Time evolutions of streaming cells near the wall and in the core are analyzed.•The full streaming equations are solved numerically to obtain the established flow.•Nonlinear inertial effects produce patterns different from DNS and experiments.•Nonlinear inertial effects cannot explain the mutation of streaming at high levels.</description><identifier>ISSN: 0165-2125</identifier><identifier>EISSN: 1878-433X</identifier><identifier>DOI: 10.1016/j.wavemoti.2017.06.001</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Cavity resonators ; Compressibility ; Computational fluid dynamics ; Engineering Sciences ; Inertia ; Inertial effects ; Navier-Stokes equations ; Nonlinear streaming ; Rayleigh number ; Rayleigh streaming ; Standing wave ; Time compression ; Transient evolution</subject><ispartof>Wave motion, 2017-11, Vol.74, p.1-17</ispartof><rights>2017 Elsevier B.V.</rights><rights>Copyright Elsevier BV Nov 2017</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3371-fb35373d6eb072a7bcae9a9d70b2419a46614457509e112261b1bd76b5304fa03</citedby><cites>FETCH-LOGICAL-c3371-fb35373d6eb072a7bcae9a9d70b2419a46614457509e112261b1bd76b5304fa03</cites><orcidid>0000-0001-7236-4557 ; 0000-0003-4082-4023</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.wavemoti.2017.06.001$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,777,781,882,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02385990$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Daru, Virginie</creatorcontrib><creatorcontrib>Weisman, Catherine</creatorcontrib><creatorcontrib>Baltean-Carlès, Diana</creatorcontrib><creatorcontrib>Reyt, Ida</creatorcontrib><creatorcontrib>Bailliet, Hélène</creatorcontrib><title>Inertial effects on acoustic Rayleigh streaming flow: Transient and established regimes</title><title>Wave motion</title><description>The effect of inertia on Rayleigh streaming generated inside a cylindrical resonator where a mono-frequency standing wave is imposed, is investigated numerically and experimentally. To this effect, time evolutions of streaming cells in the near wall region and in the resonator core are analyzed. An analogy with the lid-driven cavity in a cylindrical geometry is presented in order to analyze the physical meanings of the characteristic times.
Inertial effects on the established streaming flow pattern are then investigated numerically using a code solving the time averaged Navier–Stokes compressible equations, where a mono-frequency acoustic flow field is used to compute the source terms.
It is shown that inertia of streaming cannot be considered as the leading phenomenon to explain the mutation of streaming at high acoustic levels.
•Nonlinear inertial effects produce patterns different from DNS and experiments.•Time evolutions of streaming cells near the wall and in the core are analyzed.•The full streaming equations are solved numerically to obtain the established flow.•Nonlinear inertial effects produce patterns different from DNS and experiments.•Nonlinear inertial effects cannot explain the mutation of streaming at high levels.</description><subject>Cavity resonators</subject><subject>Compressibility</subject><subject>Computational fluid dynamics</subject><subject>Engineering Sciences</subject><subject>Inertia</subject><subject>Inertial effects</subject><subject>Navier-Stokes equations</subject><subject>Nonlinear streaming</subject><subject>Rayleigh number</subject><subject>Rayleigh streaming</subject><subject>Standing wave</subject><subject>Time compression</subject><subject>Transient evolution</subject><issn>0165-2125</issn><issn>1878-433X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkMFqGzEQhkVpoa6bVwiCnnLYrUbalbw5JYS0NhgKxSW5idndWVtmvUqktY3fvjJucu1pYPj-n5mPsWsQOQjQ37f5EQ-086PLpQCTC50LAR_YBGZmlhVKPX9kkwSWmQRZfmZfYtyKRBhVTdjTYqAwOuw5dR01Y-R-4Nj4fRxdw3_jqSe33vA4BsKdG9a86_3xlq8CDtHRMHIcWk5xxLp3cUMtD7R2O4pf2acO-0hX_-aU_fnxuHqYZ8tfPxcP98usUcpA1tWqVEa1mmphJJq6Qaqwao2oZQEVFlpDUZSmFBUBSKmhhro1ui6VKDoUaspuLr0b7O1LcDsMJ-vR2fn90p53QqpZWVXiAIn9dmFfgn_dp6Pt1u_DkM6zUOmihJkElSh9oZrgYwzUvdeCsGfhdmvfhNuzcCu0TTpT8O4SpPTvwVGwsUmKGmpdSGZt693_Kv4CGouMKQ</recordid><startdate>20171101</startdate><enddate>20171101</enddate><creator>Daru, Virginie</creator><creator>Weisman, Catherine</creator><creator>Baltean-Carlès, Diana</creator><creator>Reyt, Ida</creator><creator>Bailliet, Hélène</creator><general>Elsevier B.V</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-7236-4557</orcidid><orcidid>https://orcid.org/0000-0003-4082-4023</orcidid></search><sort><creationdate>20171101</creationdate><title>Inertial effects on acoustic Rayleigh streaming flow: Transient and established regimes</title><author>Daru, Virginie ; Weisman, Catherine ; Baltean-Carlès, Diana ; Reyt, Ida ; Bailliet, Hélène</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3371-fb35373d6eb072a7bcae9a9d70b2419a46614457509e112261b1bd76b5304fa03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Cavity resonators</topic><topic>Compressibility</topic><topic>Computational fluid dynamics</topic><topic>Engineering Sciences</topic><topic>Inertia</topic><topic>Inertial effects</topic><topic>Navier-Stokes equations</topic><topic>Nonlinear streaming</topic><topic>Rayleigh number</topic><topic>Rayleigh streaming</topic><topic>Standing wave</topic><topic>Time compression</topic><topic>Transient evolution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Daru, Virginie</creatorcontrib><creatorcontrib>Weisman, Catherine</creatorcontrib><creatorcontrib>Baltean-Carlès, Diana</creatorcontrib><creatorcontrib>Reyt, Ida</creatorcontrib><creatorcontrib>Bailliet, Hélène</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Wave motion</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Daru, Virginie</au><au>Weisman, Catherine</au><au>Baltean-Carlès, Diana</au><au>Reyt, Ida</au><au>Bailliet, Hélène</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inertial effects on acoustic Rayleigh streaming flow: Transient and established regimes</atitle><jtitle>Wave motion</jtitle><date>2017-11-01</date><risdate>2017</risdate><volume>74</volume><spage>1</spage><epage>17</epage><pages>1-17</pages><issn>0165-2125</issn><eissn>1878-433X</eissn><abstract>The effect of inertia on Rayleigh streaming generated inside a cylindrical resonator where a mono-frequency standing wave is imposed, is investigated numerically and experimentally. To this effect, time evolutions of streaming cells in the near wall region and in the resonator core are analyzed. An analogy with the lid-driven cavity in a cylindrical geometry is presented in order to analyze the physical meanings of the characteristic times.
Inertial effects on the established streaming flow pattern are then investigated numerically using a code solving the time averaged Navier–Stokes compressible equations, where a mono-frequency acoustic flow field is used to compute the source terms.
It is shown that inertia of streaming cannot be considered as the leading phenomenon to explain the mutation of streaming at high acoustic levels.
•Nonlinear inertial effects produce patterns different from DNS and experiments.•Time evolutions of streaming cells near the wall and in the core are analyzed.•The full streaming equations are solved numerically to obtain the established flow.•Nonlinear inertial effects produce patterns different from DNS and experiments.•Nonlinear inertial effects cannot explain the mutation of streaming at high levels.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.wavemoti.2017.06.001</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-7236-4557</orcidid><orcidid>https://orcid.org/0000-0003-4082-4023</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0165-2125 |
ispartof | Wave motion, 2017-11, Vol.74, p.1-17 |
issn | 0165-2125 1878-433X |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02385990v1 |
source | Elsevier ScienceDirect Journals |
subjects | Cavity resonators Compressibility Computational fluid dynamics Engineering Sciences Inertia Inertial effects Navier-Stokes equations Nonlinear streaming Rayleigh number Rayleigh streaming Standing wave Time compression Transient evolution |
title | Inertial effects on acoustic Rayleigh streaming flow: Transient and established regimes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T02%3A25%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inertial%20effects%20on%20acoustic%20Rayleigh%20streaming%20flow:%20Transient%20and%20established%20regimes&rft.jtitle=Wave%20motion&rft.au=Daru,%20Virginie&rft.date=2017-11-01&rft.volume=74&rft.spage=1&rft.epage=17&rft.pages=1-17&rft.issn=0165-2125&rft.eissn=1878-433X&rft_id=info:doi/10.1016/j.wavemoti.2017.06.001&rft_dat=%3Cproquest_hal_p%3E1964518213%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1964518213&rft_id=info:pmid/&rft_els_id=S0165212517300720&rfr_iscdi=true |